A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave

In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated base...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Science of the total environment Ročník 905; s. 167121
Hlavní autori: Zhu, Senlin, Di Nunno, Fabio, Ptak, Mariusz, Sojka, Mariusz, Granata, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 20.12.2023
Predmet:
ISSN:0048-9697, 1879-1026, 1879-1026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions. [Display omitted] •Anomalies of mean and maximum LSWTs were assessed.•The BO-NARX-BR model is a promising tool to model LSWT and lake heatwaves.•LSWT anomaly significantly impacts the duration and intensity of heatwaves that occur in lakes.
AbstractList In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions.
In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987-2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987-2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions.In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987-2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987-2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions.
In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions. [Display omitted] •Anomalies of mean and maximum LSWTs were assessed.•The BO-NARX-BR model is a promising tool to model LSWT and lake heatwaves.•LSWT anomaly significantly impacts the duration and intensity of heatwaves that occur in lakes.
ArticleNumber 167121
Author Di Nunno, Fabio
Zhu, Senlin
Granata, Francesco
Ptak, Mariusz
Sojka, Mariusz
Author_xml – sequence: 1
  givenname: Senlin
  surname: Zhu
  fullname: Zhu, Senlin
  email: slzhu@yzu.edu.cn
  organization: College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
– sequence: 2
  givenname: Fabio
  surname: Di Nunno
  fullname: Di Nunno, Fabio
  email: fabio.dinunno@unicas.it
  organization: Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, Frosinone, Italy
– sequence: 3
  givenname: Mariusz
  surname: Ptak
  fullname: Ptak, Mariusz
  email: marp114@wp.pl
  organization: Department of Hydrology and Water Management, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznań, Poland
– sequence: 4
  givenname: Mariusz
  surname: Sojka
  fullname: Sojka, Mariusz
  email: mariusz.sojka@up.poznan.pl
  organization: Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649 Poznań, Poland
– sequence: 5
  givenname: Francesco
  surname: Granata
  fullname: Granata, Francesco
  email: f.granata@unicas.it
  organization: Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, Frosinone, Italy
BookMark eNqNkcFu1DAURS1UJKaFb8DLLshgO4ntLFiMKgpII0AIJHaWY78wniZ2sD0zgn_hX3E0qItuijfPTzr3Su_eS3ThgweEXlKypoTy1_t1Mi6HDP64ZoTVa8oFZfQJWlEpuooSxi_QipBGVh3vxDN0mdKelCckXaE_G-zDEUYc5uwm9xssnoIte69T-QePP26-fMce8inEu4SHEPEcwTqTnf-B8w7ipEesfSjDQcLO489hdGmHR31XdnuIC7gDnU_6COkVPrm8w2kG44owwgARvAGcw-KGGaHynn6Ong56TPDi37xC327ffr15X20_vftws9lWppY0V0Ot27YmktDOGNtTM5iGt60mpq9LFFSyvjGiE6InjRCd5ryXpGWDtYbJnkB9ha7PvnMMPw-QsppcMjCO2kM4JFWThjSsaSR5FGWSc0oZ56ygb86oiSGlcqkqRensgs9Ru1FRopYG1V7dN6iWBtW5waIXD_RzdJOOv_5DuTkroYR2dBAXbknZuggmKxvcox5_AVlzvzs
CitedBy_id crossref_primary_10_1007_s11600_024_01362_y
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_1007_s12145_024_01341_3
crossref_primary_10_1016_j_ejrh_2025_102339
crossref_primary_10_1007_s00477_023_02621_y
crossref_primary_10_1016_j_ejrh_2025_102475
crossref_primary_10_1016_j_scitotenv_2024_173181
crossref_primary_10_1029_2024WR039331
crossref_primary_10_3389_fenvs_2024_1434703
crossref_primary_10_3390_w17131844
crossref_primary_10_1016_j_gsf_2024_101916
crossref_primary_10_1016_j_watres_2025_124125
crossref_primary_10_1080_00221686_2024_2377132
crossref_primary_10_1016_j_ecolind_2024_112958
crossref_primary_10_1016_j_ecolind_2024_111978
crossref_primary_10_1029_2023RG000816
crossref_primary_10_1007_s00477_024_02760_w
crossref_primary_10_1016_j_scitotenv_2024_171954
Cites_doi 10.1016/j.scitotenv.2023.164323
10.3390/en11030620
10.1162/neco.1992.4.3.415
10.1002/wea.3588
10.3390/app122412601
10.1007/s00704-019-02968-9
10.3389/fenvs.2022.995862
10.1016/j.jglr.2022.04.008
10.1007/s11356-021-18221-8
10.1109/JSTARS.2022.3226516
10.1007/s10584-019-02465-y
10.1016/j.ecolind.2022.109217
10.3390/rs10070990
10.1038/s41467-020-16970-7
10.1002/lol2.10181
10.1016/j.jhydrol.2020.125130
10.1016/j.pocean.2015.12.014
10.1038/s41598-023-34316-3
10.1038/s41612-023-00365-8
10.1016/j.jhydrol.2020.125724
10.1016/j.oceaneng.2021.109958
10.1016/j.scib.2023.03.001
10.1002/lol2.10249
10.1016/j.jhydrol.2022.128431
10.21105/joss.00821
10.1016/j.ejrh.2023.101468
10.1016/j.scitotenv.2023.164316
10.5194/essd-14-3411-2022
10.5194/nhess-23-1699-2023
10.1016/j.jhydrol.2020.124809
10.3390/rs15040900
10.3390/w12010094
10.4319/lo.2007.52.2.0896
10.1016/j.agwat.2021.107040
10.2166/h2oj.2022.134
10.2478/s13545-014-0131-1
10.1007/s10584-021-03085-1
10.1007/s10533-021-00854-z
10.1016/j.scib.2023.06.028
10.1080/20442041.2020.1712180
10.1016/j.jhydrol.2021.126219
10.1088/1748-9326/ac3d5a
10.1016/j.scitotenv.2020.140521
10.5194/bg-19-4993-2022
10.1016/j.ejrh.2021.100780
10.3390/w10050580
10.1016/j.envres.2020.110062
10.5194/hess-17-3323-2013
10.1038/s41586-020-03119-1
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.167121
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2023_167121
S0048969723057480
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c381t-f3a55308019ccdb1cfc4655a0cb3121182b4c7977b04779a66b8052fddc28b0e3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001150446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 12:03:56 EDT 2025
Sat Sep 27 18:50:05 EDT 2025
Sat Nov 29 03:26:52 EST 2025
Tue Nov 18 21:26:51 EST 2025
Sat Nov 23 15:55:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polish lakes
Lake heatwaves
Heatwave
BO-NARX-BR
Europe
LSWT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-f3a55308019ccdb1cfc4655a0cb3121182b4c7977b04779a66b8052fddc28b0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2866112662
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040424480
proquest_miscellaneous_2866112662
crossref_citationtrail_10_1016_j_scitotenv_2023_167121
crossref_primary_10_1016_j_scitotenv_2023_167121
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_167121
PublicationCentury 2000
PublicationDate 2023-12-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-20
  day: 20
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Shi, Wang, Wang, Zhang, Peng, Li, Zhang, Zhang, Qin, Woolway, Jeppesen (bb0220) 2023; 68
Di Nunno, Race, Granata (bb0045) 2022; 29
Zhan, Stratmann, van der Geest, Veraart, Brenzinger, Lürling, de Senerpont Domis (bb0265) 2021; 156
Lieberherr, Wunderle (bb0120) 2018; 10
Livingstone, Padisák (bb0125) 2007; 52
Bartosiewicz, Ptak, Woolway, Sojka (bb0005) 2021; 597
Guo, Zheng, Wu, Fan, Wen, Li, Zhang, Zhu, Zhang (bb0085) 2022; 14
Snoek, Larochelle, Adams (bb0200) 2012; 25
Piccolroaz, Zhu, Ptak, Sojka, Du (bb0150) 2021; 34
Piotrowski, Napiorkowski, Zhu (bb0155) 2023; 16
Schlegel, Smit (bb0195) 2018; 3
Li, Shi, Zhang, Zhu, Guo, Li, Du (bb0115) 2022; 10
Zhu, Ptak, Sojka, Piotrowski, Luo (bb0280) 2023; 48
Di Nunno, Zhu, Ptak, Sojka, Granata (bb0055) 2023; 890
Woolway, Weyhenmeyer, Schmid, Dokulil, de Eyto, Maberly, May, Merchant (bb0240) 2019; 155
Heddam, Ptak, Zhu (bb0100) 2020; 588
Wang, Shi, Zhang, Qin, Zhang, Wang, Woolway, Piao, Jeppesen (bb0230) 2023; 68
Willard, Read, Topp, Hansen, Kumar (bb0235) 2022; 7
Piccolroaz, Toffolon, Majone (bb0145) 2013; 17
Perkins-Kirkpatrick, Lewis (bb0140) 2020; 11
Ptak, Sojka, Nowak (bb0175) 2019; 38
Trancoso, Syktus, Toombs, Ahrens, Wong, Pozza (bb0210) 2020; 742
Roubeix, Daufresne, Argillier, Dublon, Maire, Nicolas, Raymond, Danis (bb0185) 2017; 418
Granata, Di Nunno (bb0075) 2021; 255
Hobday, Alexander, Perkins-Kirkpatrick (bb0105) 2016; 141
Rousi, Fink, Andersen (bb0190) 2023; 23
Wu, Luo, Zhao, Li, Sun, Liu, Wang, Wang, Zhang (bb0260) 2023; 6
Blagrave, Moslenko, Khan, Benoit, Howell, Sharma (bb0010) 2022; 48
Choiński, Ptak, Strzelczak (bb0030) 2014; 43
Di Nunno, de Marinis, Granata (bb0050) 2023; 13
Boussaada, Curea, Remaci, Camblong, Mrabet Bellaaj (bb0015) 2018; 11
Twardosz (bb0215) 2019; 74
Dokulil, de Eyto, Maberly, May, Weyhenmeyer, Woolway (bb0060) 2021; 165
Woolway, Kraemer, Zscheischler, Albergel (bb0255) 2021; 16
Ptak, Sojka, Choiński, Nowak (bb0165) 2018; 10
Miky, Kaloop, Elnabwy, Baik, AlShouny (bb0135) 2021; 240
Woolway, Jennings, Shatwell, Golub, Pierson, Maberly (bb0250) 2021; 589
Kaiser, Voynova, Brix (bb0110) 2023; 892
Ptak, Nowak (bb0160) 2016; 23
Ptak, Olowoyeyeand, Sojka (bb0180) 2022; 12
Chen, Nielsen, Andersen, Hu, Chou, Søndergaard, Jeppesen, Trolle (bb0020) 2020; 12
Gindorf, Bange, Booge, Kock (bb0070) 2022; 19
Zhu, Piotrowski, Ptak, Napiorkowski, Dai, Ji (bb0275) 2021; 597
Granata, Di Nunno, de Marinis (bb0080) 2022; 613
Hao, Li, Wu, Zhang, Hu (bb0090) 2023; 15
Choiński, Ptak (bb0025) 2020; 86
Christianson, Loria, Blanken, Caine, Johnson (bb0035) 2021; 6
Tomczyk, Bednorz (bb0205) 2020; 139
Free, Bresciani, Pinardi, Simis, Liu, Albergel, Giardino (bb0065) 2022; 142
Zhu, Ptak, Yaseen, Dai, Sivakumar (bb0270) 2020; 585
MacKay (bb0130) 1992; 4
Woolway, Jennings, Carrea (bb0245) 2020; 10
Ptak, Sojka, Kozłowski (bb0170) 2019; 55
Wang, Shi, Zhang, Qin, Wang, Woolway, Piao, Jeppesen (bb0225) 2023
Hayder, Solihin, Najwa (bb0095) 2022; 5
Di Nunno, Granata (bb0040) 2020; 190
Tomczyk (10.1016/j.scitotenv.2023.167121_bb0205) 2020; 139
Ptak (10.1016/j.scitotenv.2023.167121_bb0175) 2019; 38
Woolway (10.1016/j.scitotenv.2023.167121_bb0245) 2020; 10
Woolway (10.1016/j.scitotenv.2023.167121_bb0250) 2021; 589
Li (10.1016/j.scitotenv.2023.167121_bb0115) 2022; 10
Ptak (10.1016/j.scitotenv.2023.167121_bb0170) 2019; 55
Snoek (10.1016/j.scitotenv.2023.167121_bb0200) 2012; 25
Miky (10.1016/j.scitotenv.2023.167121_bb0135) 2021; 240
Bartosiewicz (10.1016/j.scitotenv.2023.167121_bb0005) 2021; 597
Woolway (10.1016/j.scitotenv.2023.167121_bb0240) 2019; 155
Dokulil (10.1016/j.scitotenv.2023.167121_bb0060) 2021; 165
Ptak (10.1016/j.scitotenv.2023.167121_bb0180) 2022; 12
Guo (10.1016/j.scitotenv.2023.167121_bb0085) 2022; 14
Piotrowski (10.1016/j.scitotenv.2023.167121_bb0155) 2023; 16
Ptak (10.1016/j.scitotenv.2023.167121_bb0160) 2016; 23
Choiński (10.1016/j.scitotenv.2023.167121_bb0025) 2020; 86
MacKay (10.1016/j.scitotenv.2023.167121_bb0130) 1992; 4
Piccolroaz (10.1016/j.scitotenv.2023.167121_bb0145) 2013; 17
Zhan (10.1016/j.scitotenv.2023.167121_bb0265) 2021; 156
Hobday (10.1016/j.scitotenv.2023.167121_bb0105) 2016; 141
Hayder (10.1016/j.scitotenv.2023.167121_bb0095) 2022; 5
Woolway (10.1016/j.scitotenv.2023.167121_bb0255) 2021; 16
Di Nunno (10.1016/j.scitotenv.2023.167121_bb0050) 2023; 13
Willard (10.1016/j.scitotenv.2023.167121_bb0235) 2022; 7
Twardosz (10.1016/j.scitotenv.2023.167121_bb0215) 2019; 74
Chen (10.1016/j.scitotenv.2023.167121_bb0020) 2020; 12
Wang (10.1016/j.scitotenv.2023.167121_bb0220) 2023; 68
Zhu (10.1016/j.scitotenv.2023.167121_bb0275) 2021; 597
Zhu (10.1016/j.scitotenv.2023.167121_bb0280) 2023; 48
Heddam (10.1016/j.scitotenv.2023.167121_bb0100) 2020; 588
Wang (10.1016/j.scitotenv.2023.167121_bb0225)
Hao (10.1016/j.scitotenv.2023.167121_bb0090) 2023; 15
Perkins-Kirkpatrick (10.1016/j.scitotenv.2023.167121_bb0140) 2020; 11
Zhu (10.1016/j.scitotenv.2023.167121_bb0270) 2020; 585
Di Nunno (10.1016/j.scitotenv.2023.167121_bb0055) 2023; 890
Boussaada (10.1016/j.scitotenv.2023.167121_bb0015) 2018; 11
Roubeix (10.1016/j.scitotenv.2023.167121_bb0185) 2017; 418
Wu (10.1016/j.scitotenv.2023.167121_bb0260) 2023; 6
Trancoso (10.1016/j.scitotenv.2023.167121_bb0210) 2020; 742
Gindorf (10.1016/j.scitotenv.2023.167121_bb0070) 2022; 19
Ptak (10.1016/j.scitotenv.2023.167121_bb0165) 2018; 10
Livingstone (10.1016/j.scitotenv.2023.167121_bb0125) 2007; 52
Christianson (10.1016/j.scitotenv.2023.167121_bb0035) 2021; 6
Choiński (10.1016/j.scitotenv.2023.167121_bb0030) 2014; 43
Piccolroaz (10.1016/j.scitotenv.2023.167121_bb0150) 2021; 34
Schlegel (10.1016/j.scitotenv.2023.167121_bb0195) 2018; 3
Di Nunno (10.1016/j.scitotenv.2023.167121_bb0040) 2020; 190
Rousi (10.1016/j.scitotenv.2023.167121_bb0190) 2023; 23
Kaiser (10.1016/j.scitotenv.2023.167121_bb0110) 2023; 892
Free (10.1016/j.scitotenv.2023.167121_bb0065) 2022; 142
Granata (10.1016/j.scitotenv.2023.167121_bb0075) 2021; 255
Granata (10.1016/j.scitotenv.2023.167121_bb0080) 2022; 613
Di Nunno (10.1016/j.scitotenv.2023.167121_bb0045) 2022; 29
Lieberherr (10.1016/j.scitotenv.2023.167121_bb0120) 2018; 10
Wang (10.1016/j.scitotenv.2023.167121_bb0230) 2023; 68
Blagrave (10.1016/j.scitotenv.2023.167121_bb0010) 2022; 48
References_xml – volume: 68
  start-page: 1574
  year: 2023
  end-page: 1584
  ident: bb0230
  article-title: Climate change drives rapid warming and increasing heatwaves of lakes
  publication-title: Sci. Bull.
– volume: 141
  start-page: 227
  year: 2016
  end-page: 238
  ident: bb0105
  article-title: A hierarchical approach to defining marine heatwaves
  publication-title: Prog. Oceanogr.
– volume: 255
  start-page: 107040
  year: 2021
  ident: bb0075
  article-title: Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks
  publication-title: Agric. Water Manag.
– volume: 585
  start-page: 124809
  year: 2020
  ident: bb0270
  article-title: Forecasting surface water temperature in lakes: a comparison of approaches
  publication-title: J. Hydrol.
– volume: 240
  start-page: 109958
  year: 2021
  ident: bb0135
  article-title: A Recurrent-Cascade-Neural network- nonlinear autoregressive networks with exogenous inputs (NARX) approach for long-term time-series prediction of wave height based on wave characteristics measurements
  publication-title: Ocean Eng.
– volume: 48
  start-page: 903
  year: 2022
  end-page: 913
  ident: bb0010
  article-title: Heatwaves and storms contribute to degraded water quality conditions in the nearshore of Lake Ontario
  publication-title: J. Great Lakes Res.
– volume: 10
  start-page: 580
  year: 2018
  ident: bb0165
  article-title: Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes
  publication-title: Water
– volume: 74
  start-page: 374
  year: 2019
  end-page: 382
  ident: bb0215
  article-title: Anomalously warm months in 2018 in Poland in relation to circulation patterns
  publication-title: Weather
– volume: 5
  start-page: 43
  year: 2022
  end-page: 60
  ident: bb0095
  article-title: Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM
  publication-title: H2Open J.
– volume: 6
  start-page: 77
  year: 2021
  end-page: 84
  ident: bb0035
  article-title: On thin ice: linking elevation and long-term losses of lake ice cover
  publication-title: Limnol. Oceanogr. Lett.
– volume: 3
  start-page: 821
  year: 2018
  ident: bb0195
  article-title: heatwaveR: a central algorithm for the detection of heatwaves and cols-spells
  publication-title: J. Open Source Softw.
– volume: 418
  start-page: 418
  year: 2017
  ident: bb0185
  article-title: Physico-chemical thresholds in the distribution of fish species among French lakes
  publication-title: Knowl. Manag. Aquat. Ecosyst.
– volume: 23
  start-page: 639
  year: 2016
  end-page: 650
  ident: bb0160
  article-title: Variability of oxygen-thermal conditions in selected lakes in Poland
  publication-title: Ecol. Chem. Eng. S
– volume: 10
  start-page: 995862
  year: 2022
  ident: bb0115
  article-title: Warming lake surface water temperatures in Lake Qiandaohu, China: spatiotemporal variations, influencing factors and implications for the thermal structure
  publication-title: Front. Environ. Sci.
– volume: 10
  start-page: 322
  year: 2020
  end-page: 332
  ident: bb0245
  article-title: Impact of the 2018 European heatwave on lake surface water temperature
  publication-title: Inland Waters
– volume: 597
  start-page: 125724
  year: 2021
  ident: bb0005
  article-title: On thinning ice: effects of atmospheric warming, stilling and rainfall intensity on ice conditions in differently shaped lakes
  publication-title: J. Hydrol.
– volume: 742
  start-page: 140521
  year: 2020
  ident: bb0210
  article-title: Heatwaves intensification in Australia: a consistent trajectory across past, present and future
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 36
  year: 2023
  ident: bb0260
  article-title: Local mechanisms for global daytime, nighttime, and compound heatwaves
  publication-title: NPJ Clim. Atmos. Sci.
– volume: 52
  start-page: 896
  year: 2007
  end-page: 902
  ident: bb0125
  article-title: Large-scale coherence in the response of lake surface-water temperatures to synoptic scale climate forcing during summer
  publication-title: Limnol. Oceanogr.
– volume: 892
  start-page: 164316
  year: 2023
  ident: bb0110
  article-title: Effects of the 2018 European heatwave and drought on coastal biogeochemistry in the German Bight
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 900
  year: 2023
  ident: bb0090
  article-title: A novel deep learning model for mining nonlinear dynamics in lake surface water temperature prediction
  publication-title: Remote Sens.
– volume: 588
  start-page: 125130
  year: 2020
  ident: bb0100
  article-title: Modelling of daily lake surface water temperature from air temperature: extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN
  publication-title: J. Hydrol.
– volume: 25
  year: 2012
  ident: bb0200
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 620
  year: 2018
  ident: bb0015
  article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation
  publication-title: Energies
– volume: 190
  start-page: 110062
  year: 2020
  ident: bb0040
  article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network
  publication-title: Environ. Res.
– volume: 10
  start-page: 990
  year: 2018
  ident: bb0120
  article-title: Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes
  publication-title: Remote Sens.
– volume: 7
  start-page: 287
  year: 2022
  end-page: 301
  ident: bb0235
  article-title: Daily surface temperatures for 185,549 lakes in the conterminous United States estimated using deep learning (1980–2020)
  publication-title: Limnol. Oceanogr. Lett.
– volume: 16
  start-page: 553
  year: 2023
  end-page: 569
  ident: bb0155
  article-title: Novel air2water model variant for lake surface temperature modeling with detailed analysis of calibration methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 23
  start-page: 1699
  year: 2023
  end-page: 1718
  ident: bb0190
  article-title: The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 17
  start-page: 3323
  year: 2013
  end-page: 3338
  ident: bb0145
  article-title: A simple lumped model to convert air temperature into surface water temperature in lakes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 155
  start-page: 81
  year: 2019
  end-page: 94
  ident: bb0240
  article-title: Substantial increase in minimum lake surface temperatures under climate change
  publication-title: Clim. Chang.
– volume: 11
  start-page: 3357
  year: 2020
  ident: bb0140
  article-title: Increasing trends in regional heatwaves
  publication-title: Nat. Commun.
– volume: 55
  start-page: 11
  year: 2019
  ident: bb0170
  article-title: The increasing of maximum lake water temperature in lowland lakes of Central Europe: case study of the Polish lakeland
  publication-title: Ann. Limnol. Int. J. Limnol.
– volume: 68
  start-page: 578
  year: 2023
  end-page: 582
  ident: bb0220
  article-title: A record-breaking extreme heat event caused unprecedented warming of lakes in China
  publication-title: Sci. Bull.
– volume: 597
  start-page: 126219
  year: 2021
  ident: bb0275
  article-title: How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures?
  publication-title: J. Hydrol.
– volume: 589
  start-page: 402
  year: 2021
  end-page: 407
  ident: bb0250
  article-title: Lake heatwaves under climate change
  publication-title: Nature
– volume: 890
  start-page: 164323
  year: 2023
  ident: bb0055
  article-title: A stacked machine learning model for multi-step ahead prediction of lake surface water temperature
  publication-title: Sci. Total Environ.
– volume: 139
  start-page: 251
  year: 2020
  end-page: 260
  ident: bb0205
  article-title: The extreme year—analysis of thermal conditions in Poland in 2018
  publication-title: Theor. Appl. Climatol.
– volume: 12
  start-page: 94
  year: 2020
  ident: bb0020
  article-title: Modeling the ecological response of a temporarily summer-stratified lake to extreme heatwaves
  publication-title: Water
– volume: 142
  start-page: 109217
  year: 2022
  ident: bb0065
  article-title: Investigating lake chlorophyll-a responses to the 2019 European double heatwave using satellite remote sensing
  publication-title: Ecol. Indic.
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: bb0130
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
– volume: 13
  start-page: 7036
  year: 2023
  ident: bb0050
  article-title: Short-term forecasts of streamflow in the UK based on a novel hybrid artificial intelligence algorithm
  publication-title: Sci. Rep.
– volume: 34
  start-page: 100780
  year: 2021
  ident: bb0150
  article-title: Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics
  publication-title: J. Hydrol. Reg. Stud.
– volume: 38
  start-page: 41
  year: 2019
  end-page: 49
  ident: bb0175
  article-title: Daily water temperature distribution and fluctuations in Lake Kierskie
  publication-title: Quaest. Geogr.
– volume: 156
  start-page: 421
  year: 2021
  end-page: 436
  ident: bb0265
  article-title: Effectiveness of phosphorus control under extreme heatwaves: implications for sediment nutrient releases and greenhouse gas emissions
  publication-title: Biogeochemistry
– volume: 14
  start-page: 3411
  year: 2022
  end-page: 3422
  ident: bb0085
  article-title: An integrated dataset of daily lake surface water temperature over the Tibetan Plateau
  publication-title: Earth Syst. Sci. Data
– volume: 16
  start-page: 124066
  year: 2021
  ident: bb0255
  article-title: Compound hot temperature and high chlorophyll extreme events in global lakes
  publication-title: Environ. Res. Lett.
– volume: 48
  start-page: 101468
  year: 2023
  ident: bb0280
  article-title: A simple approach to estimate lake surface water temperatures in Polish lowland lakes
  publication-title: J. Hydrol. Reg. Stud.
– volume: 29
  start-page: 40623
  year: 2022
  end-page: 40642
  ident: bb0045
  article-title: A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers
  publication-title: Environ. Sci. Pollut. Res.
– volume: 19
  start-page: 4993
  year: 2022
  end-page: 5006
  ident: bb0070
  article-title: Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
  publication-title: Biogeosciences
– volume: 12
  start-page: 12601
  year: 2022
  ident: bb0180
  article-title: Trends of changes in minimum lake water temperature in Poland
  publication-title: Appl. Sci.
– volume: 165
  start-page: 56
  year: 2021
  ident: bb0060
  article-title: Increasing maximum lake surface temperature under climate change
  publication-title: Clim. Chang.
– volume: 86
  start-page: 69
  year: 2020
  end-page: 87
  ident: bb0025
  article-title: Occurrence, genetic types and evolution of lake basins in Poland
  publication-title: Polish River Basins and Lakes – Part I. The Handbook of Environmental Chemistry
– volume: 613
  start-page: 128431
  year: 2022
  ident: bb0080
  article-title: Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: a comparative study
  publication-title: J. Hydrol.
– volume: 43
  start-page: 178
  year: 2014
  end-page: 184
  ident: bb0030
  article-title: Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast)
  publication-title: Oceanol. Hydrobiol. Stud.
– year: 2023
  ident: bb0225
  article-title: Lake warming and increased heatwaves revealed by a novel data-driven modeling approach
– volume: 38
  start-page: 41
  issue: 3
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167121_bb0175
  article-title: Daily water temperature distribution and fluctuations in Lake Kierskie
  publication-title: Quaest. Geogr.
– volume: 890
  start-page: 164323
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0055
  article-title: A stacked machine learning model for multi-step ahead prediction of lake surface water temperature
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164323
– volume: 86
  start-page: 69
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0025
  article-title: Occurrence, genetic types and evolution of lake basins in Poland
– volume: 11
  start-page: 620
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2023.167121_bb0015
  article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation
  publication-title: Energies
  doi: 10.3390/en11030620
– volume: 4
  start-page: 415
  year: 1992
  ident: 10.1016/j.scitotenv.2023.167121_bb0130
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 74
  start-page: 374
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167121_bb0215
  article-title: Anomalously warm months in 2018 in Poland in relation to circulation patterns
  publication-title: Weather
  doi: 10.1002/wea.3588
– volume: 12
  start-page: 12601
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0180
  article-title: Trends of changes in minimum lake water temperature in Poland
  publication-title: Appl. Sci.
  doi: 10.3390/app122412601
– volume: 139
  start-page: 251
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0205
  article-title: The extreme year—analysis of thermal conditions in Poland in 2018
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-02968-9
– volume: 10
  start-page: 995862
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0115
  article-title: Warming lake surface water temperatures in Lake Qiandaohu, China: spatiotemporal variations, influencing factors and implications for the thermal structure
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.995862
– volume: 48
  start-page: 903
  issue: 4
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0010
  article-title: Heatwaves and storms contribute to degraded water quality conditions in the nearshore of Lake Ontario
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2022.04.008
– volume: 29
  start-page: 40623
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0045
  article-title: A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-18221-8
– volume: 16
  start-page: 553
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0155
  article-title: Novel air2water model variant for lake surface temperature modeling with detailed analysis of calibration methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3226516
– volume: 155
  start-page: 81
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167121_bb0240
  article-title: Substantial increase in minimum lake surface temperatures under climate change
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-019-02465-y
– volume: 142
  start-page: 109217
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0065
  article-title: Investigating lake chlorophyll-a responses to the 2019 European double heatwave using satellite remote sensing
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.109217
– volume: 418
  start-page: 418
  year: 2017
  ident: 10.1016/j.scitotenv.2023.167121_bb0185
  article-title: Physico-chemical thresholds in the distribution of fish species among French lakes
  publication-title: Knowl. Manag. Aquat. Ecosyst.
– volume: 10
  start-page: 990
  issue: 7
  year: 2018
  ident: 10.1016/j.scitotenv.2023.167121_bb0120
  article-title: Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes
  publication-title: Remote Sens.
  doi: 10.3390/rs10070990
– volume: 11
  start-page: 3357
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0140
  article-title: Increasing trends in regional heatwaves
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16970-7
– volume: 6
  start-page: 77
  issue: 2
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0035
  article-title: On thin ice: linking elevation and long-term losses of lake ice cover
  publication-title: Limnol. Oceanogr. Lett.
  doi: 10.1002/lol2.10181
– volume: 588
  start-page: 125130
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0100
  article-title: Modelling of daily lake surface water temperature from air temperature: extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125130
– volume: 141
  start-page: 227
  year: 2016
  ident: 10.1016/j.scitotenv.2023.167121_bb0105
  article-title: A hierarchical approach to defining marine heatwaves
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2015.12.014
– volume: 13
  start-page: 7036
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0050
  article-title: Short-term forecasts of streamflow in the UK based on a novel hybrid artificial intelligence algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34316-3
– volume: 6
  start-page: 36
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0260
  article-title: Local mechanisms for global daytime, nighttime, and compound heatwaves
  publication-title: NPJ Clim. Atmos. Sci.
  doi: 10.1038/s41612-023-00365-8
– volume: 597
  start-page: 125724
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0005
  article-title: On thinning ice: effects of atmospheric warming, stilling and rainfall intensity on ice conditions in differently shaped lakes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125724
– volume: 240
  start-page: 109958
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0135
  article-title: A Recurrent-Cascade-Neural network- nonlinear autoregressive networks with exogenous inputs (NARX) approach for long-term time-series prediction of wave height based on wave characteristics measurements
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109958
– volume: 68
  start-page: 578
  issue: 6
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0220
  article-title: A record-breaking extreme heat event caused unprecedented warming of lakes in China
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.03.001
– volume: 7
  start-page: 287
  issue: 4
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0235
  article-title: Daily surface temperatures for 185,549 lakes in the conterminous United States estimated using deep learning (1980–2020)
  publication-title: Limnol. Oceanogr. Lett.
  doi: 10.1002/lol2.10249
– volume: 613
  start-page: 128431
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0080
  article-title: Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: a comparative study
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128431
– volume: 3
  start-page: 821
  year: 2018
  ident: 10.1016/j.scitotenv.2023.167121_bb0195
  article-title: heatwaveR: a central algorithm for the detection of heatwaves and cols-spells
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00821
– volume: 48
  start-page: 101468
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0280
  article-title: A simple approach to estimate lake surface water temperatures in Polish lowland lakes
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2023.101468
– volume: 892
  start-page: 164316
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0110
  article-title: Effects of the 2018 European heatwave and drought on coastal biogeochemistry in the German Bight
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164316
– volume: 14
  start-page: 3411
  issue: 7
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0085
  article-title: An integrated dataset of daily lake surface water temperature over the Tibetan Plateau
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-3411-2022
– volume: 23
  start-page: 1699
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0190
  article-title: The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-23-1699-2023
– volume: 585
  start-page: 124809
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0270
  article-title: Forecasting surface water temperature in lakes: a comparison of approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124809
– volume: 15
  start-page: 900
  issue: 4
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0090
  article-title: A novel deep learning model for mining nonlinear dynamics in lake surface water temperature prediction
  publication-title: Remote Sens.
  doi: 10.3390/rs15040900
– volume: 55
  start-page: 11
  issue: 6
  year: 2019
  ident: 10.1016/j.scitotenv.2023.167121_bb0170
  article-title: The increasing of maximum lake water temperature in lowland lakes of Central Europe: case study of the Polish lakeland
  publication-title: Ann. Limnol. Int. J. Limnol.
– volume: 12
  start-page: 94
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0020
  article-title: Modeling the ecological response of a temporarily summer-stratified lake to extreme heatwaves
  publication-title: Water
  doi: 10.3390/w12010094
– volume: 52
  start-page: 896
  year: 2007
  ident: 10.1016/j.scitotenv.2023.167121_bb0125
  article-title: Large-scale coherence in the response of lake surface-water temperatures to synoptic scale climate forcing during summer
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2007.52.2.0896
– volume: 255
  start-page: 107040
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0075
  article-title: Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107040
– volume: 5
  start-page: 43
  issue: 1
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0095
  article-title: Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM
  publication-title: H2Open J.
  doi: 10.2166/h2oj.2022.134
– ident: 10.1016/j.scitotenv.2023.167121_bb0225
– volume: 43
  start-page: 178
  issue: 2
  year: 2014
  ident: 10.1016/j.scitotenv.2023.167121_bb0030
  article-title: Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast)
  publication-title: Oceanol. Hydrobiol. Stud.
  doi: 10.2478/s13545-014-0131-1
– volume: 165
  start-page: 56
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0060
  article-title: Increasing maximum lake surface temperature under climate change
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-021-03085-1
– volume: 156
  start-page: 421
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0265
  article-title: Effectiveness of phosphorus control under extreme heatwaves: implications for sediment nutrient releases and greenhouse gas emissions
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-021-00854-z
– volume: 68
  start-page: 1574
  issue: 14
  year: 2023
  ident: 10.1016/j.scitotenv.2023.167121_bb0230
  article-title: Climate change drives rapid warming and increasing heatwaves of lakes
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.06.028
– volume: 10
  start-page: 322
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0245
  article-title: Impact of the 2018 European heatwave on lake surface water temperature
  publication-title: Inland Waters
  doi: 10.1080/20442041.2020.1712180
– volume: 597
  start-page: 126219
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0275
  article-title: How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126219
– volume: 16
  start-page: 124066
  issue: 12
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0255
  article-title: Compound hot temperature and high chlorophyll extreme events in global lakes
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac3d5a
– volume: 742
  start-page: 140521
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0210
  article-title: Heatwaves intensification in Australia: a consistent trajectory across past, present and future
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140521
– volume: 19
  start-page: 4993
  issue: 20
  year: 2022
  ident: 10.1016/j.scitotenv.2023.167121_bb0070
  article-title: Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
  publication-title: Biogeosciences
  doi: 10.5194/bg-19-4993-2022
– volume: 23
  start-page: 639
  issue: 4
  year: 2016
  ident: 10.1016/j.scitotenv.2023.167121_bb0160
  article-title: Variability of oxygen-thermal conditions in selected lakes in Poland
  publication-title: Ecol. Chem. Eng. S
– volume: 25
  year: 2012
  ident: 10.1016/j.scitotenv.2023.167121_bb0200
  article-title: Practical bayesian optimization of machine learning algorithms
– volume: 34
  start-page: 100780
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0150
  article-title: Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2021.100780
– volume: 10
  start-page: 580
  year: 2018
  ident: 10.1016/j.scitotenv.2023.167121_bb0165
  article-title: Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes
  publication-title: Water
  doi: 10.3390/w10050580
– volume: 190
  start-page: 110062
  year: 2020
  ident: 10.1016/j.scitotenv.2023.167121_bb0040
  article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110062
– volume: 17
  start-page: 3323
  issue: 8
  year: 2013
  ident: 10.1016/j.scitotenv.2023.167121_bb0145
  article-title: A simple lumped model to convert air temperature into surface water temperature in lakes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-3323-2013
– volume: 589
  start-page: 402
  year: 2021
  ident: 10.1016/j.scitotenv.2023.167121_bb0250
  article-title: Lake heatwaves under climate change
  publication-title: Nature
  doi: 10.1038/s41586-020-03119-1
SSID ssj0000781
Score 2.5296648
Snippet In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167121
SubjectTerms algorithms
Bayesian theory
BO-NARX-BR
data collection
environment
Europe
Heatwave
Lake heatwaves
lakes
LSWT
Polish lakes
prediction
surface water temperature
Title A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave
URI https://dx.doi.org/10.1016/j.scitotenv.2023.167121
https://www.proquest.com/docview/2866112662
https://www.proquest.com/docview/3040424480
Volume 905
WOSCitedRecordID wos001150446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiQkhKAwMS6TkRAvIVPidLnwVkErQFNBqJP6FjlOItKWpKxpGfsv_Ar-IOfYjlOmTRsPvPQS2Wmj78vx55NzIeQlY3mWcj-0OYh3u--L3E78hNm5AGvIsYhZpppNBONxOJ1Gnzud300uzGYRlGV4dhYt_yvUcAzAxtTZf4DbnBQOwGcAHV4Bdni9EfADq6w2GUhMMAbfinMQlLLbjYXrVYrPBsaDL1OrVOHfshoDFgpIMTVEZU6Bqcb6ARW8FTJcSwbJrb5aCz6H7zqxEY34D75RVkYFuqtW9pbpXNLoWlj9QzN-Ww0jRxvjomMV6gqzM7fS71rP9lp6atH7Ygj9rrDGoMClu3fEExVTJi19zec6FalYr86NH6mazfnF49rnwTyMH2HOth3vg5n2VWRvY8cj58haHrp-4DLXvnR1UI6K2SGIC7gauJRDPLme0i6ITRDA-FM8Ojk-jifD6eTV8ruNrcrwkb7u27JDdllwFIVdsjv4MJx-bAVAEKpGjfpP_hVWeOlvXyWKLsgDqXkm98k9vVmhA0WyB6STlT1yW7Uv_dkje8MWJhimkVz1yF3lDKYqx-0h-TWgkpPUcJJKTlLJSVqVFDlJG05S4CRtOUk1J6nhJC1KqjhJJSep4iQ1nHxNkZFUM5IaRtK6wrNRZKQZ_YicjIaTt-9t3RfEFqAvazv3ODa7Am0VCZEmrsgFVgHkjkg8rFgYsqQvAtjYJE4_CCLu-wk27sjTVLAwcTJvj3TLqsweExr6vpPApsF1hI-eFO6GXHiwyU5ZlgVZsk_8BphY6KL52LtlETfRkbPYIBojorFCdJ84ZuJS1Y25fsqbBvlYy18la2Pg7_WTXzRciWGBwKd-vMyq9SpmcI2YJ-izq8d4sJRjxmvoPLnBmKfkTntTPiPd-nSdPSe3xKYuVqcHZCeYhgf6nvgDPCXw8A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+optimized+model+based+on+NARX+networks+for+predicting+thermal+anomalies+in+Polish+lakes+during+heatwaves%2C+with+special+reference+to+the+2018+heatwave&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhu%2C+Senlin&rft.au=Di+Nunno%2C+Fabio&rft.au=Ptak%2C+Mariusz&rft.au=Sojka%2C+Mariusz&rft.date=2023-12-20&rft.issn=0048-9697&rft.volume=905+p.167121-&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.167121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon