RNA-binding proteins with prion-like domains in health and disease

Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal Jg. 474; H. 8; S. 1417
Hauptverfasser: Harrison, Alice Ford, Shorter, James
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 15.04.2017
Schlagworte:
ISSN:1470-8728, 1470-8728
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
AbstractList Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Author Harrison, Alice Ford
Shorter, James
Author_xml – sequence: 1
  givenname: Alice Ford
  surname: Harrison
  fullname: Harrison, Alice Ford
  organization: Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, U.S.A
– sequence: 2
  givenname: James
  surname: Shorter
  fullname: Shorter, James
  email: jshorter@mail.med.upenn.edu
  organization: Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28389532$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tPwzAQhC1URB9w4o5y5BJYv2L72FblpQokBOfIjrfUkDhQJ0L8e4IoEqfdnR2N5puSUWwjEnJK4YKCYJeL5R0DWoAw5oBMqFCQa8X06N8-JtOUXgGoAAFHZMw010ZyNiGLx_t57kL0Ib5k77u2wxBT9hm67XCFNuZ1eMPMt4390UPMtmjr4Wmjz3xIaBMek8ONrROe7OeMPF-tnpY3-frh-nY5X-cV17TLK6ek86ZCI0WhlaBAnVK80Gilclow5zfUMdhw0Jw7VTipfQG8Uq6w1lA2I-e_uUPNjx5TVzYhVVjXNmLbp5JqLY1kmqrBera39q5BXw4ojd19lX_c7BuRN1mN
CitedBy_id crossref_primary_10_1074_jbc_TM118_001192
crossref_primary_10_1016_j_jmb_2021_167220
crossref_primary_10_1073_pnas_2303358120
crossref_primary_10_1371_journal_pbio_3000327
crossref_primary_10_1073_pnas_2305625120
crossref_primary_10_1016_j_cell_2017_09_041
crossref_primary_10_1016_j_tibs_2019_03_005
crossref_primary_10_1261_rna_080165_124
crossref_primary_10_1002_bies_201800085
crossref_primary_10_1016_j_molcel_2018_11_034
crossref_primary_10_3389_fncel_2020_581907
crossref_primary_10_1016_j_molcel_2022_04_022
crossref_primary_10_1242_jcs_189928
crossref_primary_10_3390_ijms26157644
crossref_primary_10_1515_hsz_2018_0141
crossref_primary_10_3390_biology11071009
crossref_primary_10_1111_acel_13157
crossref_primary_10_1080_10985549_2024_2315425
crossref_primary_10_1111_acel_13035
crossref_primary_10_3390_polym11060990
crossref_primary_10_3390_biom11091324
crossref_primary_10_1038_s41467_023_35854_0
crossref_primary_10_1242_jcs_210856
crossref_primary_10_1038_s42003_021_01930_8
crossref_primary_10_1242_dmm_048983
crossref_primary_10_1111_febs_15159
crossref_primary_10_15252_embj_2020106389
crossref_primary_10_3389_fncel_2021_625665
crossref_primary_10_1038_s41586_023_06515_5
crossref_primary_10_1074_jbc_RA119_007545
crossref_primary_10_1056_NEJMra2028910
crossref_primary_10_1016_j_neuint_2020_104819
crossref_primary_10_3389_fmolb_2023_1298441
crossref_primary_10_3390_jpm12111868
crossref_primary_10_3390_ijms21041409
crossref_primary_10_1016_j_nbd_2025_106988
crossref_primary_10_1093_bib_bbad213
crossref_primary_10_3389_fnmol_2019_00025
crossref_primary_10_1021_jacs_1c02424
crossref_primary_10_3390_ijms25168779
crossref_primary_10_1523_JNEUROSCI_1656_20_2020
crossref_primary_10_26508_lsa_201800280
crossref_primary_10_1111_tra_12672
crossref_primary_10_1038_s10038_022_01055_8
crossref_primary_10_1134_S0026893320050027
crossref_primary_10_3390_biom11071014
crossref_primary_10_1016_j_brainres_2022_147904
crossref_primary_10_1016_j_tcb_2018_12_004
crossref_primary_10_3390_ijms20215501
crossref_primary_10_1016_j_bpj_2022_05_038
crossref_primary_10_3389_fnins_2019_00331
crossref_primary_10_1007_s13721_025_00562_w
crossref_primary_10_1038_s41419_020_03116_2
crossref_primary_10_1093_jb_mvy116
crossref_primary_10_1038_s41467_023_37865_3
crossref_primary_10_1111_nan_12738
crossref_primary_10_1016_j_neuron_2024_05_003
crossref_primary_10_4103_1673_5374_284988
crossref_primary_10_1016_j_cell_2018_03_002
crossref_primary_10_1016_j_cell_2018_03_003
crossref_primary_10_1038_s41420_021_00640_8
crossref_primary_10_1016_j_jbc_2025_108548
crossref_primary_10_3390_life11090872
crossref_primary_10_1016_j_phrs_2025_107840
crossref_primary_10_1186_s13024_021_00503_x
crossref_primary_10_1016_j_tins_2020_09_005
crossref_primary_10_1146_annurev_biochem_061516_044700
crossref_primary_10_1016_j_cobme_2019_10_004
crossref_primary_10_3390_molecules24183265
crossref_primary_10_3389_fmolb_2018_00044
crossref_primary_10_1111_febs_15765
crossref_primary_10_1038_s41467_024_52151_6
crossref_primary_10_1016_j_ceb_2020_04_003
crossref_primary_10_1016_j_semcdb_2018_04_001
crossref_primary_10_1136_jnnp_2020_322983
crossref_primary_10_3389_fnins_2021_595775
crossref_primary_10_1007_s11910_018_0914_7
crossref_primary_10_1038_s41523_020_00200_w
crossref_primary_10_3389_fnmol_2023_1193636
crossref_primary_10_3389_fmolb_2022_826719
crossref_primary_10_3390_ijms22116016
crossref_primary_10_1093_nar_gkaa339
crossref_primary_10_1038_s42004_024_01357_2
crossref_primary_10_4103_1673_5374_314286
crossref_primary_10_1093_nar_gky854
crossref_primary_10_1002_pro_4686
crossref_primary_10_1016_j_dci_2020_103826
crossref_primary_10_3389_fcell_2023_1242481
crossref_primary_10_1186_s13100_018_0138_z
crossref_primary_10_3390_ijms20133230
crossref_primary_10_3389_fnmol_2017_00370
crossref_primary_10_1016_j_devcel_2022_02_005
crossref_primary_10_1002_cti2_1063
crossref_primary_10_1126_science_aan6398
crossref_primary_10_1016_j_jbc_2022_102806
crossref_primary_10_1039_D2CP01625G
crossref_primary_10_1016_j_ajpath_2023_02_015
crossref_primary_10_3390_molecules24081622
crossref_primary_10_1016_j_molcel_2018_07_002
crossref_primary_10_1016_j_neuroscience_2022_11_027
crossref_primary_10_1007_s00401_023_02565_1
crossref_primary_10_1007_s00401_019_01971_8
crossref_primary_10_1073_pnas_1806174115
crossref_primary_10_1126_science_aao5654
crossref_primary_10_1016_j_dnarep_2021_103162
crossref_primary_10_1074_jbc_RA118_001747
crossref_primary_10_1002_advs_202104247
crossref_primary_10_1155_2023_9849719
crossref_primary_10_1002_prot_26558
crossref_primary_10_1186_s12864_019_6425_3
crossref_primary_10_1098_rsob_200177
crossref_primary_10_1186_s13024_023_00698_1
crossref_primary_10_1016_j_jmb_2020_166794
crossref_primary_10_1016_j_molcel_2024_10_036
crossref_primary_10_1038_s41596_023_00900_0
crossref_primary_10_1002_acn3_51682
crossref_primary_10_1088_2050_6120_ac7bd8
crossref_primary_10_3390_ijms19030886
crossref_primary_10_15252_embj_2020104467
crossref_primary_10_1074_jbc_RA119_010617
crossref_primary_10_1093_nar_gkab080
crossref_primary_10_3390_biom11081248
crossref_primary_10_1016_j_bbagrm_2020_194641
crossref_primary_10_1016_j_neuron_2019_07_004
crossref_primary_10_1016_j_immuni_2020_10_009
crossref_primary_10_4103_1673_5374_382985
crossref_primary_10_1016_j_ijbiomac_2025_143954
crossref_primary_10_1038_s42003_019_0463_x
crossref_primary_10_1093_brain_awaa076
crossref_primary_10_1098_rsob_180150
crossref_primary_10_1002_med_21661
crossref_primary_10_1371_journal_pone_0209195
crossref_primary_10_3390_ijms232214366
crossref_primary_10_1073_pnas_2007423117
crossref_primary_10_3390_ijms22062909
crossref_primary_10_1021_jacs_3c00932
crossref_primary_10_1002_wrna_1714
crossref_primary_10_1016_j_gpb_2020_11_003
crossref_primary_10_1007_s12551_017_0369_0
crossref_primary_10_1016_j_cell_2017_08_048
crossref_primary_10_1007_s11427_020_1702_x
crossref_primary_10_3390_ijms20215260
crossref_primary_10_1016_j_pbi_2018_05_005
crossref_primary_10_1371_journal_pcbi_1006256
crossref_primary_10_1016_j_neuron_2021_06_023
crossref_primary_10_1097_ANA_0000000000000640
crossref_primary_10_3390_cells7120232
crossref_primary_10_1016_j_pharmthera_2024_108765
crossref_primary_10_1002_jev2_12043
crossref_primary_10_1016_j_pneurobio_2025_102758
crossref_primary_10_1021_jacs_2c08596
crossref_primary_10_1186_s12915_020_0751_4
crossref_primary_10_4103_NRR_NRR_D_24_01196
crossref_primary_10_1038_s41594_021_00601_w
crossref_primary_10_3390_v14020199
crossref_primary_10_1016_j_ijbiomac_2022_08_132
crossref_primary_10_1371_journal_pgen_1011138
crossref_primary_10_3389_fcell_2022_931968
crossref_primary_10_1016_S0021_9258_17_49926_1
crossref_primary_10_1016_j_bbagen_2025_130835
crossref_primary_10_1002_med_21705
crossref_primary_10_1016_j_mocell_2025_100247
crossref_primary_10_3389_fnmol_2023_983108
crossref_primary_10_1038_s41467_017_02770_z
crossref_primary_10_1038_s41594_018_0064_2
crossref_primary_10_1038_s41467_024_52706_7
crossref_primary_10_1038_s41467_019_13745_7
crossref_primary_10_3389_fphar_2019_01047
crossref_primary_10_1038_s41467_024_44945_5
crossref_primary_10_3389_fphys_2019_00314
crossref_primary_10_1083_jcb_202008030
crossref_primary_10_1007_s00203_024_04200_3
crossref_primary_10_3390_biom9020071
crossref_primary_10_1016_j_expneurol_2022_114144
crossref_primary_10_1016_j_jmb_2020_03_004
crossref_primary_10_1093_jb_mvab072
crossref_primary_10_1007_s00018_022_04544_3
crossref_primary_10_1016_j_jbc_2023_104800
crossref_primary_10_1002_2211_5463_13213
crossref_primary_10_1007_s12551_020_00680_x
crossref_primary_10_1016_j_tins_2023_04_004
crossref_primary_10_1007_s12035_018_0947_6
crossref_primary_10_1016_j_tibs_2020_12_005
crossref_primary_10_1016_j_nbd_2020_105050
crossref_primary_10_1186_s40478_020_00965_y
crossref_primary_10_1016_j_nbd_2020_105051
crossref_primary_10_1073_pnas_2109668118
crossref_primary_10_1080_14728214_2020_1769067
crossref_primary_10_1038_s41598_018_35610_1
crossref_primary_10_1016_j_tig_2019_05_004
crossref_primary_10_1212_WNL_0000000000005172
crossref_primary_10_3389_fpubh_2020_543322
crossref_primary_10_3389_fpls_2022_1060410
crossref_primary_10_3389_fnins_2021_783624
crossref_primary_10_1016_j_jmb_2023_168364
crossref_primary_10_1002_jcp_31167
crossref_primary_10_3390_diagnostics11030509
crossref_primary_10_3389_fncel_2023_1253543
crossref_primary_10_1016_j_jmb_2019_11_017
crossref_primary_10_1016_j_molcel_2022_05_010
crossref_primary_10_1016_j_jmb_2019_11_014
crossref_primary_10_1016_j_molcel_2021_01_016
crossref_primary_10_3390_ijms26189068
crossref_primary_10_3389_fnins_2022_815765
crossref_primary_10_1016_j_bioorg_2024_107217
crossref_primary_10_1038_s41598_020_57994_9
crossref_primary_10_3390_cells11040592
crossref_primary_10_1038_s41557_021_00840_w
crossref_primary_10_1038_s42003_022_03354_4
crossref_primary_10_1158_1541_7786_MCR_20_0651
crossref_primary_10_1016_j_devcel_2018_11_022
crossref_primary_10_1186_s40035_025_00480_x
crossref_primary_10_7554_eLife_37754
crossref_primary_10_1128_jvi_00070_22
crossref_primary_10_1016_j_bbrc_2018_03_121
crossref_primary_10_1016_j_neuron_2019_01_048
crossref_primary_10_1038_s41598_017_14459_w
crossref_primary_10_1074_jbc_RA119_009494
crossref_primary_10_3389_fnins_2019_01310
crossref_primary_10_1002_adbi_202200006
crossref_primary_10_1007_s00294_018_0890_0
crossref_primary_10_3389_fmolb_2021_638149
crossref_primary_10_1016_j_cell_2021_07_018
crossref_primary_10_1186_s12915_021_01132_y
crossref_primary_10_1016_j_jmb_2020_02_020
crossref_primary_10_1016_j_mam_2025_101369
crossref_primary_10_1038_s41419_025_07538_8
crossref_primary_10_1111_bpa_12680
crossref_primary_10_1016_j_nmd_2022_03_009
crossref_primary_10_3390_ijms232012609
crossref_primary_10_3390_v13010126
crossref_primary_10_3390_metabo12080709
crossref_primary_10_1016_j_molcel_2022_01_018
crossref_primary_10_1038_s41392_024_02013_w
crossref_primary_10_1007_s00294_022_01234_2
crossref_primary_10_1212_NXG_0000000000000632
crossref_primary_10_1038_s41598_021_83196_y
crossref_primary_10_1038_s41557_024_01467_3
crossref_primary_10_1016_j_bbrc_2019_11_180
crossref_primary_10_1073_pnas_2400464121
crossref_primary_10_1016_j_jbc_2022_101677
crossref_primary_10_1111_nan_12877
crossref_primary_10_1038_s41598_020_80524_6
crossref_primary_10_1016_j_ymeth_2017_06_011
crossref_primary_10_3390_ijms22158213
crossref_primary_10_1016_j_bbrc_2020_01_054
crossref_primary_10_1007_s00401_020_02222_x
crossref_primary_10_1038_s41582_023_00846_7
crossref_primary_10_1038_s41598_023_34558_1
crossref_primary_10_15252_embj_201798078
crossref_primary_10_1016_j_jbc_2022_101796
crossref_primary_10_1038_s12276_022_00857_2
crossref_primary_10_1016_j_jmb_2023_168211
crossref_primary_10_1016_j_tibs_2021_11_006
crossref_primary_10_3390_ijms22105292
crossref_primary_10_1016_j_tibs_2020_03_005
crossref_primary_10_3390_v13112301
crossref_primary_10_1016_j_molmet_2022_101515
crossref_primary_10_1002_ctm2_383
crossref_primary_10_1098_rsob_210137
crossref_primary_10_1007_s00018_020_03565_0
crossref_primary_10_15252_embr_202256166
crossref_primary_10_1016_j_semcdb_2019_11_012
crossref_primary_10_1016_j_ijbiomac_2022_09_104
crossref_primary_10_1039_D4SC00267A
crossref_primary_10_1016_j_bbamcr_2021_118984
crossref_primary_10_1371_journal_pone_0247285
crossref_primary_10_1093_nargab_lqab048
crossref_primary_10_1002_advs_202501977
crossref_primary_10_1016_j_csbj_2022_05_004
crossref_primary_10_1080_15548627_2017_1384889
crossref_primary_10_1111_nan_12534
crossref_primary_10_1093_femsyr_foy042
crossref_primary_10_1242_bio_046383
crossref_primary_10_1242_jcs_259380
crossref_primary_10_3390_cells9030672
crossref_primary_10_1101_gad_316034_118
crossref_primary_10_1242_dmm_050720
crossref_primary_10_1016_j_celrep_2024_115205
ContentType Journal Article
Copyright 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Copyright_xml – notice: 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BCJ20160499
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 28389532
Genre Journal Article
Review
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: RC2 HL103010
– fundername: NINDS NIH HHS
  grantid: R21 NS090205
– fundername: NINDS NIH HHS
  grantid: F31 NS087676
– fundername: NHLBI NIH HHS
  grantid: RC2 HL102924
– fundername: NHLBI NIH HHS
  grantid: UC2 HL102926
– fundername: NHLBI NIH HHS
  grantid: RC2 HL102923
– fundername: NHLBI NIH HHS
  grantid: RC2 HL102926
– fundername: NHLBI NIH HHS
  grantid: UC2 HL103010
– fundername: NHLBI NIH HHS
  grantid: UC2 HL102925
– fundername: NHLBI NIH HHS
  grantid: UC2 HL102924
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
53G
5GY
5RE
6J9
79B
A8Z
AABGO
AAHRG
ABJNI
ABPPZ
ABRJW
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
HH6
HZ~
K-O
L7B
ML-
MV1
N9A
NPM
NTEUP
O9-
OK1
P2P
RHI
RNS
RPM
RPO
SV3
TR2
TWZ
WH7
XSW
Y6R
YNY
~02
~KM
7X8
ESTFP
ID FETCH-LOGICAL-c381t-cb75bd9ce9546874101b77368ea57b842bdf1b20f30833b76b58d603c7b6aa912
IEDL.DBID 7X8
ISICitedReferencesCount 323
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405371400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Fri Sep 05 09:46:33 EDT 2025
Wed Feb 19 02:31:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords neurodegeneration
disaggregase
phase separation
RNA-binding proteins
prion-like domain
Language English
License 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-cb75bd9ce9546874101b77368ea57b842bdf1b20f30833b76b58d603c7b6aa912
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://portlandpress.com/biochemj/article-pdf/474/8/1417/688924/bcj-2016-0499c.pdf
PMID 28389532
PQID 1885952817
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1885952817
pubmed_primary_28389532
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2017
SSID ssj0014040
Score 2.6462076
SecondaryResourceType review_article
Snippet Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1417
SubjectTerms Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Calmodulin-Binding Proteins - chemistry
Calmodulin-Binding Proteins - genetics
Calmodulin-Binding Proteins - metabolism
Cytoplasmic Granules
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Frontotemporal Dementia - genetics
Frontotemporal Dementia - metabolism
Frontotemporal Dementia - pathology
Heterogeneous Nuclear Ribonucleoprotein A1
Heterogeneous-Nuclear Ribonucleoprotein Group A-B - chemistry
Heterogeneous-Nuclear Ribonucleoprotein Group A-B - genetics
Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism
Humans
Mutation
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Prion Proteins - chemistry
Prion Proteins - genetics
Prion Proteins - metabolism
Protein Domains
Proteostasis Deficiencies - genetics
Proteostasis Deficiencies - metabolism
Proteostasis Deficiencies - pathology
RNA-Binding Protein EWS
RNA-Binding Protein FUS - chemistry
RNA-Binding Protein FUS - genetics
RNA-Binding Protein FUS - metabolism
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
TATA-Binding Protein Associated Factors - chemistry
TATA-Binding Protein Associated Factors - genetics
TATA-Binding Protein Associated Factors - metabolism
TDP-43 Proteinopathies - genetics
TDP-43 Proteinopathies - metabolism
TDP-43 Proteinopathies - pathology
Title RNA-binding proteins with prion-like domains in health and disease
URI https://www.ncbi.nlm.nih.gov/pubmed/28389532
https://www.proquest.com/docview/1885952817
Volume 474
WOSCitedRecordID wos000405371400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xsnmZNyKIb8E2SZvkSbbhEMEyRGFvJWkSKLp22in4703ajr2J4EuhhUKbc5Lz5Zyc7wPgKqQRtc7YyOAsQlQRjVQoDVKKB5p4WePY1mITLEn4dCombcKtao9VLtfEeqHWZeZz5Dch90xcmIfsdv6OvGqUr662EhrroEMclPFezaarKgINmoZIygI36zFv-_Ocn94MRw_Yk6tR8Qu2rGPMePe_X7cHdlp0CQeNO-yDNVN0QW9QuJ317Btew_q8Z51I74Kt0VLrrQeGT8nA75F9IIM1dUNeVNDnaN2dsxx6y18N1OVM-ud5AZv2SSgLDdsSzwF4Gd89j-5Rq66AMhelFyhTLFJaZEZENOYOWAShYozE3MiIKU6x0jZUOLDEoTSiWKwirp3xMqZiKUWID8FGURbmGEAWaCaNtUIrRjUTinNJrKeGl1bEnPfB5XLUUvdjviQhC1N-Vulq3PrgqBn6dN7QbKQO-HAREXzyh7dPwTb28daTMEZnoGPd3DXnYDP7WuTVx0XtFu6aTB5_AISwwTI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA-binding+proteins+with+prion-like+domains+in+health+and+disease&rft.jtitle=Biochemical+journal&rft.au=Harrison%2C+Alice+Ford&rft.au=Shorter%2C+James&rft.date=2017-04-15&rft.eissn=1470-8728&rft.volume=474&rft.issue=8&rft.spage=1417&rft_id=info:doi/10.1042%2FBCJ20160499&rft_id=info%3Apmid%2F28389532&rft_id=info%3Apmid%2F28389532&rft.externalDocID=28389532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon