MULGA, a unified multi-view graph autoencoder-based approach for identifying drug–protein interaction and drug repositioning

Abstract Motivation Identifying drug–protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating a different disease and thereby alleviates the challenges of new drug development. Despite the fact that a great variety...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 39; no. 9
Main Authors: Ma, Jiani, Li, Chen, Zhang, Yiwen, Wang, Zhikang, Li, Shanshan, Guo, Yuming, Zhang, Lin, Liu, Hui, Gao, Xin, Song, Jiangning
Format: Journal Article
Language:English
Published: Oxford University Press 02.09.2023
Subjects:
ISSN:1367-4811, 1367-4803, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Motivation Identifying drug–protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating a different disease and thereby alleviates the challenges of new drug development. Despite the fact that a great variety of computational approaches for DPI prediction have been proposed, key challenges, such as extendable and unbiased similarity calculation, heterogeneous information utilization, and reliable negative sample selection, remain to be addressed. Results To address these issues, we propose a novel, unified multi-view graph autoencoder framework, termed MULGA, for both DPI and drug repositioning predictions. MULGA is featured by: (i) a multi-view learning technique to effectively learn authentic drug affinity and target affinity matrices; (ii) a graph autoencoder to infer missing DPI interactions; and (iii) a new “guilty-by-association”-based negative sampling approach for selecting highly reliable non-DPIs. Benchmark experiments demonstrate that MULGA outperforms state-of-the-art methods in DPI prediction and the ablation studies verify the effectiveness of each proposed component. Importantly, we highlight the top drugs shortlisted by MULGA that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2), offering additional insights into and potentially useful treatment option for COVID-19. Together with the availability of datasets and source codes, we envision that MULGA can be explored as a useful tool for DPI prediction and drug repositioning. Availability and implementation MULGA is publicly available for academic purposes at https://github.com/jianiM/MULGA/.
AbstractList Abstract Motivation Identifying drug–protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating a different disease and thereby alleviates the challenges of new drug development. Despite the fact that a great variety of computational approaches for DPI prediction have been proposed, key challenges, such as extendable and unbiased similarity calculation, heterogeneous information utilization, and reliable negative sample selection, remain to be addressed. Results To address these issues, we propose a novel, unified multi-view graph autoencoder framework, termed MULGA, for both DPI and drug repositioning predictions. MULGA is featured by: (i) a multi-view learning technique to effectively learn authentic drug affinity and target affinity matrices; (ii) a graph autoencoder to infer missing DPI interactions; and (iii) a new “guilty-by-association”-based negative sampling approach for selecting highly reliable non-DPIs. Benchmark experiments demonstrate that MULGA outperforms state-of-the-art methods in DPI prediction and the ablation studies verify the effectiveness of each proposed component. Importantly, we highlight the top drugs shortlisted by MULGA that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2), offering additional insights into and potentially useful treatment option for COVID-19. Together with the availability of datasets and source codes, we envision that MULGA can be explored as a useful tool for DPI prediction and drug repositioning. Availability and implementation MULGA is publicly available for academic purposes at https://github.com/jianiM/MULGA/.
Identifying drug-protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating a different disease and thereby alleviates the challenges of new drug development. Despite the fact that a great variety of computational approaches for DPI prediction have been proposed, key challenges, such as extendable and unbiased similarity calculation, heterogeneous information utilization, and reliable negative sample selection, remain to be addressed.MOTIVATIONIdentifying drug-protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating a different disease and thereby alleviates the challenges of new drug development. Despite the fact that a great variety of computational approaches for DPI prediction have been proposed, key challenges, such as extendable and unbiased similarity calculation, heterogeneous information utilization, and reliable negative sample selection, remain to be addressed.To address these issues, we propose a novel, unified multi-view graph autoencoder framework, termed MULGA, for both DPI and drug repositioning predictions. MULGA is featured by: (i) a multi-view learning technique to effectively learn authentic drug affinity and target affinity matrices; (ii) a graph autoencoder to infer missing DPI interactions; and (iii) a new "guilty-by-association"-based negative sampling approach for selecting highly reliable non-DPIs. Benchmark experiments demonstrate that MULGA outperforms state-of-the-art methods in DPI prediction and the ablation studies verify the effectiveness of each proposed component. Importantly, we highlight the top drugs shortlisted by MULGA that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2), offering additional insights into and potentially useful treatment option for COVID-19. Together with the availability of datasets and source codes, we envision that MULGA can be explored as a useful tool for DPI prediction and drug repositioning.RESULTSTo address these issues, we propose a novel, unified multi-view graph autoencoder framework, termed MULGA, for both DPI and drug repositioning predictions. MULGA is featured by: (i) a multi-view learning technique to effectively learn authentic drug affinity and target affinity matrices; (ii) a graph autoencoder to infer missing DPI interactions; and (iii) a new "guilty-by-association"-based negative sampling approach for selecting highly reliable non-DPIs. Benchmark experiments demonstrate that MULGA outperforms state-of-the-art methods in DPI prediction and the ablation studies verify the effectiveness of each proposed component. Importantly, we highlight the top drugs shortlisted by MULGA that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2), offering additional insights into and potentially useful treatment option for COVID-19. Together with the availability of datasets and source codes, we envision that MULGA can be explored as a useful tool for DPI prediction and drug repositioning.MULGA is publicly available for academic purposes at https://github.com/jianiM/MULGA/.AVAILABILITY AND IMPLEMENTATIONMULGA is publicly available for academic purposes at https://github.com/jianiM/MULGA/.
Author Li, Chen
Wang, Zhikang
Gao, Xin
Song, Jiangning
Zhang, Yiwen
Liu, Hui
Zhang, Lin
Ma, Jiani
Li, Shanshan
Guo, Yuming
Author_xml – sequence: 1
  givenname: Jiani
  surname: Ma
  fullname: Ma, Jiani
– sequence: 2
  givenname: Chen
  orcidid: 0000-0002-1847-754X
  surname: Li
  fullname: Li, Chen
  email: hui.liu@cumt.edu.cn
– sequence: 3
  givenname: Yiwen
  surname: Zhang
  fullname: Zhang, Yiwen
– sequence: 4
  givenname: Zhikang
  surname: Wang
  fullname: Wang, Zhikang
– sequence: 5
  givenname: Shanshan
  surname: Li
  fullname: Li, Shanshan
  email: hui.liu@cumt.edu.cn
– sequence: 6
  givenname: Yuming
  surname: Guo
  fullname: Guo, Yuming
– sequence: 7
  givenname: Lin
  orcidid: 0000-0002-7404-5231
  surname: Zhang
  fullname: Zhang, Lin
– sequence: 8
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: hui.liu@cumt.edu.cn
– sequence: 9
  givenname: Xin
  orcidid: 0000-0002-7108-3574
  surname: Gao
  fullname: Gao, Xin
  email: xin.gao@kaust.edu.sa
– sequence: 10
  givenname: Jiangning
  orcidid: 0000-0001-8031-9086
  surname: Song
  fullname: Song, Jiangning
  email: jiangning.song@monash.edu
BookMark eNqNUc1u1DAQtlAR_X0F5CMHQj1xnE1OqKqgIC3qhZ4t_0x2jRI72E6rXhDv0Dfsk-CyK0RvPc1ovp-Z0XdMDnzwSMhbYB-A9fxcu-D8EOKksjPpXGdlRd28IkfA21XVdAAH__WH5DilH4wxwUT7hhzyVQuMC35Efn27WV9dvKeKLt4NDi2dljG76tbhHd1ENW-pWnJAb4LFWGmVCkXNcwzKbGk5gDqLPrvh3vkNtXHZPP5-KGhG56nzGaMy2QVPlbd_YRpxDsk9zYrilLwe1JjwbF9PyM3nT98vv1Tr66uvlxfryvAOcoWm09jWwLpaiEEDq7UAw6E3rAGstdUAjRgYt4g9N9gPuukH0fcGFJZf-Qn5uPOdFz2hNeXkqEY5RzepeC-DcvI54t1WbsKtBCagY6tVcXi3d4jh54Ipy8klg-OoPIYlyboTLa-h7ttCbXdUE0NKEYd_e4DJp_Tk8_TkPr0ihJ0wLPNLNX8AD5WqtA
Cites_doi 10.1093/nar/gkab122
10.1093/bib/bbac054
10.1371/journal.pcbi.1007129
10.1038/s41401-020-0485-4
10.1371/journal.pone.0249404
10.1016/j.patrec.2005.10.010
10.1021/ci00046a002
10.1093/nar/gkl999
10.1093/bioinformatics/btab715
10.1016/S0140-6736(20)30183-5
10.1093/bioinformatics/btaa921
10.1021/c160017a018
10.1093/nar/gkx1037
10.1021/ci400709d
10.1371/journal.pone.0118432
10.1002/prot.20045
10.1093/bioinformatics/bty593
10.1093/bioinformatics/bth466
10.1093/nar/gky1049
10.1023/A:1007091128394
10.1021/acs.jcim.9b00408
10.1021/ci010132r
10.1056/NEJMoa2001017
10.1093/bib/bbz041
10.1093/bioinformatics/btaa544
10.1089/cmb.2020.0538
10.1038/nbt.1990
10.1016/j.patcog.2017.08.024
10.1038/s42256-020-0152-y
10.1038/s41589-022-01131-2
10.1093/bib/bbac272
10.1016/j.coph.2010.09.016
10.1371/journal.pcbi.1004760
10.1093/bib/bbac269
10.1038/nrd.2018.168
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. 2023
The Author(s) 2023. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
7X8
5PM
DOI 10.1093/bioinformatics/btad524
DatabaseName Oxford Journals Open Access Collection
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC10518077
10_1093_bioinformatics_btad524
10.1093/bioinformatics/btad524
GrantInformation_xml – fundername: ;
  grantid: 61971422
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
7X8
5PM
ID FETCH-LOGICAL-c381t-ec8be62108255fb102b51c319c041e2bdb1145f03dee93ce9fb49f599c1ae7613
IEDL.DBID TOX
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001070461200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:36:28 EDT 2025
Fri Jul 11 09:47:05 EDT 2025
Sat Nov 29 03:49:28 EST 2025
Wed Apr 02 07:05:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-ec8be62108255fb102b51c319c041e2bdb1145f03dee93ce9fb49f599c1ae7613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7108-3574
0000-0001-8031-9086
0000-0002-1847-754X
0000-0002-7404-5231
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btad524
PMID 37610353
PQID 2856321296
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10518077
proquest_miscellaneous_2856321296
crossref_primary_10_1093_bioinformatics_btad524
oup_primary_10_1093_bioinformatics_btad524
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationTitle Bioinformatics (Oxford, England)
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Fawcett (2023092411051315300_btad524-B11) 2006; 27
Brbic (2023092411051315300_btad524-B3) 2018; 73
Salsbury (2023092411051315300_btad524-B27) 2010; 10
Hinton (2023092411051315300_btad524-B13) 2002; 15
Chen (2023092411051315300_btad524-B6) 2021; 49
Yazdani-Jahromi (2023092411051315300_btad524-B35) 2022; 23
Kipf (2023092411051315300_btad524-B17)
Liu (2023092411051315300_btad524-B21) 2016; 12
Morgan (2023092411051315300_btad524-B22) 1965; 5
Nguyen (2023092411051315300_btad524-B23) 2022; 23
Zheng (2023092411051315300_btad524-B37) 2020; 2
Huang (2023092411051315300_btad524-B14) 2020; 395
Abbasi (2023092411051315300_btad524-B1) 2020; 36
Son (2023092411051315300_btad524-B28) 2021; 16
Pushpakom (2023092411051315300_btad524-B25) 2019; 18
Zhao (2023092411051315300_btad524-B36) 2022; 38
Davis (2023092411051315300_btad524-B9) 2011; 29
Landrum (2023092411051315300_btad524-B18)
The UniProt Consortium. (2023092411051315300_btad524-B2) 2019; 47
Zhu (2023092411051315300_btad524-B38) 2020; 382
Xia (2023092411051315300_btad524-B33) 2019; 59
Chou (2023092411051315300_btad524-B8) 2005; 21
Thin (2023092411051315300_btad524-B30) 2021; 37
Durant (2023092411051315300_btad524-B10) 2002; 42
Huang (2023092411051315300_btad524-B15) 2022; 18
Huang (2023092411051315300_btad524-B16) 2020; 41
Yan (2023092411051315300_btad524-B34) 2022; 23
Feng (2023092411051315300_btad524-B12) 2000; 19
Tang (2023092411051315300_btad524-B29) 2014; 54
Ozturk (2023092411051315300_btad524-B24) 2018; 34
Liu (2023092411051315300_btad524-B20) 2007; 35
Cai (2023092411051315300_btad524-B4) 2004; 55
Carhart (2023092411051315300_btad524-B5) 1985; 25
Wishart (2023092411051315300_btad524-B31) 2018; 46
Chen (2023092411051315300_btad524-B7) 2020; 21
Wu (2023092411051315300_btad524-B32) 2021; 28
Lee (2023092411051315300_btad524-B19) 2019; 15
Saito (2023092411051315300_btad524-B26) 2015; 10
References_xml – volume: 49
  start-page: e60
  year: 2021
  ident: 2023092411051315300_btad524-B6
  article-title: iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab122
– volume: 15
  start-page: 857
  year: 2002
  ident: 2023092411051315300_btad524-B13
  article-title: Stochastic neighbor embedding
  publication-title: Adv Neural Inf Process Syst
– volume: 23
  year: 2022
  ident: 2023092411051315300_btad524-B34
  article-title: Drug repositioning based on multi-view learning with matrix completion
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac054
– volume: 15
  start-page: e1007129
  year: 2019
  ident: 2023092411051315300_btad524-B19
  article-title: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007129
– ident: 2023092411051315300_btad524-B18
– volume: 41
  start-page: 1141
  year: 2020
  ident: 2023092411051315300_btad524-B16
  article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-020-0485-4
– volume: 16
  start-page: e0249404
  year: 2021
  ident: 2023092411051315300_btad524-B28
  article-title: Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0249404
– volume: 27
  start-page: 861
  year: 2006
  ident: 2023092411051315300_btad524-B11
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 25
  start-page: 64
  year: 1985
  ident: 2023092411051315300_btad524-B5
  article-title: Atom pairs as molecular features in structure-activity studies: definition and applications
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00046a002
– volume: 35
  start-page: D198
  year: 2007
  ident: 2023092411051315300_btad524-B20
  article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl999
– volume: 38
  start-page: 655
  year: 2022
  ident: 2023092411051315300_btad524-B36
  article-title: HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab715
– volume: 395
  start-page: 497
  year: 2020
  ident: 2023092411051315300_btad524-B14
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 37
  start-page: 1140
  year: 2021
  ident: 2023092411051315300_btad524-B30
  article-title: GraphDTA: predicting drug-target binding affinity with graph neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa921
– volume: 5
  start-page: 107
  year: 1965
  ident: 2023092411051315300_btad524-B22
  article-title: The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service
  publication-title: J Chem Doc
  doi: 10.1021/c160017a018
– volume: 46
  start-page: D1074
  year: 2018
  ident: 2023092411051315300_btad524-B31
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 54
  start-page: 735
  year: 2014
  ident: 2023092411051315300_btad524-B29
  article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400709d
– volume: 10
  start-page: e0118432
  year: 2015
  ident: 2023092411051315300_btad524-B26
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 55
  start-page: 66
  year: 2004
  ident: 2023092411051315300_btad524-B4
  article-title: Enzyme family classification by support vector machines
  publication-title: Proteins
  doi: 10.1002/prot.20045
– volume: 34
  start-page: i821
  year: 2018
  ident: 2023092411051315300_btad524-B24
  article-title: DeepDTA: deep drug-target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
– volume: 21
  start-page: 10
  year: 2005
  ident: 2023092411051315300_btad524-B8
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 47
  start-page: D506
  year: 2019
  ident: 2023092411051315300_btad524-B2
  article-title: UniProt: a worldwide hub of protein knowledge
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1049
– volume: 19
  start-page: 269
  year: 2000
  ident: 2023092411051315300_btad524-B12
  article-title: Prediction of membrane protein types based on the hydrophobic index of amino acids
  publication-title: J Protein Chem
  doi: 10.1023/A:1007091128394
– volume: 59
  start-page: 3340
  year: 2019
  ident: 2023092411051315300_btad524-B33
  article-title: Improved prediction of drug-target interactions using Self-Paced learning with collaborative matrix factorization
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00408
– volume: 42
  start-page: 1273
  year: 2002
  ident: 2023092411051315300_btad524-B10
  article-title: Reoptimization of MDL keys for use in drug discovery
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci010132r
– volume: 382
  start-page: 727
  year: 2020
  ident: 2023092411051315300_btad524-B38
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2001017
– volume: 21
  start-page: 1047
  year: 2020
  ident: 2023092411051315300_btad524-B7
  article-title: iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz041
– volume: 36
  start-page: 4633
  year: 2020
  ident: 2023092411051315300_btad524-B1
  article-title: DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa544
– volume: 28
  start-page: 660
  year: 2021
  ident: 2023092411051315300_btad524-B32
  article-title: De novo prediction of drug-target interactions using Laplacian regularized schatten p-Norm minimization
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2020.0538
– volume: 29
  start-page: 1046
  year: 2011
  ident: 2023092411051315300_btad524-B9
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1990
– ident: 2023092411051315300_btad524-B17
– volume: 73
  start-page: 247
  year: 2018
  ident: 2023092411051315300_btad524-B3
  article-title: Multi-view low-rank sparse subspace clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.08.024
– volume: 2
  start-page: 134
  year: 2020
  ident: 2023092411051315300_btad524-B37
  article-title: Predicting drug-protein interaction using quasi-visual question answering system
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-0152-y
– volume: 18
  start-page: 1033
  year: 2022
  ident: 2023092411051315300_btad524-B15
  article-title: Artificial intelligence foundation for therapeutic science
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-022-01131-2
– volume: 23
  year: 2022
  ident: 2023092411051315300_btad524-B35
  article-title: AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac272
– volume: 10
  start-page: 738
  year: 2010
  ident: 2023092411051315300_btad524-B27
  article-title: Molecular dynamics simulations of protein dynamics and their relevance to drug discovery
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2010.09.016
– volume: 12
  start-page: e1004760
  year: 2016
  ident: 2023092411051315300_btad524-B21
  article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004760
– volume: 23
  year: 2022
  ident: 2023092411051315300_btad524-B23
  article-title: Mitigating cold-start problems in drug-target affinity prediction with interaction knowledge transferring
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac269
– volume: 18
  start-page: 41
  year: 2019
  ident: 2023092411051315300_btad524-B25
  article-title: Drug repurposing: progress, challenges and recommendations
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.168
SSID ssj0005056
Score 2.437275
Snippet Abstract Motivation Identifying drug–protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be...
Identifying drug-protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Original Paper
Title MULGA, a unified multi-view graph autoencoder-based approach for identifying drug–protein interaction and drug repositioning
URI https://www.proquest.com/docview/2856321296
https://pubmed.ncbi.nlm.nih.gov/PMC10518077
Volume 39
WOSCitedRecordID wos001070461200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BKhIX6APUBbpyJU5Vo03iPOwjQkAPLeUA0t4iPyGXLMomlbgg_gP_kF_C2NkAQUKCXnJx7FgztuabzMw3AHs0kTITGQ0SqmyQKHwgLKdBmOg41EJIapRvNpGfnLDplJ8uQdTXwrwM4XM6keVsQSLqiIsnshE6jR0DaJQy17Pg7O_0KakD7XlfB_zq1IEJGpS1OXQ5zI18ZmyONv5jmx9hfYEsyX53FD7Bkqk-w2rXa_L6C9z8Of99vP-TCNJWpUXgSXwuYeBCA8TTVhPRNjPHa6lNHTjrpknPOE7wi6T0Nb2-Lorour24v73zLA9lRRzpRN2VSBBRaT9MXDiiywjDGZtwfnR4dvArWDRfCBQa8SYwikmToUOILmRqJeIQmUYKL6wKk8jEUkv0pFIbUm0Mp8pwKxNuU85VJEyOIGELVqpZZb4CQUEwK1moTa6TXKKHF1PFEdpYw_NQ2xFMen0UVx3HRtHFxmkxlGqxkOoIfqDa3vzy9167Bd4dFxARlZm18yJmaUbRdvNsBGyg9selHfv2cKQqLz0LNwLTiIV5vv2evezAmutX75PU4l1YaerWfIMP6l9TzusxLOdTNva_Bcb-XD8AzywFrw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MULGA%2C+a+unified+multi-view+graph+autoencoder-based+approach+for+identifying+drug%E2%80%93protein+interaction+and+drug+repositioning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Ma%2C+Jiani&rft.au=Li%2C+Chen&rft.au=Zhang%2C+Yiwen&rft.au=Wang%2C+Zhikang&rft.date=2023-09-02&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=39&rft.issue=9&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad524&rft_id=info%3Apmid%2F37610353&rft.externalDocID=PMC10518077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon