Generalized Fuzzy C-Means Clustering Algorithm With Improved Fuzzy Partitions

The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Ročník 39; číslo 3; s. 578 - 591
Hlavní autoři: Zhu, Lin, Chung, Fu-Lai, Wang, Shitong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2009
Témata:
ISSN:1083-4419, 1941-0492, 1941-0492
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L p norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
AbstractList The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L sub(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
Author Fu-Lai Chung
Lin Zhu
Shitong Wang
Author_xml – sequence: 1
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
  organization: School of Information Technology, Southern Yangtze University, Wuxi 214036, China
– sequence: 2
  givenname: Fu-Lai
  surname: Chung
  fullname: Chung, Fu-Lai
– sequence: 3
  givenname: Shitong
  surname: Wang
  fullname: Wang, Shitong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19174354$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofqz-AQXpSbx0zaTZNjlq8QtcFFQ8hphONNIPTVrB_fVm3XUPHrxM5vA8w0zeHbLedi0Ssg90DEDlycP9tDwbM0rFvHABYo1sg-SQUi7ZeuypyFLOQW6RnRDeKKWSymKTbIGEgmcTvk2ml9ii17WbYZVcDLPZV1KmU9RtSMp6CD16174kp_VL513_2iRPsSbXzbvvPlfCnfa9613Xhl2yYXUdcG_5jsjjxflDeZXe3F5el6c3qckE9KkR1qKxnGtRYE5RcLTcVlBlwKTWmoEwTBRa2AnmaLCqZGZlnkUKn42ushE5WsyNe3wMGHrVuGCwrnWL3RBUXgDkUsgIHv8LQiQZE0zSiB4u0eG5wUq9e9do_6V-_yoCYgEY34Xg0Srjej2_u_fa1QqomseifmJR81jUMpaosj_qavp_0sFCcoi4EniRUwaT7BuoMJmg
CODEN ITSCFI
CitedBy_id crossref_primary_10_1016_j_eswa_2016_10_006
crossref_primary_10_1186_1687_6180_2013_162
crossref_primary_10_1016_j_asoc_2011_07_002
crossref_primary_10_1109_TFUZZ_2020_2985004
crossref_primary_10_1016_j_knosys_2021_107769
crossref_primary_10_1016_j_ijar_2025_109552
crossref_primary_10_1016_j_asoc_2019_02_038
crossref_primary_10_5721_EuJRS20144726
crossref_primary_10_1016_j_dsp_2012_09_016
crossref_primary_10_1016_j_patcog_2018_04_006
crossref_primary_10_1109_TIP_2022_3154922
crossref_primary_10_1016_j_ins_2023_119087
crossref_primary_10_1007_s40815_025_02081_2
crossref_primary_10_1016_j_asoc_2022_109574
crossref_primary_10_1088_1742_6596_2025_1_012046
crossref_primary_10_1109_TCYB_2016_2627686
crossref_primary_10_1016_j_sigpro_2020_107483
crossref_primary_10_1109_TIP_2012_2219547
crossref_primary_10_3389_fnins_2021_662674
crossref_primary_10_1007_s11042_023_14512_z
crossref_primary_10_1016_j_knosys_2016_12_006
crossref_primary_10_1109_TFUZZ_2018_2856081
crossref_primary_10_1007_s10586_017_1371_9
crossref_primary_10_1016_j_asoc_2012_05_015
crossref_primary_10_1016_j_asoc_2013_03_002
crossref_primary_10_1007_s11069_015_1595_z
crossref_primary_10_1016_j_patcog_2014_10_009
crossref_primary_10_1016_j_ijepes_2023_109105
crossref_primary_10_3233_JIFS_230511
crossref_primary_10_1016_j_knosys_2020_106178
crossref_primary_10_1109_ACCESS_2018_2825352
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_26599_BDMA_2022_9020027
crossref_primary_10_1109_ACCESS_2024_3365048
crossref_primary_10_1109_ACCESS_2018_2800058
crossref_primary_10_1142_S021800142540004X
crossref_primary_10_3389_fnins_2021_670745
crossref_primary_10_1002_tee_22151
crossref_primary_10_1155_2016_9871529
crossref_primary_10_1109_TFUZZ_2016_2604003
crossref_primary_10_1109_TCYB_2024_3450474
crossref_primary_10_1109_TKDE_2020_2983366
crossref_primary_10_1109_TFUZZ_2013_2280141
crossref_primary_10_1007_s40815_024_01809_w
crossref_primary_10_1016_j_procs_2020_03_398
crossref_primary_10_1016_j_patcog_2021_108064
crossref_primary_10_1016_j_ijar_2017_08_008
crossref_primary_10_1080_02564602_2014_891375
crossref_primary_10_1109_JSTARS_2014_2308531
crossref_primary_10_1016_j_neucom_2015_09_127
crossref_primary_10_1016_j_patrec_2018_07_004
crossref_primary_10_1088_1402_4896_ad2b3a
crossref_primary_10_1007_s00500_014_1481_8
crossref_primary_10_1007_s10726_015_9444_8
crossref_primary_10_1016_j_neucom_2019_01_042
crossref_primary_10_1007_s40815_019_00713_y
crossref_primary_10_1109_TFUZZ_2015_2501438
crossref_primary_10_1109_TFUZZ_2022_3149395
crossref_primary_10_5402_2012_929085
crossref_primary_10_1002_widm_1049
crossref_primary_10_1016_j_knosys_2017_05_018
crossref_primary_10_1016_j_eswa_2019_113159
crossref_primary_10_1007_s40815_016_0206_9
crossref_primary_10_1109_TFUZZ_2011_2158651
crossref_primary_10_1109_TCYB_2018_2830977
crossref_primary_10_1109_TFUZZ_2013_2294205
crossref_primary_10_1016_j_fss_2020_05_009
crossref_primary_10_1109_TNNLS_2023_3274289
crossref_primary_10_1002_tee_22372
crossref_primary_10_1109_TFUZZ_2016_2637373
crossref_primary_10_3390_rs14071621
crossref_primary_10_3390_su9030479
crossref_primary_10_1016_j_eswa_2020_113856
crossref_primary_10_1007_s11069_016_2361_6
crossref_primary_10_3390_electronics12214467
crossref_primary_10_1016_j_procs_2020_03_246
crossref_primary_10_1109_TETCI_2017_2761915
crossref_primary_10_1109_TFUZZ_2021_3052362
crossref_primary_10_1109_TFUZZ_2018_2883033
crossref_primary_10_1016_j_matpr_2020_08_626
crossref_primary_10_3390_land14061242
crossref_primary_10_1016_j_engappai_2024_109854
crossref_primary_10_1016_j_protcy_2013_12_400
crossref_primary_10_1109_TFUZZ_2025_3581679
crossref_primary_10_1016_j_ijleo_2012_12_046
crossref_primary_10_1109_ACCESS_2020_3025036
crossref_primary_10_1007_s41066_020_00230_6
crossref_primary_10_1007_s11042_024_20493_4
crossref_primary_10_1016_j_neucom_2014_02_027
crossref_primary_10_2478_ausi_2020_0018
crossref_primary_10_3233_JIFS_231883
crossref_primary_10_3390_agriculture11090848
crossref_primary_10_1016_j_ins_2024_120388
crossref_primary_10_1016_j_patcog_2015_10_018
crossref_primary_10_1016_j_ins_2023_120029
crossref_primary_10_1109_TCYB_2018_2861211
crossref_primary_10_1109_TFUZZ_2023_3319663
crossref_primary_10_1016_j_eswa_2015_06_034
crossref_primary_10_1016_j_neucom_2016_02_054
crossref_primary_10_1109_TCYB_2014_2334595
crossref_primary_10_3233_JIFS_221434
crossref_primary_10_1109_TSMC_2018_2833139
crossref_primary_10_1007_s10044_013_0341_y
crossref_primary_10_1007_s11517_014_1210_6
crossref_primary_10_1109_TFUZZ_2022_3203506
crossref_primary_10_1016_j_patcog_2010_11_017
crossref_primary_10_1155_2021_4683609
crossref_primary_10_1016_j_sigpro_2010_10_001
crossref_primary_10_3233_JIFS_212967
crossref_primary_10_1186_1687_5281_2014_21
crossref_primary_10_1109_TFUZZ_2017_2686804
crossref_primary_10_1109_TFUZZ_2019_2917809
Cites_doi 10.1007/BF02884971
10.1109/TFUZZ.2003.817858
10.1109/91.649912
10.1145/584887.584889
10.1007/978-1-4757-0450-1
10.1145/276304.276314
10.1007/s00500-006-0056-8
10.1109/2.781637
10.1007/s00500-005-0517-5
10.1109/72.238318
10.1360/crad20060817
10.1145/304182.304187
10.1109/TKDE.2002.1033770
10.1109/91.227387
10.1016/S0888-613X(02)00078-6
10.1109/69.877504
10.1109/TSMCB.2008.915537
10.1016/j.patrec.2003.10.008
10.1016/0893-6080(94)90111-2
10.1109/TSMC.1987.6499296
10.1109/TFUZZ.2006.889763
10.1016/S0167-8655(02)00401-4
10.1007/s00500-005-0043-5
10.1109/72.991422
10.1109/TITB.2004.824724
10.2307/2346830
10.1023/A:1009783824328
10.2307/2284239
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TSMCB.2008.2004818
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1941-0492
EndPage 591
ExternalDocumentID 19174354
10_1109_TSMCB_2008_2004818
4760215
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c381t-c8ffecf44a87e60e84ef4fd1d3129aaa218c287a8f5e6ecedd93f963ef4ebcad3
IEDL.DBID RIE
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266069600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4419
1941-0492
IngestDate Fri Jul 11 09:32:23 EDT 2025
Fri Jul 11 03:58:02 EDT 2025
Mon Jul 21 05:45:12 EDT 2025
Sat Nov 29 03:17:33 EST 2025
Tue Nov 18 20:38:47 EST 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-c8ffecf44a87e60e84ef4fd1d3129aaa218c287a8f5e6ecedd93f963ef4ebcad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19174354
PQID 1671228290
PQPubID 23500
PageCount 14
ParticipantIDs pubmed_primary_19174354
proquest_miscellaneous_67116989
crossref_citationtrail_10_1109_TSMCB_2008_2004818
crossref_primary_10_1109_TSMCB_2008_2004818
proquest_miscellaneous_1671228290
ieee_primary_4760215
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationTitleAlternate IEEE Trans Syst Man Cybern B Cybern
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref34
ref12
ref15
ref36
ref14
ref31
strehl (ref20) 2002; 3
ref33
ref11
ref32
ref2
ref1
ref17
ref16
ref24
tan (ref19) 2005
ref26
ref25
yan (ref30) 2000
ref22
ref28
ref27
makoto (ref21) 1995
ref29
ref8
ref7
ref9
ref4
randen (ref23) 0
ref3
ref6
wei (ref18) 2000; 28
ref5
sheikholeslami (ref10) 1998
ester (ref13) 1996
References_xml – ident: ref4
  doi: 10.1007/BF02884971
– volume: 28
  start-page: 63
  year: 2000
  ident: ref18
  article-title: rival checked fuzzy c-means algorithm
  publication-title: Acta Electronica Sinica
– year: 0
  ident: ref23
  publication-title: Brodatz Textures
– ident: ref36
  doi: 10.1109/TFUZZ.2003.817858
– ident: ref25
  doi: 10.1109/91.649912
– ident: ref7
  doi: 10.1145/584887.584889
– ident: ref1
  doi: 10.1007/978-1-4757-0450-1
– ident: ref12
  doi: 10.1145/276304.276314
– ident: ref27
  doi: 10.1007/s00500-006-0056-8
– start-page: 428
  year: 1998
  ident: ref10
  article-title: wavecluster: a multi-resolution clustering approach for very large spatial databases
  publication-title: Proc 24th Int Conf VLDB
– year: 2000
  ident: ref30
  publication-title: Artificial Neural Networks and Evolutionary Computing
– year: 2005
  ident: ref19
  publication-title: Introduction to Data Mining
– ident: ref8
  doi: 10.1109/2.781637
– ident: ref28
  doi: 10.1007/s00500-005-0517-5
– ident: ref17
  doi: 10.1109/72.238318
– volume: 3
  start-page: 583
  year: 2002
  ident: ref20
  article-title: cluster ensemblesa knowledge reuse framework for combining partitions
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1360/crad20060817
– ident: ref14
  doi: 10.1145/304182.304187
– ident: ref6
  doi: 10.1109/TKDE.2002.1033770
– ident: ref32
  doi: 10.1109/91.227387
– ident: ref3
  doi: 10.1016/S0888-613X(02)00078-6
– ident: ref11
  doi: 10.1109/69.877504
– ident: ref35
  doi: 10.1109/TSMCB.2008.915537
– ident: ref24
  doi: 10.1016/j.patrec.2003.10.008
– ident: ref33
  doi: 10.1016/0893-6080(94)90111-2
– year: 1995
  ident: ref21
  publication-title: Hierarchical Bayesian clustering for automatic text classification
– ident: ref2
  doi: 10.1109/TSMC.1987.6499296
– ident: ref29
  doi: 10.1109/TFUZZ.2006.889763
– ident: ref31
  doi: 10.1016/S0167-8655(02)00401-4
– ident: ref34
  doi: 10.1007/s00500-005-0043-5
– ident: ref15
  doi: 10.1109/72.991422
– ident: ref16
  doi: 10.1109/TITB.2004.824724
– start-page: 226
  year: 1996
  ident: ref13
  article-title: a density-based algorithm for discovering clusters in large spatial database with noise
  publication-title: Proc Int Conf Knowl Discovery Data Mining (KDD)
– ident: ref5
  doi: 10.2307/2346830
– ident: ref9
  doi: 10.1023/A:1009783824328
– ident: ref22
  doi: 10.2307/2284239
SSID ssj0009097
Score 2.3163826
Snippet The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 578
SubjectTerms Algorithm design and analysis
Algorithms
Clustering
Clustering algorithm
Clustering algorithms
competitive learning
Computer science education
Convergence
Cybernetics
Fuzzy
Fuzzy logic
fuzzy partitions
Fuzzy set theory
Image texture
Information technology
Laboratories
membership constraint function
Partitioning algorithms
Pattern recognition
Robustness
Texture
Title Generalized Fuzzy C-Means Clustering Algorithm With Improved Fuzzy Partitions
URI https://ieeexplore.ieee.org/document/4760215
https://www.ncbi.nlm.nih.gov/pubmed/19174354
https://www.proquest.com/docview/1671228290
https://www.proquest.com/docview/67116989
Volume 39
WOSCitedRecordID wos000266069600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0492
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0009097
  issn: 1083-4419
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B4gCH8qamFBaJQ1G7sHbWXvtIIyIuQUiAmpu1T4iUJlUSV2p-ffeVQKWCxMXaw6xseb7VfLszOx_AKc-yVCglsMiJxJQZg0sqGE6FICI3ligR4cUm2M1N2etVt0vwbXEXRmvti8_0uRv6XL4aycYdlV1QVrgQtQzLjBXhrtZzg10ShFQspcA2xFfzCzKkuri_67a_h7LJzPdH8SJ9lePiOf0nHnmBlde5po85nY33fe0mfIjcEl0GMGzBkh5uw_qLjoPbsBXX8gR9iQ2nz3agG4f9mVao08xmf1Abd7UNYqg9aFwnBTsXXQ4eR-P-9Okn-mGfKJxGLCbcOgh6DO_CQ-fqvn2No8wCljZcT7EsXeWIoZSXTBdEl1QbalSqWpYLcM4tCZB2X8VLk-tCS61U1TJ23VorV0mlWnuwMhwN9UdAkuaGVLwoc2aoMBl3hEgIlytMKWMkgXT-s2sZe5A7KYxB7fcipKq9r4I2ZvRVAl8Xc36FDhxvWu84TywsoxMSOJn7tLbrxyVF-FCPmkmdFizNfDo5geNXbKxJ6oQ2E9gPcHj-kIiig_-_9hOsheyTO7U5hJXpuNGfYVX-nvYn4yML41555GH8F7nP7PI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxtBFD6oLdg-tPXSdntzhD4oOnV2M7uz-2hDg6UmCEb0bZmrDaRJSbIF8-udW2ILWvBlmYcz7LLnDOebOWe-D-Azz7JUKCWwyInElBmDSyoYToUgIjcWKBHhxSZYr1deXVVnK3C4vAujtfbNZ_qLG_pavhrLxh2VHVFWuBS1Ck9ySjMSbmvdUeySIKViQQW2Sb5aXJEh1VH_vNv-GhonM8-Q4mX6KofGc_pPRvISKw-jTZ91Oi8f972v4EVEl-g4hMMGrOjRJjz_i3NwEzbiap6ivUg5vb8F3TgczLVCnWY-v0Ft3NU2jaH2sHFcCnYuOh5ejyeD2c9f6NI-UTiPWE44c0Hoo3gbLjrf-u0THIUWsLQJe4Zl6XpHDKW8ZLoguqTaUKNS1bJogHNuYYC0OytemlwXWmqlqpaxK9dauV4q1XoNa6PxSL8FJGluSMWLMmeGCpNxB4mEcNXClDJGEkgXP7uWkYXciWEMa78bIVXtfRXUMaOvEjhYzvkdODj-a73lPLG0jE5IYHfh09quIFcW4SM9bqZ1WrA08wXlBHYesLEmqZPaTOBNCIe7D4lR9O7-1-7A-km_e1qffu_9eA_PQi3KneF8gLXZpNEf4an8MxtMJ598MN8CnBzvUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Fuzzy+C-Means+Clustering+Algorithm+With+Improved+Fuzzy+Partitions&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Lin+Zhu&rft.au=Fu-Lai+Chung&rft.au=Shitong+Wang&rft.date=2009-06-01&rft.issn=1083-4419&rft.volume=39&rft.issue=3&rft.spage=578&rft.epage=591&rft_id=info:doi/10.1109%2FTSMCB.2008.2004818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCB_2008_2004818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon