Gaining insight into crew rostering instances through ML-based sequential assignment

Crew scheduling is typically performed in two stages. First, solving the crew pairing problem generates sequences of flights called pairings. Then, the pairings are assigned to crew members to provide each person with a full schedule. A common way to do this is to solve an optimization problem calle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:TOP Ročník 32; číslo 3; s. 537 - 578
Hlavní autoři: Racette, Philippe, Quesnel, Frédéric, Lodi, Andrea, Soumis, François
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Témata:
ISSN:1134-5764, 1863-8279
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Crew scheduling is typically performed in two stages. First, solving the crew pairing problem generates sequences of flights called pairings. Then, the pairings are assigned to crew members to provide each person with a full schedule. A common way to do this is to solve an optimization problem called the crew rostering problem (CRP). However, before solving the CRP, the problem instance must be parameterized appropriately while taking different factors such as preassigned days off, crew training, sick leave, reserve duty, or unusual events into account. In this paper, we present a new method for the parameterization of CRP instances for pilots by scheduling planners. A machine learning-based sequential assignment procedure ( seqAsg ) whose arc weights are computed using a policy over state–action pairs for pilots is implemented to generate very fast solutions. We establish a relationship between the quality of the solutions generated by seqAsg and that of solutions produced by a state-of-the-art solver. Based on those results, we formulate recommendations for instance parameterization. Given that the seqAsg procedure takes only a few seconds to run, this allows scheduling workers to reparameterize crew rostering instances many times over the course of the planning process as needed.
AbstractList Crew scheduling is typically performed in two stages. First, solving the crew pairing problem generates sequences of flights called pairings. Then, the pairings are assigned to crew members to provide each person with a full schedule. A common way to do this is to solve an optimization problem called the crew rostering problem (CRP). However, before solving the CRP, the problem instance must be parameterized appropriately while taking different factors such as preassigned days off, crew training, sick leave, reserve duty, or unusual events into account. In this paper, we present a new method for the parameterization of CRP instances for pilots by scheduling planners. A machine learning-based sequential assignment procedure ( seqAsg ) whose arc weights are computed using a policy over state–action pairs for pilots is implemented to generate very fast solutions. We establish a relationship between the quality of the solutions generated by seqAsg and that of solutions produced by a state-of-the-art solver. Based on those results, we formulate recommendations for instance parameterization. Given that the seqAsg procedure takes only a few seconds to run, this allows scheduling workers to reparameterize crew rostering instances many times over the course of the planning process as needed.
Author Lodi, Andrea
Racette, Philippe
Quesnel, Frédéric
Soumis, François
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0009-0000-7422-526X
  surname: Racette
  fullname: Racette, Philippe
  email: philippe.racette@gerad.ca
  organization: Department of Mathematics and Industrial Engineering and GERAD, Polytechnique Montréal, Canada Excellence Research Chair in Data Science for Real-Time Decision-Making, Polytechnique Montréal
– sequence: 2
  givenname: Frédéric
  surname: Quesnel
  fullname: Quesnel, Frédéric
  organization: Department of Analytics, Operations and Information Technology, Université du Québec à Montréal
– sequence: 3
  givenname: Andrea
  surname: Lodi
  fullname: Lodi, Andrea
  organization: Canada Excellence Research Chair in Data Science for Real-Time Decision-Making, Polytechnique Montréal, Cornell Tech and Technion-IIT
– sequence: 4
  givenname: François
  surname: Soumis
  fullname: Soumis, François
  organization: Department of Mathematics and Industrial Engineering and GERAD, Polytechnique Montréal
BookMark eNp9kMFOAjEQQBuDiYD-gKf9geq0Xdru0RBFE4wXPDfdZQol0MW2xPj3FuHkgdPMZOZNZt6IDEIfkJB7Bg8MQD0mxtQEKPCaAkilqb4iQ6aloJqrZlByJmo6UbK-IaOUNschKWBIFjPrgw-ryofkV-tcYu6rLuJ3FfuUMZ572YYOU5XXsT-s1tX7nLY24bJK-HXAkL3dVjaVDWFXqlty7ew24d05jsnny_Ni-krnH7O36dOcdkKzTNEh1BIQWs2Q8VprkA5kY7lVrZzYRiiuGeNLbJpWOVY7p6VtnBOgwColxkSf9nbl1hTRmc5nm30fcrR-axiYox1zsmOKHfNnx-iC8n_oPvqdjT-XIXGC0v7oBaPZ9IcYyouXqF9YKHqm
CitedBy_id crossref_primary_10_1007_s11750_024_00688_6
Cites_doi 10.1016/j.ejor.2021.04.032
10.1287/trsc.2019.0892
10.1137/18M1165748
10.1287/opre.46.6.820
10.1287/opre.2022.2267
10.1016/j.ejtl.2020.100020
10.1016/S0965-8564(98)00021-4
10.1007/s10479-007-0216-y
10.1287/opre.47.2.247
10.1287/trsc.1110.0379
10.1016/j.ejor.2020.05.005
10.1016/S0377-2217(96)00195-6
10.1287/trsc.2019.0913
10.1287/trsc.2021.1084
10.1287/trsc.1040.0091
10.1007/978-3-031-20102-8_43
10.1287/opre.1040.0110
10.1016/j.ejor.2019.11.043
10.1007/978-3-642-40137-4
10.1007/s10479-005-3975-3
10.1016/j.ejor.2010.01.040
10.1162/106365601750190398
10.1016/j.cor.2021.105554
10.1007/s11750-011-0245-1
10.1109/TITS.2020.2994779
10.1023/B:ANOR.0000019091.54417.ca
10.1007/3-540-44719-9_34
10.1287/opre.1050.0234
10.1007/s10479-016-2260-y
10.1287/ijoo.2022.0082
10.1016/j.ejtl.2020.100018
10.24963/ijcai.2021/610
10.1287/trsc.2021.1045
10.1007/s13676-015-0080-x
10.1109/CEC.2016.7744084
10.1287/ijoc.1100.0425
10.1007/s00291-020-00615-8
10.1016/j.trb.2009.06.003
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11750-024-00678-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
EISSN 1863-8279
EndPage 578
ExternalDocumentID 10_1007_s11750_024_00678_8
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: CRDPJ-477127-14
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: IBS
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9M
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c381t-efe0460e0b81e1248806f069a2a7b65a93728112de99b7f14ff86a9ff3070a773
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001254035700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-5764
IngestDate Sat Nov 29 04:34:06 EST 2025
Tue Nov 18 21:43:55 EST 2025
Fri Feb 21 02:37:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 90-08 Computational methods for problems pertaining to operations research and mathematical programming
Evolutionary algorithm
Machine learning
Reinforcement learning
Discrete optimization
Crew scheduling
Crew rostering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-efe0460e0b81e1248806f069a2a7b65a93728112de99b7f14ff86a9ff3070a773
ORCID 0009-0000-7422-526X
PageCount 42
ParticipantIDs crossref_citationtrail_10_1007_s11750_024_00678_8
crossref_primary_10_1007_s11750_024_00678_8
springer_journals_10_1007_s11750_024_00678_8
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle Transactions in Operations Research
PublicationTitle TOP
PublicationTitleAbbrev TOP
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References FurianNO’SullivanMWalkerCÇelaEA machine learning-based branch and price algorithm for a sampled vehicle routing problemOR Spectr20214369373210.1007/s00291-020-00615-8
Nazari M, Oroojlooy A, Snyder LV, Takáč M (2018) Deep reinforcement learning for solving the vehicle routing problem. Adv Neural Inf Process Syst 31
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate, arXiv preprint. arXiv:1409.0473
BonamiPLodiAZarpellonGA classifier to decide on the linearization of mixed-integer quadratic problems in CPLEXOper Res20227063303332010.1287/opre.2022.2267
Boufaied C, Trabelsi R, Masri H, Krichen S (2016) A construction of rotations-based rosters with a genetic algorithm. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 2389–2394
BeulenMScherpLSantosBFDynamic evaluation of airline crew’s flight requests using a neural networkEURO J Transp Logist20209410.1016/j.ejtl.2020.100018
JuanAAFaulinJFerrerALourençoHRBarriosBMIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problemsTOP20132110913210.1007/s11750-011-0245-1
Salismans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint, arXiv:1703.03864
Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. Adv Neural Inf Process Syst 28
KasirzadehASaddouneMSoumisFAirline crew scheduling: models, algorithms, and data setsEURO J Transp Logist20176211113710.1007/s13676-015-0080-x
Kool W, van Hoof H, Welling M (2019) Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475
LučicPTeodorovicDSimulated annealing for the multi-objective aircrew rostering problemTransp Res Part A Policy Pract1999331194510.1016/S0965-8564(98)00021-4
Bello I, Pham H, Le QV, Norouzi M, Bengio S (2016) Neural combinatorial optimization with reinforcement learning, arXiv preprint. arXiv:1611.09940
Morabit M, Desaulniers G, Lodi A (2023). Machine-learning-based arc selection for constrained shortest path problems in column generation. INFORMS J Optim 5(2). https://doi.org/10.1287/ijoo.2022.0082
DesaulniersGDesrosiersJDumasYMarcSRiouxBSolomonMMSoumisFCrew pairing at Air FranceEur J Oper Res199797224525910.1016/S0377-2217(96)00195-6
KohlNKarischSEAirline crew rostering: problem types, modeling, and optimizationAnn Oper Res20041271–422325710.1023/B:ANOR.0000019091.54417.ca
Karimi-MamaghanMMohammadiMMeyerPKarimi-MamaghanAMTalbiE-GMachine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-artEur J Oper Res2022296239342210.1016/j.ejor.2021.04.032
Yaakoubi Y, Soumis F, Lacoste-Julien S (2020a) Flight-connection prediction for airline crew scheduling to construct initial clusters for OR optimizer. arXiv preprint, arXiv:2009.12501
HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol Comput20019215919510.1162/106365601750190398
El Moudani W, Alberto Nunes Cosenza C, de Coligny M, Mora-Camino F (2001) A bi-criterion approach for the airlines crew rostering problem. In: Evolutionary multi-criterion optimization: first international conference. EMO 2001 Zurich, Switzerland, March 7–9, 2001 Proceedings 1. Springer, pp 486–500
TahirAQuesnelFDesaulniersGElhallaouiIYaakoubiYAn improved integral column generation algorithm using machine learning for aircrew pairingTransp Sci20215561411142910.1287/trsc.2021.1084
CappaneraPGalloGA multicommodity flow approach to the crew rostering problemOper Res200452458359610.1287/opre.1040.0110
ElhallaouiIMetraneADesaulniersGSoumisFAn improved primal simplex algorithm for degenerate linear programsINFORMS J Comput201123456957710.1287/ijoc.1100.0425
GopalakrishnanBJohnsonELAirline crew scheduling: state-of-the-artAnn Oper Res200514030533710.1007/s10479-005-3975-3
Zhou T, Chen X, Wu X, Yang C (2022) A hybrid multi-objective genetic-particle swarm optimization algorithm for airline crew rostering problem with fairness and satisfaction. In: International conference on machine learning for cyber security. Springer, pp 563–575
Quesnel F, Desaulniers G, Soumis F (2020a) A branch-and-price heuristic for the crew pairing problem with language constraints. Eur J Oper Res 283(3):1040–1054. https://doi.org/10.1016/j.ejor.2019.11.043
BäckTFoussetteCKrausePContemporary evolution strategies2013BerlinSpringer10.1007/978-3-642-40137-4
BoubakerKDesaulniersGElhallaouiIBidline scheduling with equity by heuristic dynamic constraint aggregationTransp Res Part B Methodol2010441506110.1016/j.trb.2009.06.003
Quesnel F, Wu A, Desaulniers G, Soumis F (2022) Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering. Comput Oper Res 138:105554. https://doi.org/10.1016/j.cor.2021.105554
ZeighamiVSoumisFCombining Benders’ decomposition and column generation for integrated crew pairing and personalized crew assignment problemsTransp Sci20195351479149910.1287/trsc.2019.0892
LučićPTeodorovićDMetaheuristics approach to the aircrew rostering problemAnn Oper Res200715531133810.1007/s10479-007-0216-y
Quesnel F, Desaulniers G, Soumis F (2020b) Improving air crew rostering by considering crew preferences in the crew pairing problem. Transp Sci 54(1):97–114. https://doi.org/10.1287/trsc.2019.0913
HighamCFHighamDJDeep learning: an introduction for applied mathematiciansSIAM Rev201961486089110.1137/18M1165748
SchaeferAJJohnsonELKleywegtAJNemhauserGLAirline crew scheduling under uncertaintyTransp Sci200539334034810.1287/trsc.1040.0091
Kotary J, Fioretto F, Van Hentenryck P, Wilder B (2021) End-to-end constrained optimization learning: a survey. arXiv preprint arXiv:2103.16378
Yaakoubi Y, Soumis F, Lacoste-Julien S (2020b) Machine learning in airline crew pairing to construct initial clusters for dynamic constraint aggregation. EURO J Transp Logist 9(4):100020. https://doi.org/10.1016/j.ejtl.2020.100020
ZeighamiVSaddouneMSoumisFAlternating lagrangian decomposition for integrated airline crew scheduling problemEur J Oper Res2020287121122410.1016/j.ejor.2020.05.005
LübbeckeMEDesrosiersJSelected topics in column generationOper Res20055361007102310.1287/opre.1050.0234
MorabitMDesaulniersGLodiAMachine-learning-based column selection for column generationTransp Sci202155481583110.1287/trsc.2021.1045
MaenhoutBVanhouckeMA hybrid scatter search heuristic for personalized crew rostering in the airline industryEur J Oper Res2010206115516710.1016/j.ejor.2010.01.040
Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014). Deterministic policy gradient algorithms. In: International conference on machine learning. PMLR, pp 387–395
ZhouS-ZZhanZ-HChenZ-GKwongSZhangJA multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfactionIEEE Trans Intell Transp Syst202022116784679810.1109/TITS.2020.2994779
CapraraATothPVigoDFischettiMModeling and solving the crew rostering problemOper Res199846682083010.1287/opre.46.6.820
de ArmasJCadarsoLJuanAAFaulinJA multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goalsAnn Oper Res201725882584810.1007/s10479-016-2260-y
SaddouneMDesaulniersGElhallaouiISoumisFIntegrated airline crew pairing and crew assignment by dynamic constraint aggregationTransp Sci2012461395510.1287/trsc.1110.0379
GamacheMSoumisFMarquisGDesrosiersJA column generation approach for large-scale aircrew rostering problemsOper Res199947224726310.1287/opre.47.2.247
P Bonami (678_CR5) 2022; 70
678_CR24
678_CR46
M Beulen (678_CR4) 2020; 9
678_CR23
CF Higham (678_CR18) 2019; 61
J de Armas (678_CR10) 2017; 258
ME Lübbecke (678_CR25) 2005; 53
M Saddoune (678_CR35) 2012; 46
678_CR42
678_CR41
AJ Schaefer (678_CR37) 2005; 39
678_CR40
B Maenhout (678_CR28) 2010; 206
678_CR3
V Zeighami (678_CR43) 2019; 53
P Cappanera (678_CR8) 2004; 52
B Gopalakrishnan (678_CR16) 2005; 140
T Bäck (678_CR1) 2013
678_CR2
S-Z Zhou (678_CR45) 2020; 22
G Desaulniers (678_CR11) 1997; 97
A Caprara (678_CR9) 1998; 46
I Elhallaoui (678_CR13) 2011; 23
A Kasirzadeh (678_CR21) 2017; 6
678_CR38
678_CR36
678_CR12
678_CR34
M Gamache (678_CR15) 1999; 47
AA Juan (678_CR19) 2013; 21
N Kohl (678_CR22) 2004; 127
678_CR33
A Tahir (678_CR39) 2021; 55
678_CR32
678_CR31
M Karimi-Mamaghan (678_CR20) 2022; 296
678_CR30
678_CR7
P Lučić (678_CR27) 2007; 155
K Boubaker (678_CR6) 2010; 44
N Hansen (678_CR17) 2001; 9
P Lučic (678_CR26) 1999; 33
M Morabit (678_CR29) 2021; 55
N Furian (678_CR14) 2021; 43
V Zeighami (678_CR44) 2020; 287
References_xml – reference: CapraraATothPVigoDFischettiMModeling and solving the crew rostering problemOper Res199846682083010.1287/opre.46.6.820
– reference: BoubakerKDesaulniersGElhallaouiIBidline scheduling with equity by heuristic dynamic constraint aggregationTransp Res Part B Methodol2010441506110.1016/j.trb.2009.06.003
– reference: Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. Adv Neural Inf Process Syst 28
– reference: BäckTFoussetteCKrausePContemporary evolution strategies2013BerlinSpringer10.1007/978-3-642-40137-4
– reference: KasirzadehASaddouneMSoumisFAirline crew scheduling: models, algorithms, and data setsEURO J Transp Logist20176211113710.1007/s13676-015-0080-x
– reference: Kool W, van Hoof H, Welling M (2019) Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475
– reference: Quesnel F, Desaulniers G, Soumis F (2020a) A branch-and-price heuristic for the crew pairing problem with language constraints. Eur J Oper Res 283(3):1040–1054. https://doi.org/10.1016/j.ejor.2019.11.043
– reference: KohlNKarischSEAirline crew rostering: problem types, modeling, and optimizationAnn Oper Res20041271–422325710.1023/B:ANOR.0000019091.54417.ca
– reference: Quesnel F, Desaulniers G, Soumis F (2020b) Improving air crew rostering by considering crew preferences in the crew pairing problem. Transp Sci 54(1):97–114. https://doi.org/10.1287/trsc.2019.0913
– reference: Quesnel F, Wu A, Desaulniers G, Soumis F (2022) Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering. Comput Oper Res 138:105554. https://doi.org/10.1016/j.cor.2021.105554
– reference: DesaulniersGDesrosiersJDumasYMarcSRiouxBSolomonMMSoumisFCrew pairing at Air FranceEur J Oper Res199797224525910.1016/S0377-2217(96)00195-6
– reference: SaddouneMDesaulniersGElhallaouiISoumisFIntegrated airline crew pairing and crew assignment by dynamic constraint aggregationTransp Sci2012461395510.1287/trsc.1110.0379
– reference: TahirAQuesnelFDesaulniersGElhallaouiIYaakoubiYAn improved integral column generation algorithm using machine learning for aircrew pairingTransp Sci20215561411142910.1287/trsc.2021.1084
– reference: Zhou T, Chen X, Wu X, Yang C (2022) A hybrid multi-objective genetic-particle swarm optimization algorithm for airline crew rostering problem with fairness and satisfaction. In: International conference on machine learning for cyber security. Springer, pp 563–575
– reference: BeulenMScherpLSantosBFDynamic evaluation of airline crew’s flight requests using a neural networkEURO J Transp Logist20209410.1016/j.ejtl.2020.100018
– reference: El Moudani W, Alberto Nunes Cosenza C, de Coligny M, Mora-Camino F (2001) A bi-criterion approach for the airlines crew rostering problem. In: Evolutionary multi-criterion optimization: first international conference. EMO 2001 Zurich, Switzerland, March 7–9, 2001 Proceedings 1. Springer, pp 486–500
– reference: ZhouS-ZZhanZ-HChenZ-GKwongSZhangJA multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfactionIEEE Trans Intell Transp Syst202022116784679810.1109/TITS.2020.2994779
– reference: ZeighamiVSoumisFCombining Benders’ decomposition and column generation for integrated crew pairing and personalized crew assignment problemsTransp Sci20195351479149910.1287/trsc.2019.0892
– reference: Boufaied C, Trabelsi R, Masri H, Krichen S (2016) A construction of rotations-based rosters with a genetic algorithm. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 2389–2394
– reference: Salismans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint, arXiv:1703.03864
– reference: JuanAAFaulinJFerrerALourençoHRBarriosBMIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problemsTOP20132110913210.1007/s11750-011-0245-1
– reference: BonamiPLodiAZarpellonGA classifier to decide on the linearization of mixed-integer quadratic problems in CPLEXOper Res20227063303332010.1287/opre.2022.2267
– reference: LübbeckeMEDesrosiersJSelected topics in column generationOper Res20055361007102310.1287/opre.1050.0234
– reference: Bello I, Pham H, Le QV, Norouzi M, Bengio S (2016) Neural combinatorial optimization with reinforcement learning, arXiv preprint. arXiv:1611.09940
– reference: LučicPTeodorovicDSimulated annealing for the multi-objective aircrew rostering problemTransp Res Part A Policy Pract1999331194510.1016/S0965-8564(98)00021-4
– reference: MorabitMDesaulniersGLodiAMachine-learning-based column selection for column generationTransp Sci202155481583110.1287/trsc.2021.1045
– reference: HighamCFHighamDJDeep learning: an introduction for applied mathematiciansSIAM Rev201961486089110.1137/18M1165748
– reference: SchaeferAJJohnsonELKleywegtAJNemhauserGLAirline crew scheduling under uncertaintyTransp Sci200539334034810.1287/trsc.1040.0091
– reference: FurianNO’SullivanMWalkerCÇelaEA machine learning-based branch and price algorithm for a sampled vehicle routing problemOR Spectr20214369373210.1007/s00291-020-00615-8
– reference: LučićPTeodorovićDMetaheuristics approach to the aircrew rostering problemAnn Oper Res200715531133810.1007/s10479-007-0216-y
– reference: Yaakoubi Y, Soumis F, Lacoste-Julien S (2020a) Flight-connection prediction for airline crew scheduling to construct initial clusters for OR optimizer. arXiv preprint, arXiv:2009.12501
– reference: ZeighamiVSaddouneMSoumisFAlternating lagrangian decomposition for integrated airline crew scheduling problemEur J Oper Res2020287121122410.1016/j.ejor.2020.05.005
– reference: MaenhoutBVanhouckeMA hybrid scatter search heuristic for personalized crew rostering in the airline industryEur J Oper Res2010206115516710.1016/j.ejor.2010.01.040
– reference: Nazari M, Oroojlooy A, Snyder LV, Takáč M (2018) Deep reinforcement learning for solving the vehicle routing problem. Adv Neural Inf Process Syst 31
– reference: de ArmasJCadarsoLJuanAAFaulinJA multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goalsAnn Oper Res201725882584810.1007/s10479-016-2260-y
– reference: CappaneraPGalloGA multicommodity flow approach to the crew rostering problemOper Res200452458359610.1287/opre.1040.0110
– reference: Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014). Deterministic policy gradient algorithms. In: International conference on machine learning. PMLR, pp 387–395
– reference: ElhallaouiIMetraneADesaulniersGSoumisFAn improved primal simplex algorithm for degenerate linear programsINFORMS J Comput201123456957710.1287/ijoc.1100.0425
– reference: GamacheMSoumisFMarquisGDesrosiersJA column generation approach for large-scale aircrew rostering problemsOper Res199947224726310.1287/opre.47.2.247
– reference: Morabit M, Desaulniers G, Lodi A (2023). Machine-learning-based arc selection for constrained shortest path problems in column generation. INFORMS J Optim 5(2). https://doi.org/10.1287/ijoo.2022.0082
– reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate, arXiv preprint. arXiv:1409.0473
– reference: GopalakrishnanBJohnsonELAirline crew scheduling: state-of-the-artAnn Oper Res200514030533710.1007/s10479-005-3975-3
– reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol Comput20019215919510.1162/106365601750190398
– reference: Kotary J, Fioretto F, Van Hentenryck P, Wilder B (2021) End-to-end constrained optimization learning: a survey. arXiv preprint arXiv:2103.16378
– reference: Yaakoubi Y, Soumis F, Lacoste-Julien S (2020b) Machine learning in airline crew pairing to construct initial clusters for dynamic constraint aggregation. EURO J Transp Logist 9(4):100020. https://doi.org/10.1016/j.ejtl.2020.100020
– reference: Karimi-MamaghanMMohammadiMMeyerPKarimi-MamaghanAMTalbiE-GMachine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-artEur J Oper Res2022296239342210.1016/j.ejor.2021.04.032
– ident: 678_CR3
– volume: 296
  start-page: 393
  issue: 2
  year: 2022
  ident: 678_CR20
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.04.032
– ident: 678_CR40
– volume: 53
  start-page: 1479
  issue: 5
  year: 2019
  ident: 678_CR43
  publication-title: Transp Sci
  doi: 10.1287/trsc.2019.0892
– volume: 61
  start-page: 860
  issue: 4
  year: 2019
  ident: 678_CR18
  publication-title: SIAM Rev
  doi: 10.1137/18M1165748
– volume: 46
  start-page: 820
  issue: 6
  year: 1998
  ident: 678_CR9
  publication-title: Oper Res
  doi: 10.1287/opre.46.6.820
– ident: 678_CR23
– volume: 70
  start-page: 3303
  issue: 6
  year: 2022
  ident: 678_CR5
  publication-title: Oper Res
  doi: 10.1287/opre.2022.2267
– ident: 678_CR42
  doi: 10.1016/j.ejtl.2020.100020
– volume: 33
  start-page: 19
  issue: 1
  year: 1999
  ident: 678_CR26
  publication-title: Transp Res Part A Policy Pract
  doi: 10.1016/S0965-8564(98)00021-4
– volume: 155
  start-page: 311
  year: 2007
  ident: 678_CR27
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-007-0216-y
– volume: 47
  start-page: 247
  issue: 2
  year: 1999
  ident: 678_CR15
  publication-title: Oper Res
  doi: 10.1287/opre.47.2.247
– volume: 46
  start-page: 39
  issue: 1
  year: 2012
  ident: 678_CR35
  publication-title: Transp Sci
  doi: 10.1287/trsc.1110.0379
– volume: 287
  start-page: 211
  issue: 1
  year: 2020
  ident: 678_CR44
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2020.05.005
– volume: 97
  start-page: 245
  issue: 2
  year: 1997
  ident: 678_CR11
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00195-6
– ident: 678_CR33
  doi: 10.1287/trsc.2019.0913
– ident: 678_CR36
– volume: 55
  start-page: 1411
  issue: 6
  year: 2021
  ident: 678_CR39
  publication-title: Transp Sci
  doi: 10.1287/trsc.2021.1084
– volume: 39
  start-page: 340
  issue: 3
  year: 2005
  ident: 678_CR37
  publication-title: Transp Sci
  doi: 10.1287/trsc.1040.0091
– ident: 678_CR46
  doi: 10.1007/978-3-031-20102-8_43
– volume: 52
  start-page: 583
  issue: 4
  year: 2004
  ident: 678_CR8
  publication-title: Oper Res
  doi: 10.1287/opre.1040.0110
– ident: 678_CR32
  doi: 10.1016/j.ejor.2019.11.043
– ident: 678_CR38
– ident: 678_CR41
– volume-title: Contemporary evolution strategies
  year: 2013
  ident: 678_CR1
  doi: 10.1007/978-3-642-40137-4
– volume: 140
  start-page: 305
  year: 2005
  ident: 678_CR16
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-005-3975-3
– ident: 678_CR2
– volume: 206
  start-page: 155
  issue: 1
  year: 2010
  ident: 678_CR28
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.01.040
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 678_CR17
  publication-title: Evol Comput
  doi: 10.1162/106365601750190398
– ident: 678_CR34
  doi: 10.1016/j.cor.2021.105554
– volume: 21
  start-page: 109
  year: 2013
  ident: 678_CR19
  publication-title: TOP
  doi: 10.1007/s11750-011-0245-1
– volume: 22
  start-page: 6784
  issue: 11
  year: 2020
  ident: 678_CR45
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2994779
– volume: 127
  start-page: 223
  issue: 1–4
  year: 2004
  ident: 678_CR22
  publication-title: Ann Oper Res
  doi: 10.1023/B:ANOR.0000019091.54417.ca
– ident: 678_CR12
  doi: 10.1007/3-540-44719-9_34
– volume: 53
  start-page: 1007
  issue: 6
  year: 2005
  ident: 678_CR25
  publication-title: Oper Res
  doi: 10.1287/opre.1050.0234
– volume: 258
  start-page: 825
  year: 2017
  ident: 678_CR10
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-016-2260-y
– ident: 678_CR31
– ident: 678_CR30
  doi: 10.1287/ijoo.2022.0082
– volume: 9
  issue: 4
  year: 2020
  ident: 678_CR4
  publication-title: EURO J Transp Logist
  doi: 10.1016/j.ejtl.2020.100018
– ident: 678_CR24
  doi: 10.24963/ijcai.2021/610
– volume: 55
  start-page: 815
  issue: 4
  year: 2021
  ident: 678_CR29
  publication-title: Transp Sci
  doi: 10.1287/trsc.2021.1045
– volume: 6
  start-page: 111
  issue: 2
  year: 2017
  ident: 678_CR21
  publication-title: EURO J Transp Logist
  doi: 10.1007/s13676-015-0080-x
– ident: 678_CR7
  doi: 10.1109/CEC.2016.7744084
– volume: 23
  start-page: 569
  issue: 4
  year: 2011
  ident: 678_CR13
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1100.0425
– volume: 43
  start-page: 693
  year: 2021
  ident: 678_CR14
  publication-title: OR Spectr
  doi: 10.1007/s00291-020-00615-8
– volume: 44
  start-page: 50
  issue: 1
  year: 2010
  ident: 678_CR6
  publication-title: Transp Res Part B Methodol
  doi: 10.1016/j.trb.2009.06.003
SSID ssj0067630
Score 2.3086236
Snippet Crew scheduling is typically performed in two stages. First, solving the crew pairing problem generates sequences of flights called pairings. Then, the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 537
SubjectTerms Business and Management
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Industrial and Production Engineering
Insurance
Management
Operations Research/Decision Theory
Optimization
Original Paper
Statistics for Business
Title Gaining insight into crew rostering instances through ML-based sequential assignment
URI https://link.springer.com/article/10.1007/s11750-024-00678-8
Volume 32
WOSCitedRecordID wos001254035700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1863-8279
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067630
  issn: 1134-5764
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CurBR1WsL_bgTRfy2Cabo4iPgy2iVXoLk31IoaTSRP37zm6SloIU9JRDJiHMzsw3YR4fIRcqk1kAoWEARjDOuWIgVMZULAWEUgUA4Mgm4n5fDIfJUz0UVjTd7k1J0kXq-bAbIp3HEFOYC7FMrJI1hDthCRueX96a-Buhx7gxSD_kDLNpXo_K_P6ORTharIU6iLnb-d_H7ZLtOqWk15UN7JEVnbfJRjNxXLTJVm-2m7XYJ4P7ihSCjvLC_pnjtZxQTB6_qZ0AcasJ7b3S2kNBayIf2ntkFvEUrZqvMTCMKSbeo3fXTnBAXu9uBzcPrOZWYBIxumTaaFsS1V4mfI0Yj24cGS9KIIA4i7qAWUsgMBdTOkmy2PjcGBFBYoyNERDH4SFp5ZNcHxHKE4gszZVENOTKk2BrbXbtXqIVZN2gQ_xGxamsF49b_otxOl-ZbLWXovZSp71UdMjl7JmPau3GUumr5lTS2gWLJeLHfxM_IZuBPVjXwXdKWuX0U5-RdflVjorpubO9H7gq0zk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBR1Wszz1404U8tsnmKGKt2BbRKr2FSXZXCqWVJurfd3eTtBSkoKccMglhdma-CTPzDcClSNLEQ19RRMUpY0xQ5CKhIkw5-qnwENEumwh7PT4YRE_lUFhWdbtXJUkbqefDbhrpHKoxhdoQS_kqrDGNWIYx__nlrYq_gfYYOwbp-ozqbJqVozK_v2MRjhZroRZiWjv_-7hd2C5TSnJT2MAerMhxHTaqieOsDlvdGTdrtg_9-2IpBBmOM_Nnrq_5hOjk8ZuYCRBLTWju5cYeMlIu8iHdDjWIJ0jRfK0Dw4joxHv4btsJDuC1dde_bdNytwJNNUbnVCppSqLSSbgrNcZrNw6UE0ToYZgETdRZi8d1LiZkFCWhcplSPMBIKRMjMAz9Q6iNJ2N5BIRFGJg1V6lGQyacFE2tzdDuRVJg0vQa4FYqjtOSeNzsvxjFc8pko71Yay-22ot5A65mz3wUtBtLpa-rU4lLF8yWiB__TfwCNtr9bifuPPQeT2DTM4dsu_lOoZZPP-UZrKdf-TCbnls7_AGogdYd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFC8PXqbivObBNw1ru6xNH0WditsYOGVvJc1FBqMba9W_b5K2m4IMxKc-NCnlJDnfCed83wG4EDGPPdZQmDFFMSFEYEZFjEXAKWtw4THGbLOJoNulg0HY-8bit9XuZUoy5zQYlaYkq0-Eqs-Jbxr1HKzxBVt3i-kyrBBTSG_u68-vpS_29emxlEi3QbCOrElBm_n9Gz-h6Wde1MJNa_v_P7oDW0Woia7zvbELSzKpwnrJRE6rsNmZabame9C_z5tFoGGSmhu7fmZjpIPKT2SYIVay0LzLzD5JUdHgB3Xa2CChQHlRtnYYI6QD8uGbLTPYh5fWXf_mARc9FzDX2J1hqaRJlUonpq7U2K-Pt68cP2QeC2K_yXQ041EdowkZhnGgXKIU9VmolPEdLAgaB1BJxok8BERC5pv2V1yjJBEOZyYHZ-T4QilY3PRq4JbmjnghSG76YoyiuZSysV6krRdZ60W0BpezOZNcjmPh6KtyhaLiaKYLhh_9bfg5rPVuW1H7sft0DBueWWNb5HcClWz6Lk9hlX9kw3R6ZrfkFyyy3wE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaining+insight+into+crew+rostering+instances+through+ML-based+sequential+assignment&rft.jtitle=TOP&rft.au=Racette%2C+Philippe&rft.au=Quesnel%2C+Fr%C3%A9d%C3%A9ric&rft.au=Lodi%2C+Andrea&rft.au=Soumis%2C+Fran%C3%A7ois&rft.date=2024-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1134-5764&rft.eissn=1863-8279&rft.volume=32&rft.issue=3&rft.spage=537&rft.epage=578&rft_id=info:doi/10.1007%2Fs11750-024-00678-8&rft.externalDocID=10_1007_s11750_024_00678_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-5764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-5764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-5764&client=summon