Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas

•Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The proposed techniques are faster than RK4 and robust enough.•Medium and large-scale ill-conditioned power systems.•Lower order methods might be...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electric power systems research Ročník 174; s. 105881
Hlavní autori: Tostado-Véliz, Marcos, Kamel, Salah, Jurado, Francisco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.09.2019
Elsevier Science Ltd
Predmet:
ISSN:0378-7796, 1873-2046
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The proposed techniques are faster than RK4 and robust enough.•Medium and large-scale ill-conditioned power systems.•Lower order methods might be as robust as higher order ones but more efficient. Based on Continuous Newton’s method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on 4th order Runge–Kutta formula (RK4) and Adams–Bashfort’s methods (AB) have been proposed. However, there is a huge variety of numerical methods whose adequacy for solving the LF problem has not been explored yet. This paper tries to fill this gap by proposing several LF solvers based on Runge–Kutta (RK) formulas. Thus, several LF techniques based on Midpoint (MP), 3rd order Heun (H3), Simpson 3/8 (S3/8) and an accelerated 3rd order Runge–Kutta (ARK3) formulas are proposed. The performance of the proposed LF techniques is assessed using several medium and large-scale ill-conditioned power systems. The proposed techniques are compared with RK4, AB and other robust LF methods. In addition, their scalability and influence of the loading level are analyzed. The obtained results prove that the proposed LF techniques are faster than RK4 and robust enough to successfully tackle medium and large-scale ill-conditioned power systems. As main conclusion, it is proved that lower order methods might be as robust as higher order ones but more efficient. Therefore, its usage with respect higher order methods (e.g. 4th order ones), should be frequently preferable.
AbstractList •Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The proposed techniques are faster than RK4 and robust enough.•Medium and large-scale ill-conditioned power systems.•Lower order methods might be as robust as higher order ones but more efficient. Based on Continuous Newton’s method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on 4th order Runge–Kutta formula (RK4) and Adams–Bashfort’s methods (AB) have been proposed. However, there is a huge variety of numerical methods whose adequacy for solving the LF problem has not been explored yet. This paper tries to fill this gap by proposing several LF solvers based on Runge–Kutta (RK) formulas. Thus, several LF techniques based on Midpoint (MP), 3rd order Heun (H3), Simpson 3/8 (S3/8) and an accelerated 3rd order Runge–Kutta (ARK3) formulas are proposed. The performance of the proposed LF techniques is assessed using several medium and large-scale ill-conditioned power systems. The proposed techniques are compared with RK4, AB and other robust LF methods. In addition, their scalability and influence of the loading level are analyzed. The obtained results prove that the proposed LF techniques are faster than RK4 and robust enough to successfully tackle medium and large-scale ill-conditioned power systems. As main conclusion, it is proved that lower order methods might be as robust as higher order ones but more efficient. Therefore, its usage with respect higher order methods (e.g. 4th order ones), should be frequently preferable.
Based on Continuous Newton's method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on 4th order Runge–Kutta formula (RK4) and Adams–Bashfort's methods (AB) have been proposed. However, there is a huge variety of numerical methods whose adequacy for solving the LF problem has not been explored yet. This paper tries to fill this gap by proposing several LF solvers based on Runge–Kutta (RK) formulas. Thus, several LF techniques based on Midpoint (MP), 3rd order Heun (H3), Simpson 3/8 (S3/8) and an accelerated 3rd order Runge–Kutta (ARK3) formulas are proposed. The performance of the proposed LF techniques is assessed using several medium and large-scale ill-conditioned power systems. The proposed techniques are compared with RK4, AB and other robust LF methods. In addition, their scalability and influence of the loading level are analyzed. The obtained results prove that the proposed LF techniques are faster than RK4 and robust enough to successfully tackle medium and large-scale ill-conditioned power systems. As main conclusion, it is proved that lower order methods might be as robust as higher order ones but more efficient. Therefore, its usage with respect higher order methods (e.g. 4th order ones), should be frequently preferable.
ArticleNumber 105881
Author Kamel, Salah
Jurado, Francisco
Tostado-Véliz, Marcos
Author_xml – sequence: 1
  givenname: Marcos
  surname: Tostado-Véliz
  fullname: Tostado-Véliz, Marcos
  email: mtostado@ujaen.es
  organization: Department of Electrical Engineering, University of Jaén, 23700 EPS Linares, Jaén, Spain
– sequence: 2
  givenname: Salah
  surname: Kamel
  fullname: Kamel, Salah
  email: skamel@aswu.edu.eg
  organization: Department of Electrical Engineering, Faculty of Engineering, Aswan University, 81542 Aswan, Egypt
– sequence: 3
  givenname: Francisco
  orcidid: 0000-0001-8122-7415
  surname: Jurado
  fullname: Jurado, Francisco
  email: fjurado@ujaen.es
  organization: Department of Electrical Engineering, University of Jaén, 23700 EPS Linares, Jaén, Spain
BookMark eNp9kMtKxDAUQIOM4MzoD7gKuO6Y9JGk4EYGXygIouuQ5qEpnWRM0hF3_oN_6JfYUlcuZnUvl3vu4yzAzHmnATjFaIURJuftSm9jWOUI10OhYgwfgDlmtMhyVJIZmKOCsozSmhyBRYwtQojUtJoDvvabrQg2ege9gbsh9X2EwTd9TFA4BbUxVlrtEuy8UJnp_AdMWr45-97rCBsRtYID_dS7V_3z9X3fpySg8WHTdyIeg0MjuqhP_uISvFxfPa9vs4fHm7v15UMmC4ZTJkVTY4ZlIbEiiNC8JmVd4qZUStKhjkpVE81MxSrW5FjJpjYVEYWRjWnyihVLcDbN3QY_3pV46_vghpU8zxkjlKKKDl351CWDjzFow7fBbkT45BjxUSRv-SiSjyL5JHKA2D9I2iSS9S4FYbv96MWE6uH1ndWBx1Gl1MoGLRNX3u7DfwHArpMA
CitedBy_id crossref_primary_10_3390_math10081279
crossref_primary_10_1016_j_ijepes_2020_106264
crossref_primary_10_3390_en14237989
crossref_primary_10_1109_ACCESS_2021_3102447
crossref_primary_10_1049_iet_gtd_2019_1077
crossref_primary_10_1016_j_ijepes_2020_105869
crossref_primary_10_3390_app11136147
crossref_primary_10_1109_ACCESS_2021_3134868
crossref_primary_10_1016_j_ijepes_2024_110064
crossref_primary_10_1002_2050_7038_13194
crossref_primary_10_1016_j_epsr_2022_108326
crossref_primary_10_1109_ACCESS_2021_3114969
crossref_primary_10_1109_ACCESS_2020_2975058
crossref_primary_10_1049_gtd2_12039
crossref_primary_10_3390_en14144108
Cites_doi 10.1109/TPWRS.2018.2849325
10.1049/iet-gtd.2016.0064
10.1016/j.ijepes.2017.06.032
10.1016/j.ijepes.2013.03.039
10.1109/TPWRS.2018.2813525
10.1109/TPWRS.2013.2251015
10.1109/PICA.1991.160593
10.1049/iet-gtd.2012.0350
10.1049/iet-gtd.2015.0866
10.1109/TPAS.1967.291823
10.1109/28.8993
10.1109/TPAS.1982.317050
10.1007/s10440-012-9766-3
10.1016/j.ijepes.2014.03.028
10.1109/TPWRS.2010.2051168
10.1109/TPWRS.2016.2616385
10.1109/PROC.1974.9544
10.1155/S1026022604311039
10.1109/TPWRS.2018.2823702
10.1109/TIA.2016.2582827
10.1109/TPWRS.2003.810905
10.1016/j.ijepes.2018.09.021
10.1109/TPAS.1981.316511
10.1109/TPWRS.2008.2004820
10.1109/TPWRS.2015.2415455
10.1109/TPAS.1974.293985
10.1049/iet-gtd.2018.5633
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 2019
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2019.105881
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2019_105881
S0378779619302007
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c381t-cab9181c3c1d60672964941b4ddc781c04d96e8f5858b21dcb9f56a3fcbfb2583
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474498500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sun Nov 09 08:44:32 EST 2025
Tue Nov 18 22:36:11 EST 2025
Sat Nov 29 06:43:35 EST 2025
Fri Feb 23 02:49:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robust methods
Ill-conditioned power systems
Runge–Kutta formulas
Load flow
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-cab9181c3c1d60672964941b4ddc781c04d96e8f5858b21dcb9f56a3fcbfb2583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8122-7415
PQID 2288677057
PQPubID 2047565
ParticipantIDs proquest_journals_2288677057
crossref_primary_10_1016_j_epsr_2019_105881
crossref_citationtrail_10_1016_j_epsr_2019_105881
elsevier_sciencedirect_doi_10_1016_j_epsr_2019_105881
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Milano (bib0100) 2016; 31
Pourbagher, Derakhshandeh (bib0105) 2018; 94
Pourbagher, Derakhshandeh (bib0055) 2016; 10
Saadat (bib0120) 2010
Milano (bib0050) 2009; 24
MATPOWER tests systems. Online
Neuberger (bib0075) 2010; vol. 1670
Tinney, Hart (bib0015) 1967; PAS-86
Butcher (bib0115) 2008
Fliscounakis, Panciatici, Capitanescu, Wehenkel (bib0165) 2013; 28
Phohomsiri, Udwadia (bib0140) 2004
Tostado-Véliz, Kamel, Jurado (bib0080) 2018; 12
Tripathy, Durga-Prasad, Malik, Hope (bib0125) 1982; PAS-101
Xie, Torelli, Bompard, Vaccaro (bib0110) 2013; 7
Selim, Abdel-Akher, Kamel, Aly (bib0185) 2019
Bijwe, Kelapure (bib0065) 2003; 18
Univ. Washington, Seattle, IEEE tests systems. Online
Tostado, Kamel, Jurado (bib0040) 2019; 105
Stott, Alsac (bib0020) 1974; PAS-93
Ajjarapu, Christy (bib0175) 1991
Liu (bib0135) 2013; 123
Birchfeld (bib0145) 2017; 32
Shahriari (bib0070) 2014; 60
.
Abdel-Akher, Selim, Aly (bib0180) 2015; 9
C. Josz, S. Fliscounakis, J. Maeght, P. Panciatici, AC Power Flow Data in Matpower and QCQP Format: iTesla, RTE Snapshots, and PEGASE. Available
Birchfield, Xu, Overbye (bib0005) 2018; 33
Kamel, Abdel-Akher, Jurado (bib0030) 2013; 53
Zimmerman, Murillo-Sánchez, Thomas (bib0170) 2011; 26
Li, Li, Zhang (bib0090) 2008; 23
Tostado-Véliz, Kamel, Jurado (bib0085) 2018
Milano (bib0130) 2010
Stott (bib0025) 1974; 62
Iwamoto, Tamura (bib0045) 1981; PAS-100
Schaffer, Tylavsky (bib0060) 1988; 24
Saleh (bib0035) 2016; 52
Xu, Birchfield, Overbye (bib0010) 2018; 33
Zhao, Mili, Pires (bib0095) 2018; 33
Shahriari (10.1016/j.epsr.2019.105881_bib0070) 2014; 60
Pourbagher (10.1016/j.epsr.2019.105881_bib0055) 2016; 10
Liu (10.1016/j.epsr.2019.105881_bib0135) 2013; 123
Birchfield (10.1016/j.epsr.2019.105881_bib0005) 2018; 33
Ajjarapu (10.1016/j.epsr.2019.105881_bib0175) 1991
Stott (10.1016/j.epsr.2019.105881_bib0025) 1974; 62
Abdel-Akher (10.1016/j.epsr.2019.105881_bib0180) 2015; 9
10.1016/j.epsr.2019.105881_bib0155
Tinney (10.1016/j.epsr.2019.105881_bib0015) 1967; PAS-86
Schaffer (10.1016/j.epsr.2019.105881_bib0060) 1988; 24
Kamel (10.1016/j.epsr.2019.105881_bib0030) 2013; 53
Xie (10.1016/j.epsr.2019.105881_bib0110) 2013; 7
Zimmerman (10.1016/j.epsr.2019.105881_bib0170) 2011; 26
Pourbagher (10.1016/j.epsr.2019.105881_bib0105) 2018; 94
Tostado-Véliz (10.1016/j.epsr.2019.105881_bib0080) 2018; 12
10.1016/j.epsr.2019.105881_bib0150
Stott (10.1016/j.epsr.2019.105881_bib0020) 1974; PAS-93
Milano (10.1016/j.epsr.2019.105881_bib0100) 2016; 31
Neuberger (10.1016/j.epsr.2019.105881_bib0075) 2010; vol. 1670
Zhao (10.1016/j.epsr.2019.105881_bib0095) 2018; 33
Phohomsiri (10.1016/j.epsr.2019.105881_bib0140) 2004
Fliscounakis (10.1016/j.epsr.2019.105881_bib0165) 2013; 28
Xu (10.1016/j.epsr.2019.105881_bib0010) 2018; 33
Selim (10.1016/j.epsr.2019.105881_bib0185) 2019
Saleh (10.1016/j.epsr.2019.105881_bib0035) 2016; 52
Milano (10.1016/j.epsr.2019.105881_bib0050) 2009; 24
Saadat (10.1016/j.epsr.2019.105881_bib0120) 2010
Tripathy (10.1016/j.epsr.2019.105881_bib0125) 1982; PAS-101
Iwamoto (10.1016/j.epsr.2019.105881_bib0045) 1981; PAS-100
Tostado (10.1016/j.epsr.2019.105881_bib0040) 2019; 105
Milano (10.1016/j.epsr.2019.105881_bib0130) 2010
Bijwe (10.1016/j.epsr.2019.105881_bib0065) 2003; 18
Birchfeld (10.1016/j.epsr.2019.105881_bib0145) 2017; 32
Tostado-Véliz (10.1016/j.epsr.2019.105881_bib0085) 2018
Butcher (10.1016/j.epsr.2019.105881_bib0115) 2008
Li (10.1016/j.epsr.2019.105881_bib0090) 2008; 23
10.1016/j.epsr.2019.105881_bib0160
References_xml – reference: MATPOWER tests systems. Online:
– volume: 18
  start-page: 633
  year: 2003
  end-page: 638
  ident: bib0065
  article-title: Nondivergent fast power flow methods
  publication-title: IEEE Trans. Power Syst.
– volume: 31
  start-page: 1663
  year: 2016
  end-page: 1664
  ident: bib0100
  article-title: Analogy and convergence of Levenberg’s and Lyapunov-based methods for power flow analysis
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib0185
  article-title: A developed approach based on lagrange linear prediction for time-series power-flow simulation
  publication-title: Electr. Power Compon. Syst.
– volume: PAS-101
  start-page: 3648
  year: 1982
  end-page: 3657
  ident: bib0125
  article-title: Load-flow solutions for ill-conditioned power systems by a Newton-like method
  publication-title: IEEE Trans. Power App. Syst.
– volume: 26
  start-page: 12
  year: 2011
  end-page: 19
  ident: bib0170
  article-title: Matpower: steady-state operations, planning and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
– volume: 62
  start-page: 916
  year: 1974
  end-page: 929
  ident: bib0025
  article-title: Review of load flow calculation methods
  publication-title: Proc. IEEE
– volume: 52
  start-page: 3682
  year: 2016
  end-page: 3693
  ident: bib0035
  article-title: The formulation of a power flow using
  publication-title: IEEE Trans. Ind. Appl.
– volume: 33
  start-page: 6667
  year: 2018
  end-page: 6674
  ident: bib0005
  article-title: Power flow convergence and reactive power planning in the creation of large synthetic grids
  publication-title: IEEE Trans. Power Syst.
– volume: 12
  start-page: 5723
  year: 2018
  end-page: 5729
  ident: bib0080
  article-title: Development of combined Runge-Kutta Broyden’s load flow approach for well and ill-conditioned power systems
  publication-title: IET Gener. Transm. Distrib.
– reference: Univ. Washington, Seattle, IEEE tests systems. Online:
– volume: PAS-93
  start-page: 859
  year: 1974
  end-page: 869
  ident: bib0020
  article-title: Fast decoupled load flow
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 53
  start-page: 64
  year: 2013
  end-page: 68
  ident: bib0030
  article-title: Improved NR current injection load flow using power mismatch representation of PV bus
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 307
  year: 2004
  end-page: 314
  ident: bib0140
  article-title: Acceleration of Runge-Kutta integration schemes
  publication-title: Disc. Dyn. Nat. Soc.
– volume: 94
  start-page: 88
  year: 2018
  end-page: 96
  ident: bib0105
  article-title: A powerful method for solving the power flow problem in the ill-conditioned systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 105
  start-page: 785
  year: 2019
  end-page: 792
  ident: bib0040
  article-title: Developed Newton-Raphson based predictor-corrector load flow approach with high convergence rate
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2008
  ident: bib0115
  article-title: Numerical Methods for Ordinary Differential Equations
– volume: 123
  start-page: 285
  year: 2013
  end-page: 307
  ident: bib0135
  article-title: A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems
  publication-title: Acta Appl. Math.
– year: 2010
  ident: bib0130
  article-title: Power System Modelling and Scripting
– volume: 33
  start-page: 6904
  year: 2018
  end-page: 6914
  ident: bib0095
  article-title: Statistical and numerical robust state estimator for heavily loaded power systems
  publication-title: IEEE Trans. Power Syst.
– year: 2010
  ident: bib0120
  article-title: Power System Analysis
– start-page: 304
  year: 1991
  end-page: 311
  ident: bib0175
  article-title: The continuation power flow: a tool for steady state voltage stability analysis
  publication-title: Proceedings] Conference Papers 1991 Power Industry Computer Application Conference
– volume: 24
  start-page: 870
  year: 1988
  end-page: 877
  ident: bib0060
  article-title: A nondiverging polar-form Newton-based power flow
  publication-title: IEEE Trans. Ind. Appl.
– volume: PAS-86
  start-page: 1449
  year: 1967
  end-page: 1460
  ident: bib0015
  article-title: Power flow solution by Newton’s method
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: vol. 1670
  year: 2010
  ident: bib0075
  article-title: Continuous Newton’s method
  publication-title: Sobolev Gradients and Differential Equations. Lecture Notes in Mathematics
– volume: 23
  start-page: 992
  year: 2008
  end-page: 999
  ident: bib0090
  article-title: Analysis of probabilistic optimal power flow taking account of the variation of load power
  publication-title: IEEE Trans. Power Syst.
– reference: C. Josz, S. Fliscounakis, J. Maeght, P. Panciatici, AC Power Flow Data in Matpower and QCQP Format: iTesla, RTE Snapshots, and PEGASE. Available:
– volume: 32
  start-page: 3258
  year: 2017
  end-page: 3265
  ident: bib0145
  article-title: Grid structural characteristics as validation criteria for synthetic networks
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 4909
  year: 2013
  end-page: 4917
  ident: bib0165
  article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions
  publication-title: IEEE Trans. Power Syst.
– reference: .
– volume: 60
  start-page: 378
  year: 2014
  end-page: 388
  ident: bib0070
  article-title: Quadratic discriminant index for optimal multiplier load flow method in ill conditioned system
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 7
  start-page: 832
  year: 2013
  end-page: 842
  ident: bib0110
  article-title: Dynamic computing paradigm for comprehensive power flow analysis
  publication-title: IET Gener. Transm. Distrib.
– volume: 33
  start-page: 6501
  year: 2018
  end-page: 6509
  ident: bib0010
  article-title: Modeling, tuning and validating system dynamics in synthetic electric grids
  publication-title: IEEE Trans. Power Syst.
– year: 2018
  ident: bib0085
  article-title: Development of different load flow methods for solving large-scale ill-conditioned systems
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: PAS-100
  start-page: 1736
  year: 1981
  end-page: 1743
  ident: bib0045
  article-title: A load flow calculation method for ill-conditioned power systems
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 24
  start-page: 50
  year: 2009
  end-page: 57
  ident: bib0050
  article-title: Continuous newton’s method for power flow analysis
  publication-title: IEEE Trans. Power Syst.
– volume: 10
  start-page: 3017
  year: 2016
  end-page: 3022
  ident: bib0055
  article-title: Application of high-order Levenberg-Marquardt method for solving the power flow problem in the ill-conditioned systems
  publication-title: IET Gener. Transm. Distrib.
– volume: 9
  start-page: 2768
  year: 2015
  end-page: 2774
  ident: bib0180
  article-title: Initialised load-flow analysis based on Lagrange polynomial approximation for efficient quasi-static time-series simulation
  publication-title: IET Gener. Transm. Distrib.
– volume: 33
  start-page: 6904
  issue: November (6)
  year: 2018
  ident: 10.1016/j.epsr.2019.105881_bib0095
  article-title: Statistical and numerical robust state estimator for heavily loaded power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2849325
– volume: 10
  start-page: 3017
  issue: 2
  year: 2016
  ident: 10.1016/j.epsr.2019.105881_bib0055
  article-title: Application of high-order Levenberg-Marquardt method for solving the power flow problem in the ill-conditioned systems
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.0064
– volume: 94
  start-page: 88
  issue: January
  year: 2018
  ident: 10.1016/j.epsr.2019.105881_bib0105
  article-title: A powerful method for solving the power flow problem in the ill-conditioned systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.06.032
– year: 2010
  ident: 10.1016/j.epsr.2019.105881_bib0120
– volume: 53
  start-page: 64
  issue: December
  year: 2013
  ident: 10.1016/j.epsr.2019.105881_bib0030
  article-title: Improved NR current injection load flow using power mismatch representation of PV bus
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.03.039
– ident: 10.1016/j.epsr.2019.105881_bib0150
– volume: 33
  start-page: 6667
  issue: November (6)
  year: 2018
  ident: 10.1016/j.epsr.2019.105881_bib0005
  article-title: Power flow convergence and reactive power planning in the creation of large synthetic grids
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2813525
– volume: vol. 1670
  year: 2010
  ident: 10.1016/j.epsr.2019.105881_bib0075
  article-title: Continuous Newton’s method
– volume: 28
  start-page: 4909
  issue: November (4)
  year: 2013
  ident: 10.1016/j.epsr.2019.105881_bib0165
  article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2251015
– start-page: 304
  year: 1991
  ident: 10.1016/j.epsr.2019.105881_bib0175
  article-title: The continuation power flow: a tool for steady state voltage stability analysis
  publication-title: Proceedings] Conference Papers 1991 Power Industry Computer Application Conference
  doi: 10.1109/PICA.1991.160593
– volume: 7
  start-page: 832
  issue: August (8)
  year: 2013
  ident: 10.1016/j.epsr.2019.105881_bib0110
  article-title: Dynamic computing paradigm for comprehensive power flow analysis
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2012.0350
– year: 2010
  ident: 10.1016/j.epsr.2019.105881_bib0130
– volume: 9
  start-page: 2768
  issue: December (16)
  year: 2015
  ident: 10.1016/j.epsr.2019.105881_bib0180
  article-title: Initialised load-flow analysis based on Lagrange polynomial approximation for efficient quasi-static time-series simulation
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2015.0866
– volume: PAS-86
  start-page: 1449
  issue: November
  year: 1967
  ident: 10.1016/j.epsr.2019.105881_bib0015
  article-title: Power flow solution by Newton’s method
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1967.291823
– year: 2008
  ident: 10.1016/j.epsr.2019.105881_bib0115
– volume: 24
  start-page: 870
  issue: September-October (5)
  year: 1988
  ident: 10.1016/j.epsr.2019.105881_bib0060
  article-title: A nondiverging polar-form Newton-based power flow
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.8993
– year: 2018
  ident: 10.1016/j.epsr.2019.105881_bib0085
  article-title: Development of different load flow methods for solving large-scale ill-conditioned systems
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: PAS-101
  start-page: 3648
  issue: October (10)
  year: 1982
  ident: 10.1016/j.epsr.2019.105881_bib0125
  article-title: Load-flow solutions for ill-conditioned power systems by a Newton-like method
  publication-title: IEEE Trans. Power App. Syst.
  doi: 10.1109/TPAS.1982.317050
– volume: 123
  start-page: 285
  issue: February (1)
  year: 2013
  ident: 10.1016/j.epsr.2019.105881_bib0135
  article-title: A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-012-9766-3
– volume: 60
  start-page: 378
  issue: September
  year: 2014
  ident: 10.1016/j.epsr.2019.105881_bib0070
  article-title: Quadratic discriminant index for optimal multiplier load flow method in ill conditioned system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.03.028
– volume: 26
  start-page: 12
  issue: February (1)
  year: 2011
  ident: 10.1016/j.epsr.2019.105881_bib0170
  article-title: Matpower: steady-state operations, planning and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2051168
– start-page: 1
  year: 2019
  ident: 10.1016/j.epsr.2019.105881_bib0185
  article-title: A developed approach based on lagrange linear prediction for time-series power-flow simulation
  publication-title: Electr. Power Compon. Syst.
– volume: 23
  start-page: 992
  issue: August (3)
  year: 2008
  ident: 10.1016/j.epsr.2019.105881_bib0090
  article-title: Analysis of probabilistic optimal power flow taking account of the variation of load power
  publication-title: IEEE Trans. Power Syst.
– volume: 32
  start-page: 3258
  issue: July (4)
  year: 2017
  ident: 10.1016/j.epsr.2019.105881_bib0145
  article-title: Grid structural characteristics as validation criteria for synthetic networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2616385
– ident: 10.1016/j.epsr.2019.105881_bib0155
– volume: 62
  start-page: 916
  issue: July (7)
  year: 1974
  ident: 10.1016/j.epsr.2019.105881_bib0025
  article-title: Review of load flow calculation methods
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1974.9544
– start-page: 307
  issue: September (2)
  year: 2004
  ident: 10.1016/j.epsr.2019.105881_bib0140
  article-title: Acceleration of Runge-Kutta integration schemes
  publication-title: Disc. Dyn. Nat. Soc.
  doi: 10.1155/S1026022604311039
– volume: 33
  start-page: 6501
  issue: November (6)
  year: 2018
  ident: 10.1016/j.epsr.2019.105881_bib0010
  article-title: Modeling, tuning and validating system dynamics in synthetic electric grids
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2823702
– volume: 52
  start-page: 3682
  issue: September-October (5)
  year: 2016
  ident: 10.1016/j.epsr.2019.105881_bib0035
  article-title: The formulation of a power flow using d-q reference frame components-part I: balanced 3ϕ systems
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2582827
– volume: 18
  start-page: 633
  issue: May (2)
  year: 2003
  ident: 10.1016/j.epsr.2019.105881_bib0065
  article-title: Nondivergent fast power flow methods
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.810905
– volume: 105
  start-page: 785
  year: 2019
  ident: 10.1016/j.epsr.2019.105881_bib0040
  article-title: Developed Newton-Raphson based predictor-corrector load flow approach with high convergence rate
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.09.021
– volume: PAS-100
  start-page: 1736
  issue: April (4)
  year: 1981
  ident: 10.1016/j.epsr.2019.105881_bib0045
  article-title: A load flow calculation method for ill-conditioned power systems
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1981.316511
– volume: 24
  start-page: 50
  issue: February (1)
  year: 2009
  ident: 10.1016/j.epsr.2019.105881_bib0050
  article-title: Continuous newton’s method for power flow analysis
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2004820
– volume: 31
  start-page: 1663
  issue: March (2)
  year: 2016
  ident: 10.1016/j.epsr.2019.105881_bib0100
  article-title: Analogy and convergence of Levenberg’s and Lyapunov-based methods for power flow analysis
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2415455
– volume: PAS-93
  start-page: 859
  issue: May (3)
  year: 1974
  ident: 10.1016/j.epsr.2019.105881_bib0020
  article-title: Fast decoupled load flow
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1974.293985
– ident: 10.1016/j.epsr.2019.105881_bib0160
– volume: 12
  start-page: 5723
  issue: November (21)
  year: 2018
  ident: 10.1016/j.epsr.2019.105881_bib0080
  article-title: Development of combined Runge-Kutta Broyden’s load flow approach for well and ill-conditioned power systems
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5633
SSID ssj0006975
Score 2.3646085
Snippet •Runge–Kutta formula (RK4) and Adams–Bashfort’s methods have been proposed.•Numerical methods for solving the load flow problem has not been explored yet.•The...
Based on Continuous Newton's method, any well-assessed numerical scheme can be adapted for solving the Load-Flow (LF) problem. So far, LF techniques based on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105881
SubjectTerms Adequacy
Conditioning
Electric power
Ill-conditioned power systems
Load flow
Newton methods
Numerical analysis
Numerical methods
Robust methods
Robustness (mathematics)
Runge-Kutta method
Runge–Kutta formulas
Scalability
Solvers
Title Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas
URI https://dx.doi.org/10.1016/j.epsr.2019.105881
https://www.proquest.com/docview/2288677057
Volume 174
WOSCitedRecordID wos000474498500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kN7KH3StGnRobfFYFt-6RhCSptCKE1a9ib0sGGDay9re0l7yn_IP-wv6ehlLxsa2kIvxoiVtWg-jUajmW8QepuoKCzDigYmtDFRNAtoqlQgozykXBAiY1tsIj87KxYL-mk2--5zYTZ13jTF1RVd_VdRQxsIW6fO_oW4x49CA7yD0OEJYofnHwn-eLuy4HwDrzrKdd2KobPR5KVhjdAxAHXLVVDVuqqcp3Lt5npfU_oO4TPogdIHQ5CPQ99zk-s41C6iyDv0TSWdpZyvdMU1xw2tbyO2HGXGjw2GqGqDr_Zuvl7-cLlCsp0ulPg3GzVwzuvJUX06rKGjN7PlspPttrMimqKxnAftVhaNzdyCk2yeU0eJbRVxkRMQq3NPek1tC_rc0vrWAXEJG3inKV4jqqsXF7YUzA6b9rkeTI8FhmtoeQj24zyloBD3jz6cLE7HbTyjhqV5_HMu48oGB-6O9DurZmd_N0bLxSP00J028JFFyWM0K5sn6MEWB-VTxCa84LbCDi_Y4gUDXvCIFzziBU94wQYvGHobvPy8vjFIwR4pz9CXdycXx-8DV3UjkGC99YHkgoLZJ4mMVKYv6mmW0CQSiVIyh_ZQL-iyqOCcWYg4UlLQKs04qaSoRJwW5Dnaa9qmfIEw4UokqRKqTGlCORegMQiohiyt0jCm4gBFftaYdJT0ujJKzXzs4SXTM830TDM70wdoPvZZWUKWO3-demEwZ1JaU5EBdu7sd-glx9za7lgcF5r9EU44L__xs6_Q_WlVHKK9fj2Ur9E9uemX3fqNQ-AvtKOoQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+various+robust+and+efficient+load-flow+techniques+based+on+Runge%E2%80%93Kutta+formulas&rft.jtitle=Electric+power+systems+research&rft.au=Tostado-V%C3%A9liz%2C+Marcos&rft.au=Kamel%2C+Salah&rft.au=Jurado%2C+Francisco&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=174&rft_id=info:doi/10.1016%2Fj.epsr.2019.105881&rft.externalDocID=S0378779619302007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon