Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas
•Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The proposed techniques are faster than RK4 and robust enough.•Medium and large-scale ill-conditioned power systems.•Lower order methods might be...
Uložené v:
| Vydané v: | Electric power systems research Ročník 174; s. 105881 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.09.2019
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0378-7796, 1873-2046 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The proposed techniques are faster than RK4 and robust enough.•Medium and large-scale ill-conditioned power systems.•Lower order methods might be as robust as higher order ones but more efficient.
Based on Continuous Newton’s method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on 4th order Runge–Kutta formula (RK4) and Adams–Bashfort’s methods (AB) have been proposed. However, there is a huge variety of numerical methods whose adequacy for solving the LF problem has not been explored yet. This paper tries to fill this gap by proposing several LF solvers based on Runge–Kutta (RK) formulas. Thus, several LF techniques based on Midpoint (MP), 3rd order Heun (H3), Simpson 3/8 (S3/8) and an accelerated 3rd order Runge–Kutta (ARK3) formulas are proposed. The performance of the proposed LF techniques is assessed using several medium and large-scale ill-conditioned power systems. The proposed techniques are compared with RK4, AB and other robust LF methods. In addition, their scalability and influence of the loading level are analyzed. The obtained results prove that the proposed LF techniques are faster than RK4 and robust enough to successfully tackle medium and large-scale ill-conditioned power systems. As main conclusion, it is proved that lower order methods might be as robust as higher order ones but more efficient. Therefore, its usage with respect higher order methods (e.g. 4th order ones), should be frequently preferable. |
|---|---|
| AbstractList | •Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The proposed techniques are faster than RK4 and robust enough.•Medium and large-scale ill-conditioned power systems.•Lower order methods might be as robust as higher order ones but more efficient.
Based on Continuous Newton’s method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on 4th order Runge–Kutta formula (RK4) and Adams–Bashfort’s methods (AB) have been proposed. However, there is a huge variety of numerical methods whose adequacy for solving the LF problem has not been explored yet. This paper tries to fill this gap by proposing several LF solvers based on Runge–Kutta (RK) formulas. Thus, several LF techniques based on Midpoint (MP), 3rd order Heun (H3), Simpson 3/8 (S3/8) and an accelerated 3rd order Runge–Kutta (ARK3) formulas are proposed. The performance of the proposed LF techniques is assessed using several medium and large-scale ill-conditioned power systems. The proposed techniques are compared with RK4, AB and other robust LF methods. In addition, their scalability and influence of the loading level are analyzed. The obtained results prove that the proposed LF techniques are faster than RK4 and robust enough to successfully tackle medium and large-scale ill-conditioned power systems. As main conclusion, it is proved that lower order methods might be as robust as higher order ones but more efficient. Therefore, its usage with respect higher order methods (e.g. 4th order ones), should be frequently preferable. Based on Continuous Newton's method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on 4th order Runge–Kutta formula (RK4) and Adams–Bashfort's methods (AB) have been proposed. However, there is a huge variety of numerical methods whose adequacy for solving the LF problem has not been explored yet. This paper tries to fill this gap by proposing several LF solvers based on Runge–Kutta (RK) formulas. Thus, several LF techniques based on Midpoint (MP), 3rd order Heun (H3), Simpson 3/8 (S3/8) and an accelerated 3rd order Runge–Kutta (ARK3) formulas are proposed. The performance of the proposed LF techniques is assessed using several medium and large-scale ill-conditioned power systems. The proposed techniques are compared with RK4, AB and other robust LF methods. In addition, their scalability and influence of the loading level are analyzed. The obtained results prove that the proposed LF techniques are faster than RK4 and robust enough to successfully tackle medium and large-scale ill-conditioned power systems. As main conclusion, it is proved that lower order methods might be as robust as higher order ones but more efficient. Therefore, its usage with respect higher order methods (e.g. 4th order ones), should be frequently preferable. |
| ArticleNumber | 105881 |
| Author | Kamel, Salah Jurado, Francisco Tostado-Véliz, Marcos |
| Author_xml | – sequence: 1 givenname: Marcos surname: Tostado-Véliz fullname: Tostado-Véliz, Marcos email: mtostado@ujaen.es organization: Department of Electrical Engineering, University of Jaén, 23700 EPS Linares, Jaén, Spain – sequence: 2 givenname: Salah surname: Kamel fullname: Kamel, Salah email: skamel@aswu.edu.eg organization: Department of Electrical Engineering, Faculty of Engineering, Aswan University, 81542 Aswan, Egypt – sequence: 3 givenname: Francisco orcidid: 0000-0001-8122-7415 surname: Jurado fullname: Jurado, Francisco email: fjurado@ujaen.es organization: Department of Electrical Engineering, University of Jaén, 23700 EPS Linares, Jaén, Spain |
| BookMark | eNp9kMtKxDAUQIOM4MzoD7gKuO6Y9JGk4EYGXygIouuQ5qEpnWRM0hF3_oN_6JfYUlcuZnUvl3vu4yzAzHmnATjFaIURJuftSm9jWOUI10OhYgwfgDlmtMhyVJIZmKOCsozSmhyBRYwtQojUtJoDvvabrQg2ege9gbsh9X2EwTd9TFA4BbUxVlrtEuy8UJnp_AdMWr45-97rCBsRtYID_dS7V_3z9X3fpySg8WHTdyIeg0MjuqhP_uISvFxfPa9vs4fHm7v15UMmC4ZTJkVTY4ZlIbEiiNC8JmVd4qZUStKhjkpVE81MxSrW5FjJpjYVEYWRjWnyihVLcDbN3QY_3pV46_vghpU8zxkjlKKKDl351CWDjzFow7fBbkT45BjxUSRv-SiSjyL5JHKA2D9I2iSS9S4FYbv96MWE6uH1ndWBx1Gl1MoGLRNX3u7DfwHArpMA |
| CitedBy_id | crossref_primary_10_3390_math10081279 crossref_primary_10_1016_j_ijepes_2020_106264 crossref_primary_10_3390_en14237989 crossref_primary_10_1109_ACCESS_2021_3102447 crossref_primary_10_1049_iet_gtd_2019_1077 crossref_primary_10_1016_j_ijepes_2020_105869 crossref_primary_10_3390_app11136147 crossref_primary_10_1109_ACCESS_2021_3134868 crossref_primary_10_1016_j_ijepes_2024_110064 crossref_primary_10_1002_2050_7038_13194 crossref_primary_10_1016_j_epsr_2022_108326 crossref_primary_10_1109_ACCESS_2021_3114969 crossref_primary_10_1109_ACCESS_2020_2975058 crossref_primary_10_1049_gtd2_12039 crossref_primary_10_3390_en14144108 |
| Cites_doi | 10.1109/TPWRS.2018.2849325 10.1049/iet-gtd.2016.0064 10.1016/j.ijepes.2017.06.032 10.1016/j.ijepes.2013.03.039 10.1109/TPWRS.2018.2813525 10.1109/TPWRS.2013.2251015 10.1109/PICA.1991.160593 10.1049/iet-gtd.2012.0350 10.1049/iet-gtd.2015.0866 10.1109/TPAS.1967.291823 10.1109/28.8993 10.1109/TPAS.1982.317050 10.1007/s10440-012-9766-3 10.1016/j.ijepes.2014.03.028 10.1109/TPWRS.2010.2051168 10.1109/TPWRS.2016.2616385 10.1109/PROC.1974.9544 10.1155/S1026022604311039 10.1109/TPWRS.2018.2823702 10.1109/TIA.2016.2582827 10.1109/TPWRS.2003.810905 10.1016/j.ijepes.2018.09.021 10.1109/TPAS.1981.316511 10.1109/TPWRS.2008.2004820 10.1109/TPWRS.2015.2415455 10.1109/TPAS.1974.293985 10.1049/iet-gtd.2018.5633 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 2019 |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.epsr.2019.105881 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | 10_1016_j_epsr_2019_105881 S0378779619302007 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c381t-cab9181c3c1d60672964941b4ddc781c04d96e8f5858b21dcb9f56a3fcbfb2583 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474498500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sun Nov 09 08:44:32 EST 2025 Tue Nov 18 22:36:11 EST 2025 Sat Nov 29 06:43:35 EST 2025 Fri Feb 23 02:49:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Robust methods Ill-conditioned power systems Runge–Kutta formulas Load flow |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-cab9181c3c1d60672964941b4ddc781c04d96e8f5858b21dcb9f56a3fcbfb2583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8122-7415 |
| PQID | 2288677057 |
| PQPubID | 2047565 |
| ParticipantIDs | proquest_journals_2288677057 crossref_primary_10_1016_j_epsr_2019_105881 crossref_citationtrail_10_1016_j_epsr_2019_105881 elsevier_sciencedirect_doi_10_1016_j_epsr_2019_105881 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Milano (bib0100) 2016; 31 Pourbagher, Derakhshandeh (bib0105) 2018; 94 Pourbagher, Derakhshandeh (bib0055) 2016; 10 Saadat (bib0120) 2010 Milano (bib0050) 2009; 24 MATPOWER tests systems. Online Neuberger (bib0075) 2010; vol. 1670 Tinney, Hart (bib0015) 1967; PAS-86 Butcher (bib0115) 2008 Fliscounakis, Panciatici, Capitanescu, Wehenkel (bib0165) 2013; 28 Phohomsiri, Udwadia (bib0140) 2004 Tostado-Véliz, Kamel, Jurado (bib0080) 2018; 12 Tripathy, Durga-Prasad, Malik, Hope (bib0125) 1982; PAS-101 Xie, Torelli, Bompard, Vaccaro (bib0110) 2013; 7 Selim, Abdel-Akher, Kamel, Aly (bib0185) 2019 Bijwe, Kelapure (bib0065) 2003; 18 Univ. Washington, Seattle, IEEE tests systems. Online Tostado, Kamel, Jurado (bib0040) 2019; 105 Stott, Alsac (bib0020) 1974; PAS-93 Ajjarapu, Christy (bib0175) 1991 Liu (bib0135) 2013; 123 Birchfeld (bib0145) 2017; 32 Shahriari (bib0070) 2014; 60 . Abdel-Akher, Selim, Aly (bib0180) 2015; 9 C. Josz, S. Fliscounakis, J. Maeght, P. Panciatici, AC Power Flow Data in Matpower and QCQP Format: iTesla, RTE Snapshots, and PEGASE. Available Birchfield, Xu, Overbye (bib0005) 2018; 33 Kamel, Abdel-Akher, Jurado (bib0030) 2013; 53 Zimmerman, Murillo-Sánchez, Thomas (bib0170) 2011; 26 Li, Li, Zhang (bib0090) 2008; 23 Tostado-Véliz, Kamel, Jurado (bib0085) 2018 Milano (bib0130) 2010 Stott (bib0025) 1974; 62 Iwamoto, Tamura (bib0045) 1981; PAS-100 Schaffer, Tylavsky (bib0060) 1988; 24 Saleh (bib0035) 2016; 52 Xu, Birchfield, Overbye (bib0010) 2018; 33 Zhao, Mili, Pires (bib0095) 2018; 33 Shahriari (10.1016/j.epsr.2019.105881_bib0070) 2014; 60 Pourbagher (10.1016/j.epsr.2019.105881_bib0055) 2016; 10 Liu (10.1016/j.epsr.2019.105881_bib0135) 2013; 123 Birchfield (10.1016/j.epsr.2019.105881_bib0005) 2018; 33 Ajjarapu (10.1016/j.epsr.2019.105881_bib0175) 1991 Stott (10.1016/j.epsr.2019.105881_bib0025) 1974; 62 Abdel-Akher (10.1016/j.epsr.2019.105881_bib0180) 2015; 9 10.1016/j.epsr.2019.105881_bib0155 Tinney (10.1016/j.epsr.2019.105881_bib0015) 1967; PAS-86 Schaffer (10.1016/j.epsr.2019.105881_bib0060) 1988; 24 Kamel (10.1016/j.epsr.2019.105881_bib0030) 2013; 53 Xie (10.1016/j.epsr.2019.105881_bib0110) 2013; 7 Zimmerman (10.1016/j.epsr.2019.105881_bib0170) 2011; 26 Pourbagher (10.1016/j.epsr.2019.105881_bib0105) 2018; 94 Tostado-Véliz (10.1016/j.epsr.2019.105881_bib0080) 2018; 12 10.1016/j.epsr.2019.105881_bib0150 Stott (10.1016/j.epsr.2019.105881_bib0020) 1974; PAS-93 Milano (10.1016/j.epsr.2019.105881_bib0100) 2016; 31 Neuberger (10.1016/j.epsr.2019.105881_bib0075) 2010; vol. 1670 Zhao (10.1016/j.epsr.2019.105881_bib0095) 2018; 33 Phohomsiri (10.1016/j.epsr.2019.105881_bib0140) 2004 Fliscounakis (10.1016/j.epsr.2019.105881_bib0165) 2013; 28 Xu (10.1016/j.epsr.2019.105881_bib0010) 2018; 33 Selim (10.1016/j.epsr.2019.105881_bib0185) 2019 Saleh (10.1016/j.epsr.2019.105881_bib0035) 2016; 52 Milano (10.1016/j.epsr.2019.105881_bib0050) 2009; 24 Saadat (10.1016/j.epsr.2019.105881_bib0120) 2010 Tripathy (10.1016/j.epsr.2019.105881_bib0125) 1982; PAS-101 Iwamoto (10.1016/j.epsr.2019.105881_bib0045) 1981; PAS-100 Tostado (10.1016/j.epsr.2019.105881_bib0040) 2019; 105 Milano (10.1016/j.epsr.2019.105881_bib0130) 2010 Bijwe (10.1016/j.epsr.2019.105881_bib0065) 2003; 18 Birchfeld (10.1016/j.epsr.2019.105881_bib0145) 2017; 32 Tostado-Véliz (10.1016/j.epsr.2019.105881_bib0085) 2018 Butcher (10.1016/j.epsr.2019.105881_bib0115) 2008 Li (10.1016/j.epsr.2019.105881_bib0090) 2008; 23 10.1016/j.epsr.2019.105881_bib0160 |
| References_xml | – reference: MATPOWER tests systems. Online: – volume: 18 start-page: 633 year: 2003 end-page: 638 ident: bib0065 article-title: Nondivergent fast power flow methods publication-title: IEEE Trans. Power Syst. – volume: 31 start-page: 1663 year: 2016 end-page: 1664 ident: bib0100 article-title: Analogy and convergence of Levenberg’s and Lyapunov-based methods for power flow analysis publication-title: IEEE Trans. Power Syst. – start-page: 1 year: 2019 end-page: 9 ident: bib0185 article-title: A developed approach based on lagrange linear prediction for time-series power-flow simulation publication-title: Electr. Power Compon. Syst. – volume: PAS-101 start-page: 3648 year: 1982 end-page: 3657 ident: bib0125 article-title: Load-flow solutions for ill-conditioned power systems by a Newton-like method publication-title: IEEE Trans. Power App. Syst. – volume: 26 start-page: 12 year: 2011 end-page: 19 ident: bib0170 article-title: Matpower: steady-state operations, planning and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. – volume: 62 start-page: 916 year: 1974 end-page: 929 ident: bib0025 article-title: Review of load flow calculation methods publication-title: Proc. IEEE – volume: 52 start-page: 3682 year: 2016 end-page: 3693 ident: bib0035 article-title: The formulation of a power flow using publication-title: IEEE Trans. Ind. Appl. – volume: 33 start-page: 6667 year: 2018 end-page: 6674 ident: bib0005 article-title: Power flow convergence and reactive power planning in the creation of large synthetic grids publication-title: IEEE Trans. Power Syst. – volume: 12 start-page: 5723 year: 2018 end-page: 5729 ident: bib0080 article-title: Development of combined Runge-Kutta Broyden’s load flow approach for well and ill-conditioned power systems publication-title: IET Gener. Transm. Distrib. – reference: Univ. Washington, Seattle, IEEE tests systems. Online: – volume: PAS-93 start-page: 859 year: 1974 end-page: 869 ident: bib0020 article-title: Fast decoupled load flow publication-title: IEEE Trans. Power Appar. Syst. – volume: 53 start-page: 64 year: 2013 end-page: 68 ident: bib0030 article-title: Improved NR current injection load flow using power mismatch representation of PV bus publication-title: Int. J. Electr. Power Energy Syst. – start-page: 307 year: 2004 end-page: 314 ident: bib0140 article-title: Acceleration of Runge-Kutta integration schemes publication-title: Disc. Dyn. Nat. Soc. – volume: 94 start-page: 88 year: 2018 end-page: 96 ident: bib0105 article-title: A powerful method for solving the power flow problem in the ill-conditioned systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 105 start-page: 785 year: 2019 end-page: 792 ident: bib0040 article-title: Developed Newton-Raphson based predictor-corrector load flow approach with high convergence rate publication-title: Int. J. Electr. Power Energy Syst. – year: 2008 ident: bib0115 article-title: Numerical Methods for Ordinary Differential Equations – volume: 123 start-page: 285 year: 2013 end-page: 307 ident: bib0135 article-title: A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems publication-title: Acta Appl. Math. – year: 2010 ident: bib0130 article-title: Power System Modelling and Scripting – volume: 33 start-page: 6904 year: 2018 end-page: 6914 ident: bib0095 article-title: Statistical and numerical robust state estimator for heavily loaded power systems publication-title: IEEE Trans. Power Syst. – year: 2010 ident: bib0120 article-title: Power System Analysis – start-page: 304 year: 1991 end-page: 311 ident: bib0175 article-title: The continuation power flow: a tool for steady state voltage stability analysis publication-title: Proceedings] Conference Papers 1991 Power Industry Computer Application Conference – volume: 24 start-page: 870 year: 1988 end-page: 877 ident: bib0060 article-title: A nondiverging polar-form Newton-based power flow publication-title: IEEE Trans. Ind. Appl. – volume: PAS-86 start-page: 1449 year: 1967 end-page: 1460 ident: bib0015 article-title: Power flow solution by Newton’s method publication-title: IEEE Trans. Power Appar. Syst. – volume: vol. 1670 year: 2010 ident: bib0075 article-title: Continuous Newton’s method publication-title: Sobolev Gradients and Differential Equations. Lecture Notes in Mathematics – volume: 23 start-page: 992 year: 2008 end-page: 999 ident: bib0090 article-title: Analysis of probabilistic optimal power flow taking account of the variation of load power publication-title: IEEE Trans. Power Syst. – reference: C. Josz, S. Fliscounakis, J. Maeght, P. Panciatici, AC Power Flow Data in Matpower and QCQP Format: iTesla, RTE Snapshots, and PEGASE. Available: – volume: 32 start-page: 3258 year: 2017 end-page: 3265 ident: bib0145 article-title: Grid structural characteristics as validation criteria for synthetic networks publication-title: IEEE Trans. Power Syst. – volume: 28 start-page: 4909 year: 2013 end-page: 4917 ident: bib0165 article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions publication-title: IEEE Trans. Power Syst. – reference: . – volume: 60 start-page: 378 year: 2014 end-page: 388 ident: bib0070 article-title: Quadratic discriminant index for optimal multiplier load flow method in ill conditioned system publication-title: Int. J. Electr. Power Energy Syst. – volume: 7 start-page: 832 year: 2013 end-page: 842 ident: bib0110 article-title: Dynamic computing paradigm for comprehensive power flow analysis publication-title: IET Gener. Transm. Distrib. – volume: 33 start-page: 6501 year: 2018 end-page: 6509 ident: bib0010 article-title: Modeling, tuning and validating system dynamics in synthetic electric grids publication-title: IEEE Trans. Power Syst. – year: 2018 ident: bib0085 article-title: Development of different load flow methods for solving large-scale ill-conditioned systems publication-title: Int. Trans. Electr. Energy Syst. – volume: PAS-100 start-page: 1736 year: 1981 end-page: 1743 ident: bib0045 article-title: A load flow calculation method for ill-conditioned power systems publication-title: IEEE Trans. Power Appar. Syst. – volume: 24 start-page: 50 year: 2009 end-page: 57 ident: bib0050 article-title: Continuous newton’s method for power flow analysis publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 3017 year: 2016 end-page: 3022 ident: bib0055 article-title: Application of high-order Levenberg-Marquardt method for solving the power flow problem in the ill-conditioned systems publication-title: IET Gener. Transm. Distrib. – volume: 9 start-page: 2768 year: 2015 end-page: 2774 ident: bib0180 article-title: Initialised load-flow analysis based on Lagrange polynomial approximation for efficient quasi-static time-series simulation publication-title: IET Gener. Transm. Distrib. – volume: 33 start-page: 6904 issue: November (6) year: 2018 ident: 10.1016/j.epsr.2019.105881_bib0095 article-title: Statistical and numerical robust state estimator for heavily loaded power systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2849325 – volume: 10 start-page: 3017 issue: 2 year: 2016 ident: 10.1016/j.epsr.2019.105881_bib0055 article-title: Application of high-order Levenberg-Marquardt method for solving the power flow problem in the ill-conditioned systems publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.0064 – volume: 94 start-page: 88 issue: January year: 2018 ident: 10.1016/j.epsr.2019.105881_bib0105 article-title: A powerful method for solving the power flow problem in the ill-conditioned systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.06.032 – year: 2010 ident: 10.1016/j.epsr.2019.105881_bib0120 – volume: 53 start-page: 64 issue: December year: 2013 ident: 10.1016/j.epsr.2019.105881_bib0030 article-title: Improved NR current injection load flow using power mismatch representation of PV bus publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.03.039 – ident: 10.1016/j.epsr.2019.105881_bib0150 – volume: 33 start-page: 6667 issue: November (6) year: 2018 ident: 10.1016/j.epsr.2019.105881_bib0005 article-title: Power flow convergence and reactive power planning in the creation of large synthetic grids publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2813525 – volume: vol. 1670 year: 2010 ident: 10.1016/j.epsr.2019.105881_bib0075 article-title: Continuous Newton’s method – volume: 28 start-page: 4909 issue: November (4) year: 2013 ident: 10.1016/j.epsr.2019.105881_bib0165 article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2251015 – start-page: 304 year: 1991 ident: 10.1016/j.epsr.2019.105881_bib0175 article-title: The continuation power flow: a tool for steady state voltage stability analysis publication-title: Proceedings] Conference Papers 1991 Power Industry Computer Application Conference doi: 10.1109/PICA.1991.160593 – volume: 7 start-page: 832 issue: August (8) year: 2013 ident: 10.1016/j.epsr.2019.105881_bib0110 article-title: Dynamic computing paradigm for comprehensive power flow analysis publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2012.0350 – year: 2010 ident: 10.1016/j.epsr.2019.105881_bib0130 – volume: 9 start-page: 2768 issue: December (16) year: 2015 ident: 10.1016/j.epsr.2019.105881_bib0180 article-title: Initialised load-flow analysis based on Lagrange polynomial approximation for efficient quasi-static time-series simulation publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2015.0866 – volume: PAS-86 start-page: 1449 issue: November year: 1967 ident: 10.1016/j.epsr.2019.105881_bib0015 article-title: Power flow solution by Newton’s method publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1967.291823 – year: 2008 ident: 10.1016/j.epsr.2019.105881_bib0115 – volume: 24 start-page: 870 issue: September-October (5) year: 1988 ident: 10.1016/j.epsr.2019.105881_bib0060 article-title: A nondiverging polar-form Newton-based power flow publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.8993 – year: 2018 ident: 10.1016/j.epsr.2019.105881_bib0085 article-title: Development of different load flow methods for solving large-scale ill-conditioned systems publication-title: Int. Trans. Electr. Energy Syst. – volume: PAS-101 start-page: 3648 issue: October (10) year: 1982 ident: 10.1016/j.epsr.2019.105881_bib0125 article-title: Load-flow solutions for ill-conditioned power systems by a Newton-like method publication-title: IEEE Trans. Power App. Syst. doi: 10.1109/TPAS.1982.317050 – volume: 123 start-page: 285 issue: February (1) year: 2013 ident: 10.1016/j.epsr.2019.105881_bib0135 article-title: A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems publication-title: Acta Appl. Math. doi: 10.1007/s10440-012-9766-3 – volume: 60 start-page: 378 issue: September year: 2014 ident: 10.1016/j.epsr.2019.105881_bib0070 article-title: Quadratic discriminant index for optimal multiplier load flow method in ill conditioned system publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.03.028 – volume: 26 start-page: 12 issue: February (1) year: 2011 ident: 10.1016/j.epsr.2019.105881_bib0170 article-title: Matpower: steady-state operations, planning and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2051168 – start-page: 1 year: 2019 ident: 10.1016/j.epsr.2019.105881_bib0185 article-title: A developed approach based on lagrange linear prediction for time-series power-flow simulation publication-title: Electr. Power Compon. Syst. – volume: 23 start-page: 992 issue: August (3) year: 2008 ident: 10.1016/j.epsr.2019.105881_bib0090 article-title: Analysis of probabilistic optimal power flow taking account of the variation of load power publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 3258 issue: July (4) year: 2017 ident: 10.1016/j.epsr.2019.105881_bib0145 article-title: Grid structural characteristics as validation criteria for synthetic networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2616385 – ident: 10.1016/j.epsr.2019.105881_bib0155 – volume: 62 start-page: 916 issue: July (7) year: 1974 ident: 10.1016/j.epsr.2019.105881_bib0025 article-title: Review of load flow calculation methods publication-title: Proc. IEEE doi: 10.1109/PROC.1974.9544 – start-page: 307 issue: September (2) year: 2004 ident: 10.1016/j.epsr.2019.105881_bib0140 article-title: Acceleration of Runge-Kutta integration schemes publication-title: Disc. Dyn. Nat. Soc. doi: 10.1155/S1026022604311039 – volume: 33 start-page: 6501 issue: November (6) year: 2018 ident: 10.1016/j.epsr.2019.105881_bib0010 article-title: Modeling, tuning and validating system dynamics in synthetic electric grids publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2823702 – volume: 52 start-page: 3682 issue: September-October (5) year: 2016 ident: 10.1016/j.epsr.2019.105881_bib0035 article-title: The formulation of a power flow using d-q reference frame components-part I: balanced 3ϕ systems publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2582827 – volume: 18 start-page: 633 issue: May (2) year: 2003 ident: 10.1016/j.epsr.2019.105881_bib0065 article-title: Nondivergent fast power flow methods publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.810905 – volume: 105 start-page: 785 year: 2019 ident: 10.1016/j.epsr.2019.105881_bib0040 article-title: Developed Newton-Raphson based predictor-corrector load flow approach with high convergence rate publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.09.021 – volume: PAS-100 start-page: 1736 issue: April (4) year: 1981 ident: 10.1016/j.epsr.2019.105881_bib0045 article-title: A load flow calculation method for ill-conditioned power systems publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1981.316511 – volume: 24 start-page: 50 issue: February (1) year: 2009 ident: 10.1016/j.epsr.2019.105881_bib0050 article-title: Continuous newton’s method for power flow analysis publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.2004820 – volume: 31 start-page: 1663 issue: March (2) year: 2016 ident: 10.1016/j.epsr.2019.105881_bib0100 article-title: Analogy and convergence of Levenberg’s and Lyapunov-based methods for power flow analysis publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2415455 – volume: PAS-93 start-page: 859 issue: May (3) year: 1974 ident: 10.1016/j.epsr.2019.105881_bib0020 article-title: Fast decoupled load flow publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1974.293985 – ident: 10.1016/j.epsr.2019.105881_bib0160 – volume: 12 start-page: 5723 issue: November (21) year: 2018 ident: 10.1016/j.epsr.2019.105881_bib0080 article-title: Development of combined Runge-Kutta Broyden’s load flow approach for well and ill-conditioned power systems publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2018.5633 |
| SSID | ssj0006975 |
| Score | 2.3646085 |
| Snippet | •Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The... Based on Continuous Newton's method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105881 |
| SubjectTerms | Adequacy Conditioning Electric power Ill-conditioned power systems Load flow Newton methods Numerical analysis Numerical methods Robust methods Robustness (mathematics) Runge-Kutta method Runge–Kutta formulas Scalability Solvers |
| Title | Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas |
| URI | https://dx.doi.org/10.1016/j.epsr.2019.105881 https://www.proquest.com/docview/2288677057 |
| Volume | 174 |
| WOSCitedRecordID | wos000474498500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kN7KH3StGnRobfFYFt-6RhCSptCKE1a9ib0sGGDay9re0l7yn_IP-wv6ehlLxsa2kIvxoiVtWg-jUajmW8QepuoKCzDigYmtDFRNAtoqlQgozykXBAiY1tsIj87KxYL-mk2--5zYTZ13jTF1RVd_VdRQxsIW6fO_oW4x49CA7yD0OEJYofnHwn-eLuy4HwDrzrKdd2KobPR5KVhjdAxAHXLVVDVuqqcp3Lt5npfU_oO4TPogdIHQ5CPQ99zk-s41C6iyDv0TSWdpZyvdMU1xw2tbyO2HGXGjw2GqGqDr_Zuvl7-cLlCsp0ulPg3GzVwzuvJUX06rKGjN7PlspPttrMimqKxnAftVhaNzdyCk2yeU0eJbRVxkRMQq3NPek1tC_rc0vrWAXEJG3inKV4jqqsXF7YUzA6b9rkeTI8FhmtoeQj24zyloBD3jz6cLE7HbTyjhqV5_HMu48oGB-6O9DurZmd_N0bLxSP00J028JFFyWM0K5sn6MEWB-VTxCa84LbCDi_Y4gUDXvCIFzziBU94wQYvGHobvPy8vjFIwR4pz9CXdycXx-8DV3UjkGC99YHkgoLZJ4mMVKYv6mmW0CQSiVIyh_ZQL-iyqOCcWYg4UlLQKs04qaSoRJwW5Dnaa9qmfIEw4UokqRKqTGlCORegMQiohiyt0jCm4gBFftaYdJT0ujJKzXzs4SXTM830TDM70wdoPvZZWUKWO3-demEwZ1JaU5EBdu7sd-glx9za7lgcF5r9EU44L__xs6_Q_WlVHKK9fj2Ur9E9uemX3fqNQ-AvtKOoQA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+various+robust+and+efficient+load-flow+techniques+based+on+Runge%E2%80%93Kutta+formulas&rft.jtitle=Electric+power+systems+research&rft.au=Tostado-V%C3%A9liz%2C+Marcos&rft.au=Kamel%2C+Salah&rft.au=Jurado%2C+Francisco&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=174&rft_id=info:doi/10.1016%2Fj.epsr.2019.105881&rft.externalDocID=S0378779619302007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |