A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave
In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated base...
Uložené v:
| Vydané v: | The Science of the total environment Ročník 905; s. 167121 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
20.12.2023
|
| Predmet: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions.
[Display omitted]
•Anomalies of mean and maximum LSWTs were assessed.•The BO-NARX-BR model is a promising tool to model LSWT and lake heatwaves.•LSWT anomaly significantly impacts the duration and intensity of heatwaves that occur in lakes. |
|---|---|
| AbstractList | In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions. In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987-2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987-2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions.In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987-2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987-2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions. In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions. [Display omitted] •Anomalies of mean and maximum LSWTs were assessed.•The BO-NARX-BR model is a promising tool to model LSWT and lake heatwaves.•LSWT anomaly significantly impacts the duration and intensity of heatwaves that occur in lakes. |
| ArticleNumber | 167121 |
| Author | Di Nunno, Fabio Zhu, Senlin Granata, Francesco Ptak, Mariusz Sojka, Mariusz |
| Author_xml | – sequence: 1 givenname: Senlin surname: Zhu fullname: Zhu, Senlin email: slzhu@yzu.edu.cn organization: College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China – sequence: 2 givenname: Fabio surname: Di Nunno fullname: Di Nunno, Fabio email: fabio.dinunno@unicas.it organization: Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, Frosinone, Italy – sequence: 3 givenname: Mariusz surname: Ptak fullname: Ptak, Mariusz email: marp114@wp.pl organization: Department of Hydrology and Water Management, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznań, Poland – sequence: 4 givenname: Mariusz surname: Sojka fullname: Sojka, Mariusz email: mariusz.sojka@up.poznan.pl organization: Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649 Poznań, Poland – sequence: 5 givenname: Francesco surname: Granata fullname: Granata, Francesco email: f.granata@unicas.it organization: Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, Frosinone, Italy |
| BookMark | eNqNkcFu1DAURS1UJKaFb8DLLshgO4ntLFiMKgpII0AIJHaWY78wniZ2sD0zgn_hX3E0qItuijfPTzr3Su_eS3ThgweEXlKypoTy1_t1Mi6HDP64ZoTVa8oFZfQJWlEpuooSxi_QipBGVh3vxDN0mdKelCckXaE_G-zDEUYc5uwm9xssnoIte69T-QePP26-fMce8inEu4SHEPEcwTqTnf-B8w7ipEesfSjDQcLO489hdGmHR31XdnuIC7gDnU_6COkVPrm8w2kG44owwgARvAGcw-KGGaHynn6Ong56TPDi37xC327ffr15X20_vftws9lWppY0V0Ot27YmktDOGNtTM5iGt60mpq9LFFSyvjGiE6InjRCd5ryXpGWDtYbJnkB9ha7PvnMMPw-QsppcMjCO2kM4JFWThjSsaSR5FGWSc0oZ56ygb86oiSGlcqkqRensgs9Ru1FRopYG1V7dN6iWBtW5waIXD_RzdJOOv_5DuTkroYR2dBAXbknZuggmKxvcox5_AVlzvzs |
| CitedBy_id | crossref_primary_10_1007_s11600_024_01362_y crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_1007_s12145_024_01341_3 crossref_primary_10_1016_j_ejrh_2025_102339 crossref_primary_10_1007_s00477_023_02621_y crossref_primary_10_1016_j_ejrh_2025_102475 crossref_primary_10_1016_j_scitotenv_2024_173181 crossref_primary_10_1029_2024WR039331 crossref_primary_10_3389_fenvs_2024_1434703 crossref_primary_10_3390_w17131844 crossref_primary_10_1016_j_gsf_2024_101916 crossref_primary_10_1016_j_watres_2025_124125 crossref_primary_10_1080_00221686_2024_2377132 crossref_primary_10_1016_j_ecolind_2024_112958 crossref_primary_10_1016_j_ecolind_2024_111978 crossref_primary_10_1029_2023RG000816 crossref_primary_10_1007_s00477_024_02760_w crossref_primary_10_1016_j_scitotenv_2024_171954 |
| Cites_doi | 10.1016/j.scitotenv.2023.164323 10.3390/en11030620 10.1162/neco.1992.4.3.415 10.1002/wea.3588 10.3390/app122412601 10.1007/s00704-019-02968-9 10.3389/fenvs.2022.995862 10.1016/j.jglr.2022.04.008 10.1007/s11356-021-18221-8 10.1109/JSTARS.2022.3226516 10.1007/s10584-019-02465-y 10.1016/j.ecolind.2022.109217 10.3390/rs10070990 10.1038/s41467-020-16970-7 10.1002/lol2.10181 10.1016/j.jhydrol.2020.125130 10.1016/j.pocean.2015.12.014 10.1038/s41598-023-34316-3 10.1038/s41612-023-00365-8 10.1016/j.jhydrol.2020.125724 10.1016/j.oceaneng.2021.109958 10.1016/j.scib.2023.03.001 10.1002/lol2.10249 10.1016/j.jhydrol.2022.128431 10.21105/joss.00821 10.1016/j.ejrh.2023.101468 10.1016/j.scitotenv.2023.164316 10.5194/essd-14-3411-2022 10.5194/nhess-23-1699-2023 10.1016/j.jhydrol.2020.124809 10.3390/rs15040900 10.3390/w12010094 10.4319/lo.2007.52.2.0896 10.1016/j.agwat.2021.107040 10.2166/h2oj.2022.134 10.2478/s13545-014-0131-1 10.1007/s10584-021-03085-1 10.1007/s10533-021-00854-z 10.1016/j.scib.2023.06.028 10.1080/20442041.2020.1712180 10.1016/j.jhydrol.2021.126219 10.1088/1748-9326/ac3d5a 10.1016/j.scitotenv.2020.140521 10.5194/bg-19-4993-2022 10.1016/j.ejrh.2021.100780 10.3390/w10050580 10.1016/j.envres.2020.110062 10.5194/hess-17-3323-2013 10.1038/s41586-020-03119-1 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2023.167121 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 10_1016_j_scitotenv_2023_167121 S0048969723057480 |
| GeographicLocations | Europe |
| GeographicLocations_xml | – name: Europe |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c381t-f3a55308019ccdb1cfc4655a0cb3121182b4c7977b04779a66b8052fddc28b0e3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001150446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Thu Oct 02 12:03:56 EDT 2025 Sat Sep 27 18:50:05 EDT 2025 Sat Nov 29 03:26:52 EST 2025 Tue Nov 18 21:26:51 EST 2025 Sat Nov 23 15:55:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Polish lakes Lake heatwaves Heatwave BO-NARX-BR Europe LSWT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-f3a55308019ccdb1cfc4655a0cb3121182b4c7977b04779a66b8052fddc28b0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2866112662 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3040424480 proquest_miscellaneous_2866112662 crossref_citationtrail_10_1016_j_scitotenv_2023_167121 crossref_primary_10_1016_j_scitotenv_2023_167121 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_167121 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-20 |
| PublicationDateYYYYMMDD | 2023-12-20 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Shi, Wang, Wang, Zhang, Peng, Li, Zhang, Zhang, Qin, Woolway, Jeppesen (bb0220) 2023; 68 Di Nunno, Race, Granata (bb0045) 2022; 29 Zhan, Stratmann, van der Geest, Veraart, Brenzinger, Lürling, de Senerpont Domis (bb0265) 2021; 156 Lieberherr, Wunderle (bb0120) 2018; 10 Livingstone, Padisák (bb0125) 2007; 52 Bartosiewicz, Ptak, Woolway, Sojka (bb0005) 2021; 597 Guo, Zheng, Wu, Fan, Wen, Li, Zhang, Zhu, Zhang (bb0085) 2022; 14 Snoek, Larochelle, Adams (bb0200) 2012; 25 Piccolroaz, Zhu, Ptak, Sojka, Du (bb0150) 2021; 34 Piotrowski, Napiorkowski, Zhu (bb0155) 2023; 16 Schlegel, Smit (bb0195) 2018; 3 Li, Shi, Zhang, Zhu, Guo, Li, Du (bb0115) 2022; 10 Zhu, Ptak, Sojka, Piotrowski, Luo (bb0280) 2023; 48 Di Nunno, Zhu, Ptak, Sojka, Granata (bb0055) 2023; 890 Woolway, Weyhenmeyer, Schmid, Dokulil, de Eyto, Maberly, May, Merchant (bb0240) 2019; 155 Heddam, Ptak, Zhu (bb0100) 2020; 588 Wang, Shi, Zhang, Qin, Zhang, Wang, Woolway, Piao, Jeppesen (bb0230) 2023; 68 Willard, Read, Topp, Hansen, Kumar (bb0235) 2022; 7 Piccolroaz, Toffolon, Majone (bb0145) 2013; 17 Perkins-Kirkpatrick, Lewis (bb0140) 2020; 11 Ptak, Sojka, Nowak (bb0175) 2019; 38 Trancoso, Syktus, Toombs, Ahrens, Wong, Pozza (bb0210) 2020; 742 Roubeix, Daufresne, Argillier, Dublon, Maire, Nicolas, Raymond, Danis (bb0185) 2017; 418 Granata, Di Nunno (bb0075) 2021; 255 Hobday, Alexander, Perkins-Kirkpatrick (bb0105) 2016; 141 Rousi, Fink, Andersen (bb0190) 2023; 23 Wu, Luo, Zhao, Li, Sun, Liu, Wang, Wang, Zhang (bb0260) 2023; 6 Blagrave, Moslenko, Khan, Benoit, Howell, Sharma (bb0010) 2022; 48 Choiński, Ptak, Strzelczak (bb0030) 2014; 43 Di Nunno, de Marinis, Granata (bb0050) 2023; 13 Boussaada, Curea, Remaci, Camblong, Mrabet Bellaaj (bb0015) 2018; 11 Twardosz (bb0215) 2019; 74 Dokulil, de Eyto, Maberly, May, Weyhenmeyer, Woolway (bb0060) 2021; 165 Woolway, Kraemer, Zscheischler, Albergel (bb0255) 2021; 16 Ptak, Sojka, Choiński, Nowak (bb0165) 2018; 10 Miky, Kaloop, Elnabwy, Baik, AlShouny (bb0135) 2021; 240 Woolway, Jennings, Shatwell, Golub, Pierson, Maberly (bb0250) 2021; 589 Kaiser, Voynova, Brix (bb0110) 2023; 892 Ptak, Nowak (bb0160) 2016; 23 Ptak, Olowoyeyeand, Sojka (bb0180) 2022; 12 Chen, Nielsen, Andersen, Hu, Chou, Søndergaard, Jeppesen, Trolle (bb0020) 2020; 12 Gindorf, Bange, Booge, Kock (bb0070) 2022; 19 Zhu, Piotrowski, Ptak, Napiorkowski, Dai, Ji (bb0275) 2021; 597 Granata, Di Nunno, de Marinis (bb0080) 2022; 613 Hao, Li, Wu, Zhang, Hu (bb0090) 2023; 15 Choiński, Ptak (bb0025) 2020; 86 Christianson, Loria, Blanken, Caine, Johnson (bb0035) 2021; 6 Tomczyk, Bednorz (bb0205) 2020; 139 Free, Bresciani, Pinardi, Simis, Liu, Albergel, Giardino (bb0065) 2022; 142 Zhu, Ptak, Yaseen, Dai, Sivakumar (bb0270) 2020; 585 MacKay (bb0130) 1992; 4 Woolway, Jennings, Carrea (bb0245) 2020; 10 Ptak, Sojka, Kozłowski (bb0170) 2019; 55 Wang, Shi, Zhang, Qin, Wang, Woolway, Piao, Jeppesen (bb0225) 2023 Hayder, Solihin, Najwa (bb0095) 2022; 5 Di Nunno, Granata (bb0040) 2020; 190 Tomczyk (10.1016/j.scitotenv.2023.167121_bb0205) 2020; 139 Ptak (10.1016/j.scitotenv.2023.167121_bb0175) 2019; 38 Woolway (10.1016/j.scitotenv.2023.167121_bb0245) 2020; 10 Woolway (10.1016/j.scitotenv.2023.167121_bb0250) 2021; 589 Li (10.1016/j.scitotenv.2023.167121_bb0115) 2022; 10 Ptak (10.1016/j.scitotenv.2023.167121_bb0170) 2019; 55 Snoek (10.1016/j.scitotenv.2023.167121_bb0200) 2012; 25 Miky (10.1016/j.scitotenv.2023.167121_bb0135) 2021; 240 Bartosiewicz (10.1016/j.scitotenv.2023.167121_bb0005) 2021; 597 Woolway (10.1016/j.scitotenv.2023.167121_bb0240) 2019; 155 Dokulil (10.1016/j.scitotenv.2023.167121_bb0060) 2021; 165 Ptak (10.1016/j.scitotenv.2023.167121_bb0180) 2022; 12 Guo (10.1016/j.scitotenv.2023.167121_bb0085) 2022; 14 Piotrowski (10.1016/j.scitotenv.2023.167121_bb0155) 2023; 16 Ptak (10.1016/j.scitotenv.2023.167121_bb0160) 2016; 23 Choiński (10.1016/j.scitotenv.2023.167121_bb0025) 2020; 86 MacKay (10.1016/j.scitotenv.2023.167121_bb0130) 1992; 4 Piccolroaz (10.1016/j.scitotenv.2023.167121_bb0145) 2013; 17 Zhan (10.1016/j.scitotenv.2023.167121_bb0265) 2021; 156 Hobday (10.1016/j.scitotenv.2023.167121_bb0105) 2016; 141 Hayder (10.1016/j.scitotenv.2023.167121_bb0095) 2022; 5 Woolway (10.1016/j.scitotenv.2023.167121_bb0255) 2021; 16 Di Nunno (10.1016/j.scitotenv.2023.167121_bb0050) 2023; 13 Willard (10.1016/j.scitotenv.2023.167121_bb0235) 2022; 7 Twardosz (10.1016/j.scitotenv.2023.167121_bb0215) 2019; 74 Chen (10.1016/j.scitotenv.2023.167121_bb0020) 2020; 12 Wang (10.1016/j.scitotenv.2023.167121_bb0220) 2023; 68 Zhu (10.1016/j.scitotenv.2023.167121_bb0275) 2021; 597 Zhu (10.1016/j.scitotenv.2023.167121_bb0280) 2023; 48 Heddam (10.1016/j.scitotenv.2023.167121_bb0100) 2020; 588 Wang (10.1016/j.scitotenv.2023.167121_bb0225) Hao (10.1016/j.scitotenv.2023.167121_bb0090) 2023; 15 Perkins-Kirkpatrick (10.1016/j.scitotenv.2023.167121_bb0140) 2020; 11 Zhu (10.1016/j.scitotenv.2023.167121_bb0270) 2020; 585 Di Nunno (10.1016/j.scitotenv.2023.167121_bb0055) 2023; 890 Boussaada (10.1016/j.scitotenv.2023.167121_bb0015) 2018; 11 Roubeix (10.1016/j.scitotenv.2023.167121_bb0185) 2017; 418 Wu (10.1016/j.scitotenv.2023.167121_bb0260) 2023; 6 Trancoso (10.1016/j.scitotenv.2023.167121_bb0210) 2020; 742 Gindorf (10.1016/j.scitotenv.2023.167121_bb0070) 2022; 19 Ptak (10.1016/j.scitotenv.2023.167121_bb0165) 2018; 10 Livingstone (10.1016/j.scitotenv.2023.167121_bb0125) 2007; 52 Christianson (10.1016/j.scitotenv.2023.167121_bb0035) 2021; 6 Choiński (10.1016/j.scitotenv.2023.167121_bb0030) 2014; 43 Piccolroaz (10.1016/j.scitotenv.2023.167121_bb0150) 2021; 34 Schlegel (10.1016/j.scitotenv.2023.167121_bb0195) 2018; 3 Di Nunno (10.1016/j.scitotenv.2023.167121_bb0040) 2020; 190 Rousi (10.1016/j.scitotenv.2023.167121_bb0190) 2023; 23 Kaiser (10.1016/j.scitotenv.2023.167121_bb0110) 2023; 892 Free (10.1016/j.scitotenv.2023.167121_bb0065) 2022; 142 Granata (10.1016/j.scitotenv.2023.167121_bb0075) 2021; 255 Granata (10.1016/j.scitotenv.2023.167121_bb0080) 2022; 613 Di Nunno (10.1016/j.scitotenv.2023.167121_bb0045) 2022; 29 Lieberherr (10.1016/j.scitotenv.2023.167121_bb0120) 2018; 10 Wang (10.1016/j.scitotenv.2023.167121_bb0230) 2023; 68 Blagrave (10.1016/j.scitotenv.2023.167121_bb0010) 2022; 48 |
| References_xml | – volume: 68 start-page: 1574 year: 2023 end-page: 1584 ident: bb0230 article-title: Climate change drives rapid warming and increasing heatwaves of lakes publication-title: Sci. Bull. – volume: 141 start-page: 227 year: 2016 end-page: 238 ident: bb0105 article-title: A hierarchical approach to defining marine heatwaves publication-title: Prog. Oceanogr. – volume: 255 start-page: 107040 year: 2021 ident: bb0075 article-title: Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks publication-title: Agric. Water Manag. – volume: 585 start-page: 124809 year: 2020 ident: bb0270 article-title: Forecasting surface water temperature in lakes: a comparison of approaches publication-title: J. Hydrol. – volume: 240 start-page: 109958 year: 2021 ident: bb0135 article-title: A Recurrent-Cascade-Neural network- nonlinear autoregressive networks with exogenous inputs (NARX) approach for long-term time-series prediction of wave height based on wave characteristics measurements publication-title: Ocean Eng. – volume: 48 start-page: 903 year: 2022 end-page: 913 ident: bb0010 article-title: Heatwaves and storms contribute to degraded water quality conditions in the nearshore of Lake Ontario publication-title: J. Great Lakes Res. – volume: 10 start-page: 580 year: 2018 ident: bb0165 article-title: Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes publication-title: Water – volume: 74 start-page: 374 year: 2019 end-page: 382 ident: bb0215 article-title: Anomalously warm months in 2018 in Poland in relation to circulation patterns publication-title: Weather – volume: 5 start-page: 43 year: 2022 end-page: 60 ident: bb0095 article-title: Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM publication-title: H2Open J. – volume: 6 start-page: 77 year: 2021 end-page: 84 ident: bb0035 article-title: On thin ice: linking elevation and long-term losses of lake ice cover publication-title: Limnol. Oceanogr. Lett. – volume: 3 start-page: 821 year: 2018 ident: bb0195 article-title: heatwaveR: a central algorithm for the detection of heatwaves and cols-spells publication-title: J. Open Source Softw. – volume: 418 start-page: 418 year: 2017 ident: bb0185 article-title: Physico-chemical thresholds in the distribution of fish species among French lakes publication-title: Knowl. Manag. Aquat. Ecosyst. – volume: 23 start-page: 639 year: 2016 end-page: 650 ident: bb0160 article-title: Variability of oxygen-thermal conditions in selected lakes in Poland publication-title: Ecol. Chem. Eng. S – volume: 10 start-page: 995862 year: 2022 ident: bb0115 article-title: Warming lake surface water temperatures in Lake Qiandaohu, China: spatiotemporal variations, influencing factors and implications for the thermal structure publication-title: Front. Environ. Sci. – volume: 10 start-page: 322 year: 2020 end-page: 332 ident: bb0245 article-title: Impact of the 2018 European heatwave on lake surface water temperature publication-title: Inland Waters – volume: 597 start-page: 125724 year: 2021 ident: bb0005 article-title: On thinning ice: effects of atmospheric warming, stilling and rainfall intensity on ice conditions in differently shaped lakes publication-title: J. Hydrol. – volume: 742 start-page: 140521 year: 2020 ident: bb0210 article-title: Heatwaves intensification in Australia: a consistent trajectory across past, present and future publication-title: Sci. Total Environ. – volume: 6 start-page: 36 year: 2023 ident: bb0260 article-title: Local mechanisms for global daytime, nighttime, and compound heatwaves publication-title: NPJ Clim. Atmos. Sci. – volume: 52 start-page: 896 year: 2007 end-page: 902 ident: bb0125 article-title: Large-scale coherence in the response of lake surface-water temperatures to synoptic scale climate forcing during summer publication-title: Limnol. Oceanogr. – volume: 892 start-page: 164316 year: 2023 ident: bb0110 article-title: Effects of the 2018 European heatwave and drought on coastal biogeochemistry in the German Bight publication-title: Sci. Total Environ. – volume: 15 start-page: 900 year: 2023 ident: bb0090 article-title: A novel deep learning model for mining nonlinear dynamics in lake surface water temperature prediction publication-title: Remote Sens. – volume: 588 start-page: 125130 year: 2020 ident: bb0100 article-title: Modelling of daily lake surface water temperature from air temperature: extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN publication-title: J. Hydrol. – volume: 25 year: 2012 ident: bb0200 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 620 year: 2018 ident: bb0015 article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation publication-title: Energies – volume: 190 start-page: 110062 year: 2020 ident: bb0040 article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network publication-title: Environ. Res. – volume: 10 start-page: 990 year: 2018 ident: bb0120 article-title: Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes publication-title: Remote Sens. – volume: 7 start-page: 287 year: 2022 end-page: 301 ident: bb0235 article-title: Daily surface temperatures for 185,549 lakes in the conterminous United States estimated using deep learning (1980–2020) publication-title: Limnol. Oceanogr. Lett. – volume: 16 start-page: 553 year: 2023 end-page: 569 ident: bb0155 article-title: Novel air2water model variant for lake surface temperature modeling with detailed analysis of calibration methods publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 23 start-page: 1699 year: 2023 end-page: 1718 ident: bb0190 article-title: The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective publication-title: Nat. Hazards Earth Syst. Sci. – volume: 17 start-page: 3323 year: 2013 end-page: 3338 ident: bb0145 article-title: A simple lumped model to convert air temperature into surface water temperature in lakes publication-title: Hydrol. Earth Syst. Sci. – volume: 155 start-page: 81 year: 2019 end-page: 94 ident: bb0240 article-title: Substantial increase in minimum lake surface temperatures under climate change publication-title: Clim. Chang. – volume: 11 start-page: 3357 year: 2020 ident: bb0140 article-title: Increasing trends in regional heatwaves publication-title: Nat. Commun. – volume: 55 start-page: 11 year: 2019 ident: bb0170 article-title: The increasing of maximum lake water temperature in lowland lakes of Central Europe: case study of the Polish lakeland publication-title: Ann. Limnol. Int. J. Limnol. – volume: 68 start-page: 578 year: 2023 end-page: 582 ident: bb0220 article-title: A record-breaking extreme heat event caused unprecedented warming of lakes in China publication-title: Sci. Bull. – volume: 597 start-page: 126219 year: 2021 ident: bb0275 article-title: How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures? publication-title: J. Hydrol. – volume: 589 start-page: 402 year: 2021 end-page: 407 ident: bb0250 article-title: Lake heatwaves under climate change publication-title: Nature – volume: 890 start-page: 164323 year: 2023 ident: bb0055 article-title: A stacked machine learning model for multi-step ahead prediction of lake surface water temperature publication-title: Sci. Total Environ. – volume: 139 start-page: 251 year: 2020 end-page: 260 ident: bb0205 article-title: The extreme year—analysis of thermal conditions in Poland in 2018 publication-title: Theor. Appl. Climatol. – volume: 12 start-page: 94 year: 2020 ident: bb0020 article-title: Modeling the ecological response of a temporarily summer-stratified lake to extreme heatwaves publication-title: Water – volume: 142 start-page: 109217 year: 2022 ident: bb0065 article-title: Investigating lake chlorophyll-a responses to the 2019 European double heatwave using satellite remote sensing publication-title: Ecol. Indic. – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: bb0130 article-title: Bayesian interpolation publication-title: Neural Comput. – volume: 13 start-page: 7036 year: 2023 ident: bb0050 article-title: Short-term forecasts of streamflow in the UK based on a novel hybrid artificial intelligence algorithm publication-title: Sci. Rep. – volume: 34 start-page: 100780 year: 2021 ident: bb0150 article-title: Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics publication-title: J. Hydrol. Reg. Stud. – volume: 38 start-page: 41 year: 2019 end-page: 49 ident: bb0175 article-title: Daily water temperature distribution and fluctuations in Lake Kierskie publication-title: Quaest. Geogr. – volume: 156 start-page: 421 year: 2021 end-page: 436 ident: bb0265 article-title: Effectiveness of phosphorus control under extreme heatwaves: implications for sediment nutrient releases and greenhouse gas emissions publication-title: Biogeochemistry – volume: 14 start-page: 3411 year: 2022 end-page: 3422 ident: bb0085 article-title: An integrated dataset of daily lake surface water temperature over the Tibetan Plateau publication-title: Earth Syst. Sci. Data – volume: 16 start-page: 124066 year: 2021 ident: bb0255 article-title: Compound hot temperature and high chlorophyll extreme events in global lakes publication-title: Environ. Res. Lett. – volume: 48 start-page: 101468 year: 2023 ident: bb0280 article-title: A simple approach to estimate lake surface water temperatures in Polish lowland lakes publication-title: J. Hydrol. Reg. Stud. – volume: 29 start-page: 40623 year: 2022 end-page: 40642 ident: bb0045 article-title: A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers publication-title: Environ. Sci. Pollut. Res. – volume: 19 start-page: 4993 year: 2022 end-page: 5006 ident: bb0070 article-title: Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018 publication-title: Biogeosciences – volume: 12 start-page: 12601 year: 2022 ident: bb0180 article-title: Trends of changes in minimum lake water temperature in Poland publication-title: Appl. Sci. – volume: 165 start-page: 56 year: 2021 ident: bb0060 article-title: Increasing maximum lake surface temperature under climate change publication-title: Clim. Chang. – volume: 86 start-page: 69 year: 2020 end-page: 87 ident: bb0025 article-title: Occurrence, genetic types and evolution of lake basins in Poland publication-title: Polish River Basins and Lakes – Part I. The Handbook of Environmental Chemistry – volume: 613 start-page: 128431 year: 2022 ident: bb0080 article-title: Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: a comparative study publication-title: J. Hydrol. – volume: 43 start-page: 178 year: 2014 end-page: 184 ident: bb0030 article-title: Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast) publication-title: Oceanol. Hydrobiol. Stud. – year: 2023 ident: bb0225 article-title: Lake warming and increased heatwaves revealed by a novel data-driven modeling approach – volume: 38 start-page: 41 issue: 3 year: 2019 ident: 10.1016/j.scitotenv.2023.167121_bb0175 article-title: Daily water temperature distribution and fluctuations in Lake Kierskie publication-title: Quaest. Geogr. – volume: 890 start-page: 164323 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0055 article-title: A stacked machine learning model for multi-step ahead prediction of lake surface water temperature publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164323 – volume: 86 start-page: 69 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0025 article-title: Occurrence, genetic types and evolution of lake basins in Poland – volume: 11 start-page: 620 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2023.167121_bb0015 article-title: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation publication-title: Energies doi: 10.3390/en11030620 – volume: 4 start-page: 415 year: 1992 ident: 10.1016/j.scitotenv.2023.167121_bb0130 article-title: Bayesian interpolation publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 74 start-page: 374 issue: 1 year: 2019 ident: 10.1016/j.scitotenv.2023.167121_bb0215 article-title: Anomalously warm months in 2018 in Poland in relation to circulation patterns publication-title: Weather doi: 10.1002/wea.3588 – volume: 12 start-page: 12601 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0180 article-title: Trends of changes in minimum lake water temperature in Poland publication-title: Appl. Sci. doi: 10.3390/app122412601 – volume: 139 start-page: 251 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0205 article-title: The extreme year—analysis of thermal conditions in Poland in 2018 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-019-02968-9 – volume: 10 start-page: 995862 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0115 article-title: Warming lake surface water temperatures in Lake Qiandaohu, China: spatiotemporal variations, influencing factors and implications for the thermal structure publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2022.995862 – volume: 48 start-page: 903 issue: 4 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0010 article-title: Heatwaves and storms contribute to degraded water quality conditions in the nearshore of Lake Ontario publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2022.04.008 – volume: 29 start-page: 40623 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0045 article-title: A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-18221-8 – volume: 16 start-page: 553 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0155 article-title: Novel air2water model variant for lake surface temperature modeling with detailed analysis of calibration methods publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3226516 – volume: 155 start-page: 81 year: 2019 ident: 10.1016/j.scitotenv.2023.167121_bb0240 article-title: Substantial increase in minimum lake surface temperatures under climate change publication-title: Clim. Chang. doi: 10.1007/s10584-019-02465-y – volume: 142 start-page: 109217 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0065 article-title: Investigating lake chlorophyll-a responses to the 2019 European double heatwave using satellite remote sensing publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.109217 – volume: 418 start-page: 418 year: 2017 ident: 10.1016/j.scitotenv.2023.167121_bb0185 article-title: Physico-chemical thresholds in the distribution of fish species among French lakes publication-title: Knowl. Manag. Aquat. Ecosyst. – volume: 10 start-page: 990 issue: 7 year: 2018 ident: 10.1016/j.scitotenv.2023.167121_bb0120 article-title: Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes publication-title: Remote Sens. doi: 10.3390/rs10070990 – volume: 11 start-page: 3357 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0140 article-title: Increasing trends in regional heatwaves publication-title: Nat. Commun. doi: 10.1038/s41467-020-16970-7 – volume: 6 start-page: 77 issue: 2 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0035 article-title: On thin ice: linking elevation and long-term losses of lake ice cover publication-title: Limnol. Oceanogr. Lett. doi: 10.1002/lol2.10181 – volume: 588 start-page: 125130 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0100 article-title: Modelling of daily lake surface water temperature from air temperature: extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125130 – volume: 141 start-page: 227 year: 2016 ident: 10.1016/j.scitotenv.2023.167121_bb0105 article-title: A hierarchical approach to defining marine heatwaves publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2015.12.014 – volume: 13 start-page: 7036 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0050 article-title: Short-term forecasts of streamflow in the UK based on a novel hybrid artificial intelligence algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-023-34316-3 – volume: 6 start-page: 36 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0260 article-title: Local mechanisms for global daytime, nighttime, and compound heatwaves publication-title: NPJ Clim. Atmos. Sci. doi: 10.1038/s41612-023-00365-8 – volume: 597 start-page: 125724 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0005 article-title: On thinning ice: effects of atmospheric warming, stilling and rainfall intensity on ice conditions in differently shaped lakes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125724 – volume: 240 start-page: 109958 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0135 article-title: A Recurrent-Cascade-Neural network- nonlinear autoregressive networks with exogenous inputs (NARX) approach for long-term time-series prediction of wave height based on wave characteristics measurements publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109958 – volume: 68 start-page: 578 issue: 6 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0220 article-title: A record-breaking extreme heat event caused unprecedented warming of lakes in China publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.03.001 – volume: 7 start-page: 287 issue: 4 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0235 article-title: Daily surface temperatures for 185,549 lakes in the conterminous United States estimated using deep learning (1980–2020) publication-title: Limnol. Oceanogr. Lett. doi: 10.1002/lol2.10249 – volume: 613 start-page: 128431 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0080 article-title: Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: a comparative study publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128431 – volume: 3 start-page: 821 year: 2018 ident: 10.1016/j.scitotenv.2023.167121_bb0195 article-title: heatwaveR: a central algorithm for the detection of heatwaves and cols-spells publication-title: J. Open Source Softw. doi: 10.21105/joss.00821 – volume: 48 start-page: 101468 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0280 article-title: A simple approach to estimate lake surface water temperatures in Polish lowland lakes publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2023.101468 – volume: 892 start-page: 164316 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0110 article-title: Effects of the 2018 European heatwave and drought on coastal biogeochemistry in the German Bight publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164316 – volume: 14 start-page: 3411 issue: 7 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0085 article-title: An integrated dataset of daily lake surface water temperature over the Tibetan Plateau publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-14-3411-2022 – volume: 23 start-page: 1699 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0190 article-title: The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-23-1699-2023 – volume: 585 start-page: 124809 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0270 article-title: Forecasting surface water temperature in lakes: a comparison of approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124809 – volume: 15 start-page: 900 issue: 4 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0090 article-title: A novel deep learning model for mining nonlinear dynamics in lake surface water temperature prediction publication-title: Remote Sens. doi: 10.3390/rs15040900 – volume: 55 start-page: 11 issue: 6 year: 2019 ident: 10.1016/j.scitotenv.2023.167121_bb0170 article-title: The increasing of maximum lake water temperature in lowland lakes of Central Europe: case study of the Polish lakeland publication-title: Ann. Limnol. Int. J. Limnol. – volume: 12 start-page: 94 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0020 article-title: Modeling the ecological response of a temporarily summer-stratified lake to extreme heatwaves publication-title: Water doi: 10.3390/w12010094 – volume: 52 start-page: 896 year: 2007 ident: 10.1016/j.scitotenv.2023.167121_bb0125 article-title: Large-scale coherence in the response of lake surface-water temperatures to synoptic scale climate forcing during summer publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2007.52.2.0896 – volume: 255 start-page: 107040 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0075 article-title: Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107040 – volume: 5 start-page: 43 issue: 1 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0095 article-title: Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM publication-title: H2Open J. doi: 10.2166/h2oj.2022.134 – ident: 10.1016/j.scitotenv.2023.167121_bb0225 – volume: 43 start-page: 178 issue: 2 year: 2014 ident: 10.1016/j.scitotenv.2023.167121_bb0030 article-title: Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast) publication-title: Oceanol. Hydrobiol. Stud. doi: 10.2478/s13545-014-0131-1 – volume: 165 start-page: 56 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0060 article-title: Increasing maximum lake surface temperature under climate change publication-title: Clim. Chang. doi: 10.1007/s10584-021-03085-1 – volume: 156 start-page: 421 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0265 article-title: Effectiveness of phosphorus control under extreme heatwaves: implications for sediment nutrient releases and greenhouse gas emissions publication-title: Biogeochemistry doi: 10.1007/s10533-021-00854-z – volume: 68 start-page: 1574 issue: 14 year: 2023 ident: 10.1016/j.scitotenv.2023.167121_bb0230 article-title: Climate change drives rapid warming and increasing heatwaves of lakes publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.06.028 – volume: 10 start-page: 322 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0245 article-title: Impact of the 2018 European heatwave on lake surface water temperature publication-title: Inland Waters doi: 10.1080/20442041.2020.1712180 – volume: 597 start-page: 126219 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0275 article-title: How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126219 – volume: 16 start-page: 124066 issue: 12 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0255 article-title: Compound hot temperature and high chlorophyll extreme events in global lakes publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac3d5a – volume: 742 start-page: 140521 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0210 article-title: Heatwaves intensification in Australia: a consistent trajectory across past, present and future publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140521 – volume: 19 start-page: 4993 issue: 20 year: 2022 ident: 10.1016/j.scitotenv.2023.167121_bb0070 article-title: Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018 publication-title: Biogeosciences doi: 10.5194/bg-19-4993-2022 – volume: 23 start-page: 639 issue: 4 year: 2016 ident: 10.1016/j.scitotenv.2023.167121_bb0160 article-title: Variability of oxygen-thermal conditions in selected lakes in Poland publication-title: Ecol. Chem. Eng. S – volume: 25 year: 2012 ident: 10.1016/j.scitotenv.2023.167121_bb0200 article-title: Practical bayesian optimization of machine learning algorithms – volume: 34 start-page: 100780 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0150 article-title: Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2021.100780 – volume: 10 start-page: 580 year: 2018 ident: 10.1016/j.scitotenv.2023.167121_bb0165 article-title: Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes publication-title: Water doi: 10.3390/w10050580 – volume: 190 start-page: 110062 year: 2020 ident: 10.1016/j.scitotenv.2023.167121_bb0040 article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110062 – volume: 17 start-page: 3323 issue: 8 year: 2013 ident: 10.1016/j.scitotenv.2023.167121_bb0145 article-title: A simple lumped model to convert air temperature into surface water temperature in lakes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-3323-2013 – volume: 589 start-page: 402 year: 2021 ident: 10.1016/j.scitotenv.2023.167121_bb0250 article-title: Lake heatwaves under climate change publication-title: Nature doi: 10.1038/s41586-020-03119-1 |
| SSID | ssj0000781 |
| Score | 2.5296648 |
| Snippet | In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 167121 |
| SubjectTerms | algorithms Bayesian theory BO-NARX-BR data collection environment Europe Heatwave Lake heatwaves lakes LSWT Polish lakes prediction surface water temperature |
| Title | A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2023.167121 https://www.proquest.com/docview/2866112662 https://www.proquest.com/docview/3040424480 |
| Volume | 905 |
| WOSCitedRecordID | wos001150446400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiQkhKAwMS6TkRAvIVPidLnwVkErQFNBqJP6FjlOItKWpKxpGfsv_Ar-IOfYjlOmTRsPvPQS2Wmj78vx55NzIeQlY3mWcj-0OYh3u--L3E78hNm5AGvIsYhZpppNBONxOJ1Gnzud300uzGYRlGV4dhYt_yvUcAzAxtTZf4DbnBQOwGcAHV4Bdni9EfADq6w2GUhMMAbfinMQlLLbjYXrVYrPBsaDL1OrVOHfshoDFgpIMTVEZU6Bqcb6ARW8FTJcSwbJrb5aCz6H7zqxEY34D75RVkYFuqtW9pbpXNLoWlj9QzN-Ww0jRxvjomMV6gqzM7fS71rP9lp6atH7Ygj9rrDGoMClu3fEExVTJi19zec6FalYr86NH6mazfnF49rnwTyMH2HOth3vg5n2VWRvY8cj58haHrp-4DLXvnR1UI6K2SGIC7gauJRDPLme0i6ITRDA-FM8Ojk-jifD6eTV8ruNrcrwkb7u27JDdllwFIVdsjv4MJx-bAVAEKpGjfpP_hVWeOlvXyWKLsgDqXkm98k9vVmhA0WyB6STlT1yW7Uv_dkje8MWJhimkVz1yF3lDKYqx-0h-TWgkpPUcJJKTlLJSVqVFDlJG05S4CRtOUk1J6nhJC1KqjhJJSep4iQ1nHxNkZFUM5IaRtK6wrNRZKQZ_YicjIaTt-9t3RfEFqAvazv3ODa7Am0VCZEmrsgFVgHkjkg8rFgYsqQvAtjYJE4_CCLu-wk27sjTVLAwcTJvj3TLqsweExr6vpPApsF1hI-eFO6GXHiwyU5ZlgVZsk_8BphY6KL52LtlETfRkbPYIBojorFCdJ84ZuJS1Y25fsqbBvlYy18la2Pg7_WTXzRciWGBwKd-vMyq9SpmcI2YJ-izq8d4sJRjxmvoPLnBmKfkTntTPiPd-nSdPSe3xKYuVqcHZCeYhgf6nvgDPCXw8A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+optimized+model+based+on+NARX+networks+for+predicting+thermal+anomalies+in+Polish+lakes+during+heatwaves%2C+with+special+reference+to+the+2018+heatwave&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhu%2C+Senlin&rft.au=Di+Nunno%2C+Fabio&rft.au=Ptak%2C+Mariusz&rft.au=Sojka%2C+Mariusz&rft.date=2023-12-20&rft.issn=0048-9697&rft.volume=905+p.167121-&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.167121&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |