Generalized Fuzzy C-Means Clustering Algorithm With Improved Fuzzy Partitions
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called...
Uloženo v:
| Vydáno v: | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Ročník 39; číslo 3; s. 578 - 591 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.06.2009
|
| Témata: | |
| ISSN: | 1083-4419, 1941-0492, 1941-0492 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L p norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities. |
|---|---|
| AbstractList | The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities. The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L sub(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities. The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities. |
| Author | Fu-Lai Chung Lin Zhu Shitong Wang |
| Author_xml | – sequence: 1 givenname: Lin surname: Zhu fullname: Zhu, Lin organization: School of Information Technology, Southern Yangtze University, Wuxi 214036, China – sequence: 2 givenname: Fu-Lai surname: Chung fullname: Chung, Fu-Lai – sequence: 3 givenname: Shitong surname: Wang fullname: Wang, Shitong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19174354$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LxDAQhoMofqz-AQXpSbx0zaTZNjlq8QtcFFQ8hphONNIPTVrB_fVm3XUPHrxM5vA8w0zeHbLedi0Ssg90DEDlycP9tDwbM0rFvHABYo1sg-SQUi7ZeuypyFLOQW6RnRDeKKWSymKTbIGEgmcTvk2ml9ii17WbYZVcDLPZV1KmU9RtSMp6CD16174kp_VL513_2iRPsSbXzbvvPlfCnfa9613Xhl2yYXUdcG_5jsjjxflDeZXe3F5el6c3qckE9KkR1qKxnGtRYE5RcLTcVlBlwKTWmoEwTBRa2AnmaLCqZGZlnkUKn42ushE5WsyNe3wMGHrVuGCwrnWL3RBUXgDkUsgIHv8LQiQZE0zSiB4u0eG5wUq9e9do_6V-_yoCYgEY34Xg0Srjej2_u_fa1QqomseifmJR81jUMpaosj_qavp_0sFCcoi4EniRUwaT7BuoMJmg |
| CODEN | ITSCFI |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2016_10_006 crossref_primary_10_1186_1687_6180_2013_162 crossref_primary_10_1016_j_asoc_2011_07_002 crossref_primary_10_1109_TFUZZ_2020_2985004 crossref_primary_10_1016_j_knosys_2021_107769 crossref_primary_10_1016_j_ijar_2025_109552 crossref_primary_10_1016_j_asoc_2019_02_038 crossref_primary_10_5721_EuJRS20144726 crossref_primary_10_1016_j_dsp_2012_09_016 crossref_primary_10_1016_j_patcog_2018_04_006 crossref_primary_10_1109_TIP_2022_3154922 crossref_primary_10_1016_j_ins_2023_119087 crossref_primary_10_1007_s40815_025_02081_2 crossref_primary_10_1016_j_asoc_2022_109574 crossref_primary_10_1088_1742_6596_2025_1_012046 crossref_primary_10_1109_TCYB_2016_2627686 crossref_primary_10_1016_j_sigpro_2020_107483 crossref_primary_10_1109_TIP_2012_2219547 crossref_primary_10_3389_fnins_2021_662674 crossref_primary_10_1007_s11042_023_14512_z crossref_primary_10_1016_j_knosys_2016_12_006 crossref_primary_10_1109_TFUZZ_2018_2856081 crossref_primary_10_1007_s10586_017_1371_9 crossref_primary_10_1016_j_asoc_2012_05_015 crossref_primary_10_1016_j_asoc_2013_03_002 crossref_primary_10_1007_s11069_015_1595_z crossref_primary_10_1016_j_patcog_2014_10_009 crossref_primary_10_1016_j_ijepes_2023_109105 crossref_primary_10_3233_JIFS_230511 crossref_primary_10_1016_j_knosys_2020_106178 crossref_primary_10_1109_ACCESS_2018_2825352 crossref_primary_10_1109_TFUZZ_2024_3387429 crossref_primary_10_26599_BDMA_2022_9020027 crossref_primary_10_1109_ACCESS_2024_3365048 crossref_primary_10_1109_ACCESS_2018_2800058 crossref_primary_10_1142_S021800142540004X crossref_primary_10_3389_fnins_2021_670745 crossref_primary_10_1002_tee_22151 crossref_primary_10_1155_2016_9871529 crossref_primary_10_1109_TFUZZ_2016_2604003 crossref_primary_10_1109_TCYB_2024_3450474 crossref_primary_10_1109_TKDE_2020_2983366 crossref_primary_10_1109_TFUZZ_2013_2280141 crossref_primary_10_1007_s40815_024_01809_w crossref_primary_10_1016_j_procs_2020_03_398 crossref_primary_10_1016_j_patcog_2021_108064 crossref_primary_10_1016_j_ijar_2017_08_008 crossref_primary_10_1080_02564602_2014_891375 crossref_primary_10_1109_JSTARS_2014_2308531 crossref_primary_10_1016_j_neucom_2015_09_127 crossref_primary_10_1016_j_patrec_2018_07_004 crossref_primary_10_1088_1402_4896_ad2b3a crossref_primary_10_1007_s00500_014_1481_8 crossref_primary_10_1007_s10726_015_9444_8 crossref_primary_10_1016_j_neucom_2019_01_042 crossref_primary_10_1007_s40815_019_00713_y crossref_primary_10_1109_TFUZZ_2015_2501438 crossref_primary_10_1109_TFUZZ_2022_3149395 crossref_primary_10_5402_2012_929085 crossref_primary_10_1002_widm_1049 crossref_primary_10_1016_j_knosys_2017_05_018 crossref_primary_10_1016_j_eswa_2019_113159 crossref_primary_10_1007_s40815_016_0206_9 crossref_primary_10_1109_TFUZZ_2011_2158651 crossref_primary_10_1109_TCYB_2018_2830977 crossref_primary_10_1109_TFUZZ_2013_2294205 crossref_primary_10_1016_j_fss_2020_05_009 crossref_primary_10_1109_TNNLS_2023_3274289 crossref_primary_10_1002_tee_22372 crossref_primary_10_1109_TFUZZ_2016_2637373 crossref_primary_10_3390_rs14071621 crossref_primary_10_3390_su9030479 crossref_primary_10_1016_j_eswa_2020_113856 crossref_primary_10_1007_s11069_016_2361_6 crossref_primary_10_3390_electronics12214467 crossref_primary_10_1016_j_procs_2020_03_246 crossref_primary_10_1109_TETCI_2017_2761915 crossref_primary_10_1109_TFUZZ_2021_3052362 crossref_primary_10_1109_TFUZZ_2018_2883033 crossref_primary_10_1016_j_matpr_2020_08_626 crossref_primary_10_3390_land14061242 crossref_primary_10_1016_j_engappai_2024_109854 crossref_primary_10_1016_j_protcy_2013_12_400 crossref_primary_10_1109_TFUZZ_2025_3581679 crossref_primary_10_1016_j_ijleo_2012_12_046 crossref_primary_10_1109_ACCESS_2020_3025036 crossref_primary_10_1007_s41066_020_00230_6 crossref_primary_10_1007_s11042_024_20493_4 crossref_primary_10_1016_j_neucom_2014_02_027 crossref_primary_10_2478_ausi_2020_0018 crossref_primary_10_3233_JIFS_231883 crossref_primary_10_3390_agriculture11090848 crossref_primary_10_1016_j_ins_2024_120388 crossref_primary_10_1016_j_patcog_2015_10_018 crossref_primary_10_1016_j_ins_2023_120029 crossref_primary_10_1109_TCYB_2018_2861211 crossref_primary_10_1109_TFUZZ_2023_3319663 crossref_primary_10_1016_j_eswa_2015_06_034 crossref_primary_10_1016_j_neucom_2016_02_054 crossref_primary_10_1109_TCYB_2014_2334595 crossref_primary_10_3233_JIFS_221434 crossref_primary_10_1109_TSMC_2018_2833139 crossref_primary_10_1007_s10044_013_0341_y crossref_primary_10_1007_s11517_014_1210_6 crossref_primary_10_1109_TFUZZ_2022_3203506 crossref_primary_10_1016_j_patcog_2010_11_017 crossref_primary_10_1155_2021_4683609 crossref_primary_10_1016_j_sigpro_2010_10_001 crossref_primary_10_3233_JIFS_212967 crossref_primary_10_1186_1687_5281_2014_21 crossref_primary_10_1109_TFUZZ_2017_2686804 crossref_primary_10_1109_TFUZZ_2019_2917809 |
| Cites_doi | 10.1007/BF02884971 10.1109/TFUZZ.2003.817858 10.1109/91.649912 10.1145/584887.584889 10.1007/978-1-4757-0450-1 10.1145/276304.276314 10.1007/s00500-006-0056-8 10.1109/2.781637 10.1007/s00500-005-0517-5 10.1109/72.238318 10.1360/crad20060817 10.1145/304182.304187 10.1109/TKDE.2002.1033770 10.1109/91.227387 10.1016/S0888-613X(02)00078-6 10.1109/69.877504 10.1109/TSMCB.2008.915537 10.1016/j.patrec.2003.10.008 10.1016/0893-6080(94)90111-2 10.1109/TSMC.1987.6499296 10.1109/TFUZZ.2006.889763 10.1016/S0167-8655(02)00401-4 10.1007/s00500-005-0043-5 10.1109/72.991422 10.1109/TITB.2004.824724 10.2307/2346830 10.1023/A:1009783824328 10.2307/2284239 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TSMCB.2008.2004818 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1941-0492 |
| EndPage | 591 |
| ExternalDocumentID | 19174354 10_1109_TSMCB_2008_2004818 4760215 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS RXW TAE TAF VH1 VJK AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c381t-c8ffecf44a87e60e84ef4fd1d3129aaa218c287a8f5e6ecedd93f963ef4ebcad3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 167 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266069600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1083-4419 1941-0492 |
| IngestDate | Fri Jul 11 09:32:23 EDT 2025 Fri Jul 11 03:58:02 EDT 2025 Mon Jul 21 05:45:12 EDT 2025 Sat Nov 29 03:17:33 EST 2025 Tue Nov 18 20:38:47 EST 2025 Tue Aug 26 16:47:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-c8ffecf44a87e60e84ef4fd1d3129aaa218c287a8f5e6ecedd93f963ef4ebcad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19174354 |
| PQID | 1671228290 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_19174354 proquest_miscellaneous_67116989 crossref_citationtrail_10_1109_TSMCB_2008_2004818 crossref_primary_10_1109_TSMCB_2008_2004818 proquest_miscellaneous_1671228290 ieee_primary_4760215 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-06-01 |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics |
| PublicationTitleAbbrev | TSMCB |
| PublicationTitleAlternate | IEEE Trans Syst Man Cybern B Cybern |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref34 ref12 ref15 ref36 ref14 ref31 strehl (ref20) 2002; 3 ref33 ref11 ref32 ref2 ref1 ref17 ref16 ref24 tan (ref19) 2005 ref26 ref25 yan (ref30) 2000 ref22 ref28 ref27 makoto (ref21) 1995 ref29 ref8 ref7 ref9 ref4 randen (ref23) 0 ref3 ref6 wei (ref18) 2000; 28 ref5 sheikholeslami (ref10) 1998 ester (ref13) 1996 |
| References_xml | – ident: ref4 doi: 10.1007/BF02884971 – volume: 28 start-page: 63 year: 2000 ident: ref18 article-title: rival checked fuzzy c-means algorithm publication-title: Acta Electronica Sinica – year: 0 ident: ref23 publication-title: Brodatz Textures – ident: ref36 doi: 10.1109/TFUZZ.2003.817858 – ident: ref25 doi: 10.1109/91.649912 – ident: ref7 doi: 10.1145/584887.584889 – ident: ref1 doi: 10.1007/978-1-4757-0450-1 – ident: ref12 doi: 10.1145/276304.276314 – ident: ref27 doi: 10.1007/s00500-006-0056-8 – start-page: 428 year: 1998 ident: ref10 article-title: wavecluster: a multi-resolution clustering approach for very large spatial databases publication-title: Proc 24th Int Conf VLDB – year: 2000 ident: ref30 publication-title: Artificial Neural Networks and Evolutionary Computing – year: 2005 ident: ref19 publication-title: Introduction to Data Mining – ident: ref8 doi: 10.1109/2.781637 – ident: ref28 doi: 10.1007/s00500-005-0517-5 – ident: ref17 doi: 10.1109/72.238318 – volume: 3 start-page: 583 year: 2002 ident: ref20 article-title: cluster ensemblesa knowledge reuse framework for combining partitions publication-title: J Mach Learn Res – ident: ref26 doi: 10.1360/crad20060817 – ident: ref14 doi: 10.1145/304182.304187 – ident: ref6 doi: 10.1109/TKDE.2002.1033770 – ident: ref32 doi: 10.1109/91.227387 – ident: ref3 doi: 10.1016/S0888-613X(02)00078-6 – ident: ref11 doi: 10.1109/69.877504 – ident: ref35 doi: 10.1109/TSMCB.2008.915537 – ident: ref24 doi: 10.1016/j.patrec.2003.10.008 – ident: ref33 doi: 10.1016/0893-6080(94)90111-2 – year: 1995 ident: ref21 publication-title: Hierarchical Bayesian clustering for automatic text classification – ident: ref2 doi: 10.1109/TSMC.1987.6499296 – ident: ref29 doi: 10.1109/TFUZZ.2006.889763 – ident: ref31 doi: 10.1016/S0167-8655(02)00401-4 – ident: ref34 doi: 10.1007/s00500-005-0043-5 – ident: ref15 doi: 10.1109/72.991422 – ident: ref16 doi: 10.1109/TITB.2004.824724 – start-page: 226 year: 1996 ident: ref13 article-title: a density-based algorithm for discovering clusters in large spatial database with noise publication-title: Proc Int Conf Knowl Discovery Data Mining (KDD) – ident: ref5 doi: 10.2307/2346830 – ident: ref9 doi: 10.1023/A:1009783824328 – ident: ref22 doi: 10.2307/2284239 |
| SSID | ssj0009097 |
| Score | 2.3163826 |
| Snippet | The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 578 |
| SubjectTerms | Algorithm design and analysis Algorithms Clustering Clustering algorithm Clustering algorithms competitive learning Computer science education Convergence Cybernetics Fuzzy Fuzzy logic fuzzy partitions Fuzzy set theory Image texture Information technology Laboratories membership constraint function Partitioning algorithms Pattern recognition Robustness Texture |
| Title | Generalized Fuzzy C-Means Clustering Algorithm With Improved Fuzzy Partitions |
| URI | https://ieeexplore.ieee.org/document/4760215 https://www.ncbi.nlm.nih.gov/pubmed/19174354 https://www.proquest.com/docview/1671228290 https://www.proquest.com/docview/67116989 |
| Volume | 39 |
| WOSCitedRecordID | wos000266069600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0492 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0009097 issn: 1083-4419 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B4gCH8qamFBaJQ1G7sHbWXvtIIyIuQUiAmpu1T4iUJlUSV2p-ffeVQKWCxMXaw6xseb7VfLszOx_AKc-yVCglsMiJxJQZg0sqGE6FICI3ligR4cUm2M1N2etVt0vwbXEXRmvti8_0uRv6XL4aycYdlV1QVrgQtQzLjBXhrtZzg10ShFQspcA2xFfzCzKkuri_67a_h7LJzPdH8SJ9lePiOf0nHnmBlde5po85nY33fe0mfIjcEl0GMGzBkh5uw_qLjoPbsBXX8gR9iQ2nz3agG4f9mVao08xmf1Abd7UNYqg9aFwnBTsXXQ4eR-P-9Okn-mGfKJxGLCbcOgh6DO_CQ-fqvn2No8wCljZcT7EsXeWIoZSXTBdEl1QbalSqWpYLcM4tCZB2X8VLk-tCS61U1TJ23VorV0mlWnuwMhwN9UdAkuaGVLwoc2aoMBl3hEgIlytMKWMkgXT-s2sZe5A7KYxB7fcipKq9r4I2ZvRVAl8Xc36FDhxvWu84TywsoxMSOJn7tLbrxyVF-FCPmkmdFizNfDo5geNXbKxJ6oQ2E9gPcHj-kIiig_-_9hOsheyTO7U5hJXpuNGfYVX-nvYn4yML41555GH8F7nP7PI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxtBFD6oLdg-tPXSdntzhD4oOnV2M7uz-2hDg6UmCEb0bZmrDaRJSbIF8-udW2ILWvBlmYcz7LLnDOebOWe-D-Azz7JUKCWwyInElBmDSyoYToUgIjcWKBHhxSZYr1deXVVnK3C4vAujtfbNZ_qLG_pavhrLxh2VHVFWuBS1Ck9ySjMSbmvdUeySIKViQQW2Sb5aXJEh1VH_vNv-GhonM8-Q4mX6KofGc_pPRvISKw-jTZ91Oi8f972v4EVEl-g4hMMGrOjRJjz_i3NwEzbiap6ivUg5vb8F3TgczLVCnWY-v0Ft3NU2jaH2sHFcCnYuOh5ejyeD2c9f6NI-UTiPWE44c0Hoo3gbLjrf-u0THIUWsLQJe4Zl6XpHDKW8ZLoguqTaUKNS1bJogHNuYYC0OytemlwXWmqlqpaxK9dauV4q1XoNa6PxSL8FJGluSMWLMmeGCpNxB4mEcNXClDJGEkgXP7uWkYXciWEMa78bIVXtfRXUMaOvEjhYzvkdODj-a73lPLG0jE5IYHfh09quIFcW4SM9bqZ1WrA08wXlBHYesLEmqZPaTOBNCIe7D4lR9O7-1-7A-km_e1qffu_9eA_PQi3KneF8gLXZpNEf4an8MxtMJ598MN8CnBzvUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Fuzzy+C-Means+Clustering+Algorithm+With+Improved+Fuzzy+Partitions&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Lin+Zhu&rft.au=Fu-Lai+Chung&rft.au=Shitong+Wang&rft.date=2009-06-01&rft.issn=1083-4419&rft.volume=39&rft.issue=3&rft.spage=578&rft.epage=591&rft_id=info:doi/10.1109%2FTSMCB.2008.2004818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCB_2008_2004818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon |