Detection and evaluation of bias-inducing features in machine learning

The cause-to-effect analysis can help us decompose all the likely causes of a problem, such as an undesirable business situation or unintended harm to the individual(s). This implies that we can identify how the problems are inherited, rank the causes to help prioritize fixes, simplify a complex pro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Empirical software engineering : an international journal Ročník 29; číslo 1; s. 22
Hlavní autori: Openja, Moses, Laberge, Gabriel, Khomh, Foutse
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2024
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1382-3256, 1573-7616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The cause-to-effect analysis can help us decompose all the likely causes of a problem, such as an undesirable business situation or unintended harm to the individual(s). This implies that we can identify how the problems are inherited, rank the causes to help prioritize fixes, simplify a complex problem and visualize them. In the context of machine learning (ML), one can use cause-to-effect analysis to understand the reason for the biased behavior of the system. For example, we can examine the root causes of biases by checking each feature for a potential cause of bias in the model. To approach this, one can apply small changes to a given feature or a pair of features in the data, following some guidelines and observing how it impacts the decision made by the model (i.e., model prediction). Therefore, we can use cause-to-effect analysis to identify the potential bias-inducing features, even when these features are originally are unknown. This is important since most current methods require a pre-identification of sensitive features for bias assessment and can actually miss other relevant bias-inducing features, which is why systematic identification of such features is necessary. Moreover, it often occurs that to achieve an equitable outcome, one has to take into account sensitive features in the model decision. Therefore, it should be up to the domain experts to decide based on their knowledge of the context of a decision whether bias induced by specific features is acceptable or not. In this study, we propose an approach for systematically identifying all bias-inducing features of a model to help support the decision-making of domain experts. Our technique is based on the idea of swapping the values of the features and computing the divergences in the distribution of the model prediction using different distance functions. We evaluated our technique using four well-known datasets to showcase how our contribution can help spearhead the standard procedure when developing, testing, maintaining, and deploying fair/equitable machine learning systems.
AbstractList The cause-to-effect analysis can help us decompose all the likely causes of a problem, such as an undesirable business situation or unintended harm to the individual(s). This implies that we can identify how the problems are inherited, rank the causes to help prioritize fixes, simplify a complex problem and visualize them. In the context of machine learning (ML), one can use cause-to-effect analysis to understand the reason for the biased behavior of the system. For example, we can examine the root causes of biases by checking each feature for a potential cause of bias in the model. To approach this, one can apply small changes to a given feature or a pair of features in the data, following some guidelines and observing how it impacts the decision made by the model (i.e., model prediction). Therefore, we can use cause-to-effect analysis to identify the potential bias-inducing features, even when these features are originally are unknown. This is important since most current methods require a pre-identification of sensitive features for bias assessment and can actually miss other relevant bias-inducing features, which is why systematic identification of such features is necessary. Moreover, it often occurs that to achieve an equitable outcome, one has to take into account sensitive features in the model decision. Therefore, it should be up to the domain experts to decide based on their knowledge of the context of a decision whether bias induced by specific features is acceptable or not. In this study, we propose an approach for systematically identifying all bias-inducing features of a model to help support the decision-making of domain experts. Our technique is based on the idea of swapping the values of the features and computing the divergences in the distribution of the model prediction using different distance functions. We evaluated our technique using four well-known datasets to showcase how our contribution can help spearhead the standard procedure when developing, testing, maintaining, and deploying fair/equitable machine learning systems.
The cause-to-effect analysis can help us decompose all the likely causes of a problem, such as an undesirable business situation or unintended harm to the individual(s). This implies that we can identify how the problems are inherited, rank the causes to help prioritize fixes, simplify a complex problem and visualize them. In the context of machine learning (ML), one can use cause-to-effect analysis to understand the reason for the biased behavior of the system. For example, we can examine the root causes of biases by checking each feature for a potential cause of bias in the model. To approach this, one can apply small changes to a given feature or a pair of features in the data, following some guidelines and observing how it impacts the decision made by the model (i.e., model prediction). Therefore, we can use cause-to-effect analysis to identify the potential bias-inducing features, even when these features are originally are unknown. This is important since most current methods require a pre-identification of sensitive features for bias assessment and can actually miss other relevant bias-inducing features, which is why systematic identification of such features is necessary. Moreover, it often occurs that to achieve an equitable outcome, one has to take into account sensitive features in the model decision. Therefore, it should be up to the domain experts to decide based on their knowledge of the context of a decision whether bias induced by specific features is acceptable or not. In this study, we propose an
ArticleNumber 22
Author Khomh, Foutse
Openja, Moses
Laberge, Gabriel
Author_xml – sequence: 1
  givenname: Moses
  orcidid: 0000-0002-4115-3834
  surname: Openja
  fullname: Openja, Moses
  email: openja.moses@polymtl.ca
  organization: Polytechnique Montreal
– sequence: 2
  givenname: Gabriel
  surname: Laberge
  fullname: Laberge, Gabriel
  organization: Polytechnique Montreal
– sequence: 3
  givenname: Foutse
  surname: Khomh
  fullname: Khomh, Foutse
  organization: Polytechnique Montreal
BackLink https://hal.science/hal-04265505$$DView record in HAL
BookMark eNp9kUtLxDAUhYMo-PwDrgquXERv3u1SfMOAG12HNE2cDDXVpBX892amiuBiFiG5N9-5HO45RLtxiA6hUwIXBEBdZgJScgyUYQIcGix20AERimElidwtb1ZTzKiQ--gw5xUANIqLA3R340ZnxzDEysSucp-mn8ymHHzVBpNxiN1kQ3ytvDPjlFyuQqzejF2G6KremRTL5zHa86bP7uTnPkIvd7fP1w948XT_eH21wJbVZMROtL5rOOUeLFMt77pWegmqhY6C8paQpua1NeBEbS3toPVGMUt903BCjWRH6HyeuzS9fk_hzaQvPZigH64Wet0DTqUQID5JYc9m9j0NH5PLo14NU4rFnqYNkaIsi6rtFJByGr6m6pmyacg5Oa9tGDd7GpMJvSag1znoOQddRutNDloUKf0n_fW9VcRmUS5wfHXpz9UW1TdZ85qq
CitedBy_id crossref_primary_10_1145_3766890
crossref_primary_10_1007_s11831_024_10134_2
crossref_primary_10_1145_3680463
crossref_primary_10_1016_j_jechem_2024_10_032
Cites_doi 10.1145/3097983.3098095
10.1145/2939672.2939778
10.1145/3510003.3510091
10.1093/bioinformatics/btr300
10.1109/ICSME55016.2022.00014
10.1145/3368089.3409697
10.1145/1754428.1754432
10.1007/s10506-014-9156-4
10.1145/3468264.3468537
10.1037/h0037350
10.1287/ited.2013.0124
10.1086/713744
10.1016/0004-3702(86)90090-1
10.1007/s10664-022-10116-7
10.1089/big.2016.0047
10.1145/3530019.3530039
10.1109/ICDM.2012.45
10.1145/3377811.3380377
10.24251/HICSS.2018.668
10.1109/SANER.2018.8330212
10.1016/j.dss.2014.03.001
10.1007/s10618-010-0190-x
10.1109/TKDE.2012.72
10.1145/1568234.1568252
10.1145/3377811.3380331
10.1146/annurev.psych.58.110405.085542
10.1109/CICYBS.2011.5949405
10.1257/jep.34.2.68
10.1145/2020408.2020488
10.1007/978-94-010-9521-1_5
10.1371/journal.pone.0108358
10.1007/s10115-011-0463-8
10.1097/00001648-199203000-00013
10.1007/s10115-006-0040-8
10.1109/ICSME55016.2022.00010
10.1080/10618600.2014.907095
10.1017/S0269888913000039
10.1016/j.chb.2019.04.019
10.1145/3290605.3300773
10.1016/j.spl.2011.04.001
10.1080/01621459.1986.10478354
10.3390/app11146271
10.1093/ije/dyt127
10.1016/0002-9149(89)90524-9
10.1017/CBO9780511614491.005
10.1002/9781119945710
10.1109/ISIT.2004.1365067
10.1145/3338906.3338937
ContentType Journal Article
Copyright Crown 2023
Crown 2023.
Attribution - NonCommercial
Copyright_xml – notice: Crown 2023
– notice: Crown 2023.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
1XC
VOOES
DOI 10.1007/s10664-023-10409-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Technology Collection
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID oai:HAL:hal-04265505v1
10_1007_s10664_023_10409_5
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2019-06956
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c381t-e5bfd9424f0c37b4ddb6f607b0d207fc119848ca0e58cc2d0bfa73c2f99412a63
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124077200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Sat Nov 29 15:00:27 EST 2025
Tue Dec 02 16:29:00 EST 2025
Tue Dec 02 16:05:06 EST 2025
Tue Nov 18 21:53:06 EST 2025
Sat Nov 29 05:37:47 EST 2025
Fri Feb 21 02:44:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bias
Sensitive features
Fairness
Machine learning
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-e5bfd9424f0c37b4ddb6f607b0d207fc119848ca0e58cc2d0bfa73c2f99412a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4115-3834
OpenAccessLink https://hal.science/hal-04265505
PQID 2901290947
PQPubID 326341
ParticipantIDs hal_primary_oai_HAL_hal_04265505v1
proquest_journals_2916502327
proquest_journals_2901290947
crossref_citationtrail_10_1007_s10664_023_10409_5
crossref_primary_10_1007_s10664_023_10409_5
springer_journals_10_1007_s10664_023_10409_5
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Janos A, Steinbrunn W, Pfisterer M, Detrano R (1998) Heart disease data set. https://archive.ics.uci.edu/ml/datasets/heart+disease
BlankRMDabadyMCitroCFBlankRMMeasuring racial discrimination2004DCNational Academies Press Washington
Fisher V (2016) University of Texas at austin
Buolamwini J, Gebru T (2018) Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on fairness, accountability and transparency, pp 77–91. PMLR
de Kleer J, Brown JS (1986) Theories of causal ordering. Artif Intell 29(1):33–61. https://doi.org/10.1016/0004-3702(86)90090-1. www.sciencedirect.com/science/article/pii/0004370286900901
ChouldechovaAFair prediction with disparate impact: a study of bias in recidivism prediction instrumentsBig Data20175215316310.1089/big.2016.0047
RuggieriSPedreschiDTuriniFData mining for discrimination discoveryACM Trans Knowl Discov Data (TKDD)20104214010.1145/1754428.1754432
MancuhanKCliftonCCombating discrimination using bayesian networksArtif Intell Law201422221123810.1007/s10506-014-9156-4
DetranoRJanosiASteinbrunnWPfistererMSchmidJJSandhuSGuppyKHLeeSFroelicherVInternational application of a new probability algorithm for the diagnosis of coronary artery diseaseAm J Cardiol198964530431010.1016/0002-9149(89)90524-9
FryeCRowatCFeigeIAsymmetric shapley values: incorporating causal knowledge into model-agnostic explainabilityAdv Neural Inf Process Syst20203312291239
Arcidiacono P (2018b) Professor Peter Arcidiacono provides expert analysis for nonprofit’s lawsuit against harvard. https://econ.duke.edu/news/professor-peter-arcidiacono-provides-expert-analysis-nonprofit%E2%80%99s-lawsuit-against-harvard
Fuglede B, Topsoe F (2004) Jensen-shannon divergence and hilbert space embedding. In: International symposium oninformation theory, 2004. ISIT 2004. Proceedings, pp 31. https://doi.org/10.1109/ISIT.2004.1365067
KalousisAPradosJHilarioMStability of feature selection algorithms: a study on high-dimensional spacesKnowl Inf Syst20071219511610.1007/s10115-006-0040-8
LoohuisLOCaravagnaGGraudenziARamazzottiDMauriGAntoniottiMMishraBInferring tree causal models of cancer progression with probability raisingPloS One201491010.1371/journal.pone.0108358
PhelpsESThe statistical theory of racism and sexismAm Econ Rev1972624659661
Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155
Openja M, Nikanjam A, Yahmed AH, Khomh F, Jiang ZMJ (2022b) An empirical study of challenges in converting deep learning models. In: 2022 IEEE International conference on software maintenance and evolution (ICSME), IEEE, pp 13–23
PearlJMackenzieDThe book of why: the new science of cause and effect2018Basic Books
De CapitaniLDe MartiniDOn stochastic orderings of the wilcoxon rank sum test statistic—with applications to reproducibility probability estimation testingStat Probab Lett2011818937946280372810.1016/j.spl.2011.04.001
HollandPWCausation and raceETS Res Rep Ser200320031i21
ToloşiLLengauerTClassification with correlated features: unreliability of feature ranking and solutionsBioinformatics201127141986199410.1093/bioinformatics/btr300
Liu Y, Li Y, Guo J, Zhou Y, Xu B (2018) Connecting software metrics across versions to predict defects. In: 2018 IEEE 25th International conference on software analysis, evolution and reengineering (SANER), IEEE, pp 232–243
Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you? explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144
Majumder S, Chakraborty J, Bai GR, Stolee KT, Menzies T (2021) Fair enough: searching for sufficient measures of fairness. arXiv:2110.13029
Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H (2018) A reductions approach to fair classification. In: International conference on machine learning, pp 60–69. PMLR
BerzuiniCDawidPBernardinellLCausality: statistical perspectives and applications2012John Wiley & Sons10.1002/9781119945710
RomeiARuggieriSA multidisciplinary survey on discrimination analysisKnowl Eng Rev201429558263810.1017/S0269888913000039
Chakraborty J, Majumder S, Yu, Z, Menzies T (2020) Fairway: a way to build fair ml software. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 654–665
PereraAAletiATantithamthavornCJiarpakdeeJTurhanBKuhnLWalkerKSearch-based fairness testing for regression-based machine learning systemsEmpir Softw Eng202227313610.1007/s10664-022-10116-7
Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, UAI’01, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 411–420
Pearl J et al (2000) Models, reasoning and inference. Cambridge, UK: Cambridge UniversityPress 19(2)
Willenborg L, De Waal T (2012) Elements of statistical disclosure control, vol 155. Springer Science & Business Media
Corbett-Davies S, Pierson E, Feller A, Goel S, Huq A (2017) Algorithmic decision making and the cost of fairness. In: Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, pp 797–806
Zhang P, Wang J, Sun J, Dong G, Wang X, Wang X, Dong JS, Dai T (2020) White-box fairness testing through adversarial sampling. In: Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 949–960
Kamiran F, Karim A, Zhang X (2012) Decision theory for discrimination-aware classification. In: 2012 IEEE 12th International conference on data mining, IEEE, pp 924–929
MacKinnonDPFairchildAJFritzMSMediation analysisAnnu Rev Psychol20075859310.1146/annurev.psych.58.110405.085542
Kuczmarski J (2018) Reducing gender bias in google translate. Google Blog 6
Peng K, Chakraborty J, Menzies T (2021) Fairmask: better fairness via model-based rebalancing of protected attributes. arXiv:2110.01109
Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group differences on the nsse and other surveys: are the t-test and cohen’sd indices the most appropriate choices. In: Annual meeting of the southern association for institutional research, Citeseer, pp 1–51
LangKKahn-Lang SpitzerARace discrimination: an economic perspectiveJ Econ Perspect2020342688910.1257/jep.34.2.68
CaldersTVerwerSThree naive bayes approaches for discrimination-free classificationData Min Knowl Disc2010212277292272050710.1007/s10618-010-0190-x
Freedman DA (2005) On specifying graphical models for causation, and the identification problem. Identif Infer Econ Model pp 56–79
Bhattacharya A (2022) Applied machine learning explainability techniques: make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Packt Publishing Ltd
Openja M, Majidi F, Khomh F, Chembakottu B, Li H (2022a) Studying the practices of deploying machine learning projects on docker. In: Proceedings of the 26th international conference on evaluation and assessment in software engineering, pp 190–200
RichiardiLBelloccoRZugnaDMediation analysis in epidemiology: methods, interpretation and biasInt J Epidemiol20134251511151910.1093/ije/dyt127
ShinDParkYJRole of fairness, accountability, and transparency in algorithmic affordanceComput Hum Behav20199827728410.1016/j.chb.2019.04.019
Arrow K (1971) The theory of discrimination. Working Papers 403, Princeton University, Department of Economics, industrial relations section. https://EconPapers.repec.org/RePEc:pri:indrel:30a
Li Y, Meng L, Chen L, Yu L, Wu D, Zhou Y, Xu B (2022) Training data debugging for the fairness of machine learning software, pp 2215–2227. Association for Computing Machinery, New York, USA. https://doi.org/10.1145/3510003.3510091
Barbosa NM, Chen M (2019) Rehumanized crowdsourcing: a labeling framework addressing bias and ethics in machine learning. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1–12
TofallisCAdd or multiply? a tutorial on ranking and choosing with multiple criteriaINFORMS Trans Educ201414310911910.1287/ited.2013.0124
SunsteinCRLegal reasoning and political conflict2018Oxford University Press
FisherARudinCDominiciFAll models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneouslyJ Mach Learn Res2019201771813911408
Hajian S, Domingo-Ferrer J, Martinez-Balleste A (2011) Discrimination prevention in data mining for intrusion and crime detection. In: 2011 IEEE symposium on computational intelligence in cyber security (CICS), IEEE, pp 47–54
Arcidiacono P (2018a) Expert report of Peter S. Arcidiacono students for fair admissions, inc. v. harvard no. 14-cv-14176-adb (d. mass)
KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl Inf Syst201233113310.1007/s10115-011-0463-8
Yapo A, Weiss J (2018) Ethical implications of bias in machine learning
BarocasSHardtMNarayananAFairness in machine learningNips Tutorial201712
Majidi F, Openja M, Khomh F, Li H (2022) An empirical study on the usage of automated machine learning tools. In: 2022 IEEE International conference on software maintenance and evolution (ICSME), IEEE , pp 59–70
WachterSMittelstadtBRussellCCounterfactual explanations without opening the black box: automated decisions and the gdprHarv JL & Tech201731841
Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration. Advances Neural Inf Process Syst 30
Chakraborty J, Majumder S, Menzies T (2021) Bias in machine learning software: why? how? what to do? In: Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 429–440
GoldsteinAKapelnerABleichJPitkinEPeeking inside the black box: visualizing statistical learning with plots of individual conditional expectationJ Comput Graph Stat20152414465332824710.1080/10618600.2014.907095
Luong BT, Rugg
10409_CR72
S Barocas (10409_CR10) 2017; 1
10409_CR32
CR Sunstein (10409_CR73) 2018
10409_CR74
T Calders (10409_CR15) 2010; 21
A Romei (10409_CR68) 2014; 29
C Frye (10409_CR28) 2020; 33
DP MacKinnon (10409_CR49) 2007; 58
L De Capitani (10409_CR22) 2011; 81
S Alelyani (10409_CR4) 2021; 11
R Detrano (10409_CR24) 1989; 64
10409_CR79
10409_CR33
10409_CR78
D Aha (10409_CR3) 1988; 3
10409_CR37
10409_CR38
10409_CR60
A Perera (10409_CR61) 2022; 27
LO Loohuis (10409_CR46) 2014; 9
10409_CR20
10409_CR64
10409_CR21
S Moro (10409_CR53) 2014; 62
10409_CR63
P Arcidiacono (10409_CR7) 2022; 40
D Shin (10409_CR71) 2019; 98
S Wachter (10409_CR77) 2017; 31
A Chouldechova (10409_CR18) 2017; 5
K Mancuhan (10409_CR52) 2014; 22
DB Rubin (10409_CR69) 1974; 66
10409_CR25
10409_CR66
10409_CR23
10409_CR67
K Lang (10409_CR43) 2020; 34
10409_CR29
10409_CR27
L Toloşi (10409_CR76) 2011; 27
10409_CR50
10409_CR54
10409_CR51
A Goldstein (10409_CR30) 2015; 24
S Hajian (10409_CR31) 2012; 25
10409_CR19
C Tofallis (10409_CR75) 2014; 14
C Hitchcock (10409_CR34) 2012
10409_CR57
10409_CR14
10409_CR55
10409_CR12
10409_CR56
10409_CR17
10409_CR59
10409_CR16
A Fisher (10409_CR26) 2019; 20
F Kamiran (10409_CR40) 2012; 33
10409_CR80
10409_CR9
10409_CR42
J Pearl (10409_CR58) 2018
10409_CR8
10409_CR41
ES Phelps (10409_CR62) 1972; 62
10409_CR5
10409_CR6
10409_CR1
C Berzuini (10409_CR11) 2012
10409_CR2
RM Blank (10409_CR13) 2004
PW Holland (10409_CR36) 2003; 2003
PW Holland (10409_CR35) 1986; 81
L Richiardi (10409_CR65) 2013; 42
10409_CR47
10409_CR44
10409_CR45
A Kalousis (10409_CR39) 2007; 12
10409_CR48
S Ruggieri (10409_CR70) 2010; 4
References_xml – reference: Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you? explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144
– reference: Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 30
– reference: Kuczmarski J (2018) Reducing gender bias in google translate. Google Blog 6
– reference: DetranoRJanosiASteinbrunnWPfistererMSchmidJJSandhuSGuppyKHLeeSFroelicherVInternational application of a new probability algorithm for the diagnosis of coronary artery diseaseAm J Cardiol198964530431010.1016/0002-9149(89)90524-9
– reference: HollandPWStatistics and causal inferenceJ Am Stat Assoc19868139694596086761810.1080/01621459.1986.10478354
– reference: Majidi F, Openja M, Khomh F, Li H (2022) An empirical study on the usage of automated machine learning tools. In: 2022 IEEE International conference on software maintenance and evolution (ICSME), IEEE , pp 59–70
– reference: SunsteinCRLegal reasoning and political conflict2018Oxford University Press
– reference: De CapitaniLDe MartiniDOn stochastic orderings of the wilcoxon rank sum test statistic—with applications to reproducibility probability estimation testingStat Probab Lett2011818937946280372810.1016/j.spl.2011.04.001
– reference: PereraAAletiATantithamthavornCJiarpakdeeJTurhanBKuhnLWalkerKSearch-based fairness testing for regression-based machine learning systemsEmpir Softw Eng202227313610.1007/s10664-022-10116-7
– reference: Peng K, Chakraborty J, Menzies T (2021) Fairmask: better fairness via model-based rebalancing of protected attributes. arXiv:2110.01109
– reference: RomeiARuggieriSA multidisciplinary survey on discrimination analysisKnowl Eng Rev201429558263810.1017/S0269888913000039
– reference: TofallisCAdd or multiply? a tutorial on ranking and choosing with multiple criteriaINFORMS Trans Educ201414310911910.1287/ited.2013.0124
– reference: Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. Adv. Neural Inf Process Syst 29
– reference: MacKinnonDPFairchildAJFritzMSMediation analysisAnnu Rev Psychol20075859310.1146/annurev.psych.58.110405.085542
– reference: MancuhanKCliftonCCombating discrimination using bayesian networksArtif Intell Law201422221123810.1007/s10506-014-9156-4
– reference: AlelyaniSDetection and evaluation of machine learning biasAppl Sci20211114627110.3390/app11146271
– reference: PearlJMackenzieDThe book of why: the new science of cause and effect2018Basic Books
– reference: Luong BT, Ruggieri S, Turini F (2011) k-nn as an implementation of situation testing for discrimination discovery and prevention. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 502–510
– reference: RuggieriSPedreschiDTuriniFData mining for discrimination discoveryACM Trans Knowl Discov Data (TKDD)20104214010.1145/1754428.1754432
– reference: Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, UAI’01, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 411–420
– reference: Liu Y, Li Y, Guo J, Zhou Y, Xu B (2018) Connecting software metrics across versions to predict defects. In: 2018 IEEE 25th International conference on software analysis, evolution and reengineering (SANER), IEEE, pp 232–243
– reference: de Kleer J, Brown JS (1986) Theories of causal ordering. Artif Intell 29(1):33–61. https://doi.org/10.1016/0004-3702(86)90090-1. www.sciencedirect.com/science/article/pii/0004370286900901
– reference: Hajian S, Domingo-Ferrer J, Martinez-Balleste A (2011) Discrimination prevention in data mining for intrusion and crime detection. In: 2011 IEEE symposium on computational intelligence in cyber security (CICS), IEEE, pp 47–54
– reference: Corbett-Davies S, Pierson E, Feller A, Goel S, Huq A (2017) Algorithmic decision making and the cost of fairness. In: Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, pp 797–806
– reference: BlankRMDabadyMCitroCFBlankRMMeasuring racial discrimination2004DCNational Academies Press Washington
– reference: HollandPWCausation and raceETS Res Rep Ser200320031i21
– reference: Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group differences on the nsse and other surveys: are the t-test and cohen’sd indices the most appropriate choices. In: Annual meeting of the southern association for institutional research, Citeseer, pp 1–51
– reference: Chakraborty J, Majumder S, Menzies T (2021) Bias in machine learning software: why? how? what to do? In: Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 429–440
– reference: KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl Inf Syst201233113310.1007/s10115-011-0463-8
– reference: HitchcockCZaltaENProbabilistic causationThe Stanford Encyclopedia of Philosophy, Winter20122012Metaphysics Research LabStanford University
– reference: Kamiran F, Karim A, Zhang X (2012) Decision theory for discrimination-aware classification. In: 2012 IEEE 12th International conference on data mining, IEEE, pp 924–929
– reference: Johnson B, Brun Y, Meliou A (2020) Causal testing: understanding defects’ root causes. In: Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 87–99
– reference: Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H (2018) A reductions approach to fair classification. In: International conference on machine learning, pp 60–69. PMLR
– reference: Arcidiacono P (2018b) Professor Peter Arcidiacono provides expert analysis for nonprofit’s lawsuit against harvard. https://econ.duke.edu/news/professor-peter-arcidiacono-provides-expert-analysis-nonprofit%E2%80%99s-lawsuit-against-harvard
– reference: FisherARudinCDominiciFAll models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneouslyJ Mach Learn Res2019201771813911408
– reference: RichiardiLBelloccoRZugnaDMediation analysis in epidemiology: methods, interpretation and biasInt J Epidemiol20134251511151910.1093/ije/dyt127
– reference: BarocasSHardtMNarayananAFairness in machine learningNips Tutorial201712
– reference: Suppes P (1970) A theory of probabilistic causality
– reference: Buolamwini J, Gebru T (2018) Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on fairness, accountability and transparency, pp 77–91. PMLR
– reference: Bhattacharya A (2022) Applied machine learning explainability techniques: make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Packt Publishing Ltd
– reference: KalousisAPradosJHilarioMStability of feature selection algorithms: a study on high-dimensional spacesKnowl Inf Syst20071219511610.1007/s10115-006-0040-8
– reference: Pedreschi D, Ruggieri S, Turini F (2009) Integrating induction and deduction for finding evidence of discrimination. In: Proceedings of the 12th international conference on artificial intelligence and law, ICAIL ’09, Association for Computing Machinery, New York, USA, pp 157–166. https://doi.org/10.1145/1568234.1568252
– reference: FryeCRowatCFeigeIAsymmetric shapley values: incorporating causal knowledge into model-agnostic explainabilityAdv Neural Inf Process Syst20203312291239
– reference: Openja M, Nikanjam A, Yahmed AH, Khomh F, Jiang ZMJ (2022b) An empirical study of challenges in converting deep learning models. In: 2022 IEEE International conference on software maintenance and evolution (ICSME), IEEE, pp 13–23
– reference: Willenborg L, De Waal T (2012) Elements of statistical disclosure control, vol 155. Springer Science & Business Media
– reference: Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 625–635
– reference: RubinDBEstimating causal effects of treatments in randomized and nonrandomized studiesJ Educ Psychol197466568810.1037/h0037350
– reference: Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155
– reference: Fuglede B, Topsoe F (2004) Jensen-shannon divergence and hilbert space embedding. In: International symposium oninformation theory, 2004. ISIT 2004. Proceedings, pp 31. https://doi.org/10.1109/ISIT.2004.1365067
– reference: Freedman DA (2005) On specifying graphical models for causation, and the identification problem. Identif Infer Econ Model pp 56–79
– reference: HajianSDomingo-FerrerJA methodology for direct and indirect discrimination prevention in data miningIEEE Trans Knowl Data Eng20122571445145910.1109/TKDE.2012.72
– reference: ShinDParkYJRole of fairness, accountability, and transparency in algorithmic affordanceComput Hum Behav20199827728410.1016/j.chb.2019.04.019
– reference: Openja M, Majidi F, Khomh F, Chembakottu B, Li H (2022a) Studying the practices of deploying machine learning projects on docker. In: Proceedings of the 26th international conference on evaluation and assessment in software engineering, pp 190–200
– reference: Arcidiacono P (2018a) Expert report of Peter S. Arcidiacono students for fair admissions, inc. v. harvard no. 14-cv-14176-adb (d. mass)
– reference: Fisher V (2016) University of Texas at austin
– reference: Yapo A, Weiss J (2018) Ethical implications of bias in machine learning
– reference: Custers B, Calders T, Schermer B, Zarsky T (1866) Discrimination and privacy in the information society. Stud Appl Philos Epistemology Rational Ethics 3
– reference: ChouldechovaAFair prediction with disparate impact: a study of bias in recidivism prediction instrumentsBig Data20175215316310.1089/big.2016.0047
– reference: Janos A, Steinbrunn W, Pfisterer M, Detrano R (1998) Heart disease data set. https://archive.ics.uci.edu/ml/datasets/heart+disease
– reference: Majumder S, Chakraborty J, Bai GR, Stolee KT, Menzies T (2021) Fair enough: searching for sufficient measures of fairness. arXiv:2110.13029
– reference: Chakraborty J, Majumder S, Yu, Z, Menzies T (2020) Fairway: a way to build fair ml software. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 654–665
– reference: Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration. Advances Neural Inf Process Syst 30
– reference: LangKKahn-Lang SpitzerARace discrimination: an economic perspectiveJ Econ Perspect2020342688910.1257/jep.34.2.68
– reference: BerzuiniCDawidPBernardinellLCausality: statistical perspectives and applications2012John Wiley & Sons10.1002/9781119945710
– reference: Li Y, Meng L, Chen L, Yu L, Wu D, Zhou Y, Xu B (2022) Training data debugging for the fairness of machine learning software, pp 2215–2227. Association for Computing Machinery, New York, USA. https://doi.org/10.1145/3510003.3510091
– reference: Simon HA (1977) Causal ordering and identifiability. Models of Discovery: and other topics in the methods of science pp 53–80
– reference: ToloşiLLengauerTClassification with correlated features: unreliability of feature ranking and solutionsBioinformatics201127141986199410.1093/bioinformatics/btr300
– reference: Barbosa NM, Chen M (2019) Rehumanized crowdsourcing: a labeling framework addressing bias and ethics in machine learning. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1–12
– reference: Zhang P, Wang J, Sun J, Dong G, Wang X, Wang X, Dong JS, Dai T (2020) White-box fairness testing through adversarial sampling. In: Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 949–960
– reference: Arrow K (1971) The theory of discrimination. Working Papers 403, Princeton University, Department of Economics, industrial relations section. https://EconPapers.repec.org/RePEc:pri:indrel:30a
– reference: AhaDKiblerDInstance-based prediction of heart-disease presence with the cleveland databaseUniv Calif19883132
– reference: PhelpsESThe statistical theory of racism and sexismAm Econ Rev1972624659661
– reference: LoohuisLOCaravagnaGGraudenziARamazzottiDMauriGAntoniottiMMishraBInferring tree causal models of cancer progression with probability raisingPloS One201491010.1371/journal.pone.0108358
– reference: ArcidiaconoPKinslerJRansomTLegacy and athlete preferences at harvardJ Labor Econ202240113315610.1086/713744
– reference: GoldsteinAKapelnerABleichJPitkinEPeeking inside the black box: visualizing statistical learning with plots of individual conditional expectationJ Comput Graph Stat20152414465332824710.1080/10618600.2014.907095
– reference: Corbett-Davies S, Goel S (2018) The measure and mismeasure of fairness: a critical review of fair machine learning. arXiv preprint arXiv:1808.00023
– reference: MoroSCortezPRitaPA data-driven approach to predict the success of bank telemarketingDecis Support Syst201462223110.1016/j.dss.2014.03.001
– reference: CaldersTVerwerSThree naive bayes approaches for discrimination-free classificationData Min Knowl Disc2010212277292272050710.1007/s10618-010-0190-x
– reference: Pearl J et al (2000) Models, reasoning and inference. Cambridge, UK: Cambridge UniversityPress 19(2)
– reference: WachterSMittelstadtBRussellCCounterfactual explanations without opening the black box: automated decisions and the gdprHarv JL & Tech201731841
– ident: 10409_CR57
– ident: 10409_CR20
  doi: 10.1145/3097983.3098095
– ident: 10409_CR64
  doi: 10.1145/2939672.2939778
– ident: 10409_CR44
  doi: 10.1145/3510003.3510091
– volume: 27
  start-page: 1986
  issue: 14
  year: 2011
  ident: 10409_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr300
– ident: 10409_CR50
  doi: 10.1109/ICSME55016.2022.00014
– ident: 10409_CR63
– ident: 10409_CR17
  doi: 10.1145/3368089.3409697
– volume: 4
  start-page: 1
  issue: 2
  year: 2010
  ident: 10409_CR70
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/1754428.1754432
– ident: 10409_CR47
– volume: 62
  start-page: 659
  issue: 4
  year: 1972
  ident: 10409_CR62
  publication-title: Am Econ Rev
– ident: 10409_CR5
– ident: 10409_CR14
– volume: 22
  start-page: 211
  issue: 2
  year: 2014
  ident: 10409_CR52
  publication-title: Artif Intell Law
  doi: 10.1007/s10506-014-9156-4
– volume: 3
  start-page: 3
  issue: 1
  year: 1988
  ident: 10409_CR3
  publication-title: Univ Calif
– ident: 10409_CR16
  doi: 10.1145/3468264.3468537
– ident: 10409_CR1
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  ident: 10409_CR69
  publication-title: J Educ Psychol
  doi: 10.1037/h0037350
– volume: 14
  start-page: 109
  issue: 3
  year: 2014
  ident: 10409_CR75
  publication-title: INFORMS Trans Educ
  doi: 10.1287/ited.2013.0124
– ident: 10409_CR33
– volume-title: Legal reasoning and political conflict
  year: 2018
  ident: 10409_CR73
– ident: 10409_CR12
– ident: 10409_CR6
– volume: 40
  start-page: 133
  issue: 1
  year: 2022
  ident: 10409_CR7
  publication-title: J Labor Econ
  doi: 10.1086/713744
– ident: 10409_CR23
  doi: 10.1016/0004-3702(86)90090-1
– ident: 10409_CR37
– volume: 27
  start-page: 1
  issue: 3
  year: 2022
  ident: 10409_CR61
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-022-10116-7
– volume: 5
  start-page: 153
  issue: 2
  year: 2017
  ident: 10409_CR18
  publication-title: Big Data
  doi: 10.1089/big.2016.0047
– ident: 10409_CR54
  doi: 10.1145/3530019.3530039
– ident: 10409_CR41
  doi: 10.1109/ICDM.2012.45
– volume: 33
  start-page: 1229
  year: 2020
  ident: 10409_CR28
  publication-title: Adv Neural Inf Process Syst
– ident: 10409_CR38
  doi: 10.1145/3377811.3380377
– volume-title: Measuring racial discrimination
  year: 2004
  ident: 10409_CR13
– ident: 10409_CR79
  doi: 10.24251/HICSS.2018.668
– ident: 10409_CR45
  doi: 10.1109/SANER.2018.8330212
– ident: 10409_CR51
– volume: 62
  start-page: 22
  year: 2014
  ident: 10409_CR53
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2014.03.001
– volume: 21
  start-page: 277
  issue: 2
  year: 2010
  ident: 10409_CR15
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-010-0190-x
– volume: 25
  start-page: 1445
  issue: 7
  year: 2012
  ident: 10409_CR31
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.72
– ident: 10409_CR59
  doi: 10.1145/1568234.1568252
– ident: 10409_CR80
  doi: 10.1145/3377811.3380331
– volume: 58
  start-page: 593
  year: 2007
  ident: 10409_CR49
  publication-title: Annu Rev Psychol
  doi: 10.1146/annurev.psych.58.110405.085542
– ident: 10409_CR32
  doi: 10.1109/CICYBS.2011.5949405
– volume: 34
  start-page: 68
  issue: 2
  year: 2020
  ident: 10409_CR43
  publication-title: J Econ Perspect
  doi: 10.1257/jep.34.2.68
– volume: 1
  start-page: 2
  year: 2017
  ident: 10409_CR10
  publication-title: Nips Tutorial
– ident: 10409_CR48
  doi: 10.1145/2020408.2020488
– ident: 10409_CR72
  doi: 10.1007/978-94-010-9521-1_5
– ident: 10409_CR78
– volume: 9
  issue: 10
  year: 2014
  ident: 10409_CR46
  publication-title: PloS One
  doi: 10.1371/journal.pone.0108358
– volume: 33
  start-page: 1
  issue: 1
  year: 2012
  ident: 10409_CR40
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0463-8
– volume-title: The book of why: the new science of cause and effect
  year: 2018
  ident: 10409_CR58
– ident: 10409_CR66
  doi: 10.1097/00001648-199203000-00013
– volume: 12
  start-page: 95
  issue: 1
  year: 2007
  ident: 10409_CR39
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0040-8
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 10409_CR26
  publication-title: J Mach Learn Res
– volume: 31
  start-page: 841
  year: 2017
  ident: 10409_CR77
  publication-title: Harv JL & Tech
– ident: 10409_CR55
  doi: 10.1109/ICSME55016.2022.00010
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  ident: 10409_CR30
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.907095
– volume: 29
  start-page: 582
  issue: 5
  year: 2014
  ident: 10409_CR68
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888913000039
– volume: 98
  start-page: 277
  year: 2019
  ident: 10409_CR71
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2019.04.019
– ident: 10409_CR9
  doi: 10.1145/3290605.3300773
– ident: 10409_CR8
– volume: 81
  start-page: 937
  issue: 8
  year: 2011
  ident: 10409_CR22
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2011.04.001
– ident: 10409_CR56
– ident: 10409_CR60
– ident: 10409_CR21
– volume-title: The Stanford Encyclopedia of Philosophy, Winter
  year: 2012
  ident: 10409_CR34
– volume: 81
  start-page: 945
  issue: 396
  year: 1986
  ident: 10409_CR35
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478354
– ident: 10409_CR67
– ident: 10409_CR25
– volume: 2003
  start-page: i
  issue: 1
  year: 2003
  ident: 10409_CR36
  publication-title: ETS Res Rep Ser
– ident: 10409_CR74
– volume: 11
  start-page: 6271
  issue: 14
  year: 2021
  ident: 10409_CR4
  publication-title: Appl Sci
  doi: 10.3390/app11146271
– ident: 10409_CR42
– ident: 10409_CR19
– volume: 42
  start-page: 1511
  issue: 5
  year: 2013
  ident: 10409_CR65
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyt127
– volume: 64
  start-page: 304
  issue: 5
  year: 1989
  ident: 10409_CR24
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(89)90524-9
– ident: 10409_CR27
  doi: 10.1017/CBO9780511614491.005
– volume-title: Causality: statistical perspectives and applications
  year: 2012
  ident: 10409_CR11
  doi: 10.1002/9781119945710
– ident: 10409_CR29
  doi: 10.1109/ISIT.2004.1365067
– ident: 10409_CR2
  doi: 10.1145/3338906.3338937
SSID ssj0009745
Score 2.3874633
Snippet The cause-to-effect analysis can help us decompose all the likely causes of a problem, such as an undesirable business situation or unintended harm to the...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Bias
Compilers
Computer Science
Context
Decision making
Evaluation
Interpreters
Machine learning
Programming Languages
Software Engineering/Programming and Operating Systems
Special Issue on Equitable Data and Technology
Subject specialists
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Y4MCF8RSDgSLEDSIl6fs4AdMOaEK8tFvVvGASdGjd9vtxsnYbiCHBoZc6aSM7iW3Z_ozQeRhmkjIJlpunbJhRBUQwJYnFWWGwqWPDlWs2EfV6cb-f3JVFYUWV7V6FJN1NvVTsFoY-AR0DVwd4JSSooXVQd7E9jvcPzwuo3ci1JrbgesQDjV6Wyvz8jS_qqPZqkyGXLM1vwVGnczqN_612G22VNiZuzzbFDlrT-S5qVP0bcHmc91DnWo9dJlaOs1zhBfA3HhosBllBwGGfSPgtNtoBgBZ4kON3l3-pcdlw4mUfPXVuHq-6pOyrQCTo5zHRgTAq8blvqPQi4StbihfSSFDFaWQkY0nsxzKjOoil5IoKk0We5CZJfMaz0DtA9XyY60OEE6n90HiRlwFNKBCu0FQKboNvCaeiiVjF3lSWoOO298VbuoBLtoxKgVGpY1QaNNHFfM7HDHLj19FnILX5QIuW3W3fpvaddQ-tAzZlTdSqhJqWZ7RIbQQZnsSPVpAZWK9gcAL5spLxgrx6RUd_G36MNjkYSrNM8Baqj0cTfYI25HQ8KEanbmt_AhGE7zg
  priority: 102
  providerName: Springer Nature
Title Detection and evaluation of bias-inducing features in machine learning
URI https://link.springer.com/article/10.1007/s10664-023-10409-5
https://www.proquest.com/docview/2901290947
https://www.proquest.com/docview/2916502327
https://hal.science/hal-04265505
Volume 29
WOSCitedRecordID wos001124077200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOvQCpaXqUkBW1Ru1cJyHk1NFKSsO1WrFo0JcovjVrlSyQBZ-f2e8DksrwaWH-BA7keWxPTOe8fcBfCqKxojEoOWWWgoz2pzrxBpOOCsJTurSSxvIJtRoVF5eVuN44NbFtMp-TwwbtZ0aOiM_kGjH5KhgpPpyc8uJNYqiq5FCYxlWCSVBhtS9swXorgokxQSzx1PU7fHSTLw6VxQZxx_iRoQ-Ds__UkzLvygt8onN-U-YNGif4cb_9vs1rEe7kx3OJ8omLLn2DWz0nA4sLvG3MPzmZiE7q2VNa9kCDJxNPdOTpuPoxN8b7CTzLoCCdmzSsuuQk-lYJKH4uQUXw-PzoxMeuRa4QZ094y7X3laZzLwwqdKZpet5hVBaWCmUN0lSlVlpGuHy0hhphfaNSo30VZUlsinSd7DSTlv3HlhlXFb4VKUN1mmLAtdOGC0pIFdJoQeQ9ANdmwhETnwYv-sFhDIJp8ZRq4Nw6nwA-4_f3MxhOF5s_RHl99iQELRPDr_X9I5cRnLKHpIB7PQCq-O67WqKKuNTZeqZ6l6YA_jcz4hF9fM92n75bx_glURjaZ4NvgMrs7t7twtr5mE26e72YPXr8Wh8uhcmN5bj_ArL07MffwB1Avzy
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkulKdYKGAhOIFVx3HizQGhirLaqssKiSL1ZuIXrATZ0myL-FP8Rma8SReQ2lsPHHKJnSi2P49nMjPfADwry9qJzKHmlntyM_qC28w7TjwrGYJ6GKVPxSb0dDo8PKzer8GvPheGwip7mZgEtZ87-ke-LVGPKfCAkfr10XdOVaPIu9qX0FjCYj_8_IEmW_tqbxfX97mUo7cHb8a8qyrAHZ5OCx4KG32lpIrC5doqT4lopdBWeCl0dBma4WroahGKoXPSCxtrnTsZq0plsi5zfO86XFEk_VOo4IcVya9ORZGJ1o_nqEt0STpdql5ZKo4DQMGHNhUv_joI179QGOYfOu4_btl02o02_7d5ugk3Or2a7Sw3wi1YC81t2OxrVrBOhN2B0W5YpOizhtWNZyuyczaPzM7qls8af-JwUlgMifS0ZbOGfUsxp4F1RTY-34WPlzKae7DRzJtwH1jlgipjrvMa26xHQNsgnJXkcKyksAPI-oU1riNap3ofX82KIprAYHCVTAKDKQbw4uyZoyXNyIW9nyJezjoSQ_h4Z2LoHpnEZHSeZgPY6gFiOrnUGvKa41UpfU5zD54BvOwRuGo-_4seXPy2J3BtfPBuYiZ70_2HcF2iYriMfN-CjcXxSXgEV93pYtYeP04bisGny0bmbwkcV3o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEulKe6UMBCcAILx3l4c0CoYlm1arXaA0gVFxO_YKWSLc22iL_Gr2PG63QBqb31wCGX2Ili-_N4JjPzDcDzqmqsyCxqbrkjN6Mrucmc5cSzkiGoh0G6WGxCTSbDw8N6uga_-lwYCqvsZWIU1G5u6R_5a4l6TIkHDJrqIYVFTEfjt8ffOVWQIk9rX05jCZF9__MHmm_dm70RrvULKcfvP7zb5anCALd4Ui24L01wdSGLIGyuTOEoKa0SyggnhQo2Q5O8GNpG-HJorXTChEblVoa6LjLZVDm-dx2uKbQxyfCblp9WhL8qFkgmij-eo16REnZS2l5VFRwHg0IQ7Ste_nUorn-lkMw_9N1_XLTx5Btv_s9zdhtuJX2b7Sw3yB1Y8-1d2OxrWbAk2u7BeOQXMSqtZU3r2IoEnc0DM7Om47PWnVqcIBZ8JEPt2Kxl32Isqmep-MaX-_DxSkbzADbaeeu3gNXWF1XIVd5gm3EIdOOFNZIckbUUZgBZv8jaJgJ2qgNypFfU0QQMjSumIzB0OYCX588cL-lHLu39DLFz3pGYw3d3DjTdI1OZjNGzbADbPVh0kledJm86XnWhLmjugTSAVz0aV80Xf9HDy9_2FG4gIPXB3mT_EdyUqC8uA-K3YWNxcuofw3V7tph1J0_i3mLw-aqB-RtrhGBd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+evaluation+of+bias-inducing+features+in+machine+learning&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Openja%2C+Moses&rft.au=Laberge%2C+Gabriel&rft.au=Khomh%2C+Foutse&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=29&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1007%2Fs10664-023-10409-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon