Amino acid homeostasis and signalling in mammalian cells and organisms

Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino aci...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal Vol. 474; no. 12; p. 1935
Main Authors: Bröer, Stefan, Bröer, Angelika
Format: Journal Article
Language:English
Published: England 15.06.2017
Subjects:
ISSN:1470-8728, 1470-8728
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
AbstractList Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
Author Bröer, Angelika
Bröer, Stefan
Author_xml – sequence: 1
  givenname: Stefan
  surname: Bröer
  fullname: Bröer, Stefan
  email: stefan.broeer@anu.edu.au
  organization: Research School of Biology, Australian National University, Linnaeus Way 134, Canberra, ACT 2601, Australia stefan.broeer@anu.edu.au
– sequence: 2
  givenname: Angelika
  surname: Bröer
  fullname: Bröer, Angelika
  organization: Research School of Biology, Australian National University, Linnaeus Way 134, Canberra, ACT 2601, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28546457$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAUhS1URB8wsSOPLIFrx46dsUQtD1VigTlykutgFNslbgf-PUUtEtM5w6ej883JJMSAhFwzuGMg-P1D9cKBFaA5PyMzJhRkWnE9-denZJ7SJwATIOCCTLmWohBSzch66V2I1LSuox_RY0w7k1yiJnQ0uT6YYXChpy5Qb7w3gzOBtjgMRyKOvQku-XRJzq0ZEl6dckHe16u36inbvD4-V8tN1uaa7bJWNqXgDLCwBeaS5VZq3ha6UDZvQCrABgRifpARaEBZkFaXYNvGdKJTjC_I7XF3O8avPaZd7V36_WMCxn2qWQk5k2XJygN6c0L3jceu3o7Om_G7_nPnP5KzW54
CitedBy_id crossref_primary_10_1042_BST20180250
crossref_primary_10_1080_14767058_2018_1489795
crossref_primary_10_3168_jds_2020_18155
crossref_primary_10_3390_metabo12030239
crossref_primary_10_3389_fphar_2022_963066
crossref_primary_10_1016_j_jbior_2017_12_002
crossref_primary_10_3390_cells10061352
crossref_primary_10_3390_cancers15092593
crossref_primary_10_2174_0929867330666230408203820
crossref_primary_10_1080_15384101_2023_2260166
crossref_primary_10_1016_j_jfca_2024_106091
crossref_primary_10_1208_s12248_017_0164_7
crossref_primary_10_1016_j_psj_2022_102277
crossref_primary_10_3389_fendo_2017_00306
crossref_primary_10_1016_j_tem_2022_12_004
crossref_primary_10_3390_ijms21010119
crossref_primary_10_1002_jcp_27523
crossref_primary_10_1016_j_cmet_2023_12_001
crossref_primary_10_1097_MCO_0000000000000702
crossref_primary_10_3390_nu16233990
crossref_primary_10_1016_j_jbc_2023_105602
crossref_primary_10_3390_nu13072136
crossref_primary_10_1158_1541_7786_MCR_19_0217
crossref_primary_10_3390_ijms21165594
crossref_primary_10_1111_1462_2920_15982
crossref_primary_10_1016_j_cell_2022_08_020
crossref_primary_10_1007_s00394_019_02164_5
crossref_primary_10_1002_cbdv_202100300
crossref_primary_10_3390_pharmaceutics14102167
crossref_primary_10_1021_acs_jpclett_5c02341
crossref_primary_10_1134_S2075111724700462
crossref_primary_10_1134_S0022093023040038
crossref_primary_10_3168_jds_2023_23447
crossref_primary_10_1016_j_arabjc_2023_105539
crossref_primary_10_3390_metabo12080740
crossref_primary_10_1007_s10616_025_00844_1
crossref_primary_10_3390_ijms21176156
crossref_primary_10_1016_j_foodchem_2025_143268
crossref_primary_10_1371_journal_pone_0265428
crossref_primary_10_3390_nu12103211
crossref_primary_10_3390_ijms19113597
crossref_primary_10_3389_fonc_2017_00306
crossref_primary_10_3390_biom12091189
crossref_primary_10_1186_s40170_022_00295_8
crossref_primary_10_1016_j_aquaculture_2021_737699
crossref_primary_10_3390_geriatrics5040095
crossref_primary_10_1007_s11886_020_01282_5
crossref_primary_10_1134_S0006350922020105
crossref_primary_10_3390_nu11092024
crossref_primary_10_1038_s41430_018_0240_9
crossref_primary_10_1007_s11064_021_03331_z
crossref_primary_10_3390_chemosensors12110236
crossref_primary_10_3389_fnut_2022_965771
crossref_primary_10_1073_pnas_2407633121
crossref_primary_10_1210_en_2018_01056
crossref_primary_10_1091_mbc_E24_04_0162
crossref_primary_10_2147_CCID_S433280
crossref_primary_10_3389_fnut_2021_655833
crossref_primary_10_3390_ijms20164043
crossref_primary_10_1016_j_foodchem_2025_145098
crossref_primary_10_1016_j_psj_2023_103181
crossref_primary_10_1128_MMBR_00024_19
crossref_primary_10_3390_jcm10040622
crossref_primary_10_1016_j_phrs_2020_105169
crossref_primary_10_1242_dmm_050233
crossref_primary_10_3390_metabo13101064
crossref_primary_10_1016_j_celrep_2025_115434
crossref_primary_10_3389_fonc_2017_00319
crossref_primary_10_1146_annurev_nutr_071816_064642
crossref_primary_10_1089_ars_2023_0349
crossref_primary_10_1016_j_bbamcr_2020_118889
crossref_primary_10_1371_journal_pone_0269131
crossref_primary_10_1016_j_isci_2023_106425
crossref_primary_10_3390_cancers14030585
crossref_primary_10_1017_S0954422422000245
crossref_primary_10_1186_s13071_022_05461_x
crossref_primary_10_1016_j_ejcb_2022_151240
crossref_primary_10_3389_fcell_2020_594464
crossref_primary_10_1016_j_cell_2023_09_011
crossref_primary_10_3389_fchem_2018_00243
crossref_primary_10_3390_cells10071800
crossref_primary_10_3390_cancers13020203
crossref_primary_10_1016_j_ebiom_2019_03_015
crossref_primary_10_1002_mnfr_201900088
crossref_primary_10_1016_j_abb_2022_109419
crossref_primary_10_4103_NRR_NRR_D_23_02020
crossref_primary_10_1007_s00415_022_11534_9
crossref_primary_10_1007_s00726_020_02884_7
crossref_primary_10_1016_j_molcel_2022_05_025
crossref_primary_10_1007_s00726_021_03019_2
crossref_primary_10_3389_fimmu_2022_886822
crossref_primary_10_1016_j_chom_2024_04_004
crossref_primary_10_1016_j_pdpdt_2023_103346
crossref_primary_10_1101_gad_348787_121
crossref_primary_10_3390_nu11020316
crossref_primary_10_1002_fsn3_70346
crossref_primary_10_1007_s11094_023_02812_5
crossref_primary_10_1016_j_molmet_2021_101294
crossref_primary_10_1016_j_smhs_2022_11_004
crossref_primary_10_1016_j_tjnut_2023_05_008
crossref_primary_10_1016_j_biopha_2020_109950
crossref_primary_10_1002_admi_202400060
crossref_primary_10_1016_j_cmet_2020_03_004
crossref_primary_10_1002_j_2040_4603_2019_tb00056_x
crossref_primary_10_3389_fnut_2022_785999
crossref_primary_10_3389_fpls_2022_847364
crossref_primary_10_1038_s41467_024_47465_4
crossref_primary_10_3390_molecules28124808
crossref_primary_10_1186_s12936_024_05077_9
crossref_primary_10_1016_j_tem_2021_03_003
crossref_primary_10_1016_j_animal_2023_100986
crossref_primary_10_1016_j_scitotenv_2020_140208
crossref_primary_10_3390_metabo12060514
crossref_primary_10_3390_metabo12100918
crossref_primary_10_1016_j_neuropharm_2019_107789
crossref_primary_10_3390_molecules27175483
crossref_primary_10_1002_btpr_3298
crossref_primary_10_1016_j_bbadis_2018_01_032
crossref_primary_10_1053_j_jrn_2025_02_004
crossref_primary_10_1186_s12864_025_11545_6
crossref_primary_10_1080_87559129_2024_2374822
crossref_primary_10_15252_emmm_202216951
crossref_primary_10_1016_j_jnutbio_2018_12_006
crossref_primary_10_1038_s41598_018_30774_2
crossref_primary_10_1111_febs_17255
crossref_primary_10_3390_ijms222312873
crossref_primary_10_4103_pm_pm_470_20
crossref_primary_10_1038_s41416_020_01113_y
crossref_primary_10_1002_hsr2_70343
crossref_primary_10_1186_s12933_024_02395_9
crossref_primary_10_1016_j_rvsc_2023_05_017
crossref_primary_10_1016_j_molmet_2022_101478
crossref_primary_10_3390_ijms22136752
crossref_primary_10_1186_s12885_025_14661_4
crossref_primary_10_1002_lno_11563
crossref_primary_10_1016_j_animal_2024_101225
crossref_primary_10_1038_s42255_021_00517_1
crossref_primary_10_3390_nu15010142
crossref_primary_10_1161_JAHA_118_010711
crossref_primary_10_1016_j_jbiotec_2021_06_019
crossref_primary_10_1038_nrendo_2017_91
crossref_primary_10_1111_1750_3841_16452
crossref_primary_10_1007_s00726_023_03327_9
crossref_primary_10_3390_ijms241713260
crossref_primary_10_3390_livers4040043
crossref_primary_10_1038_s41467_020_20223_y
crossref_primary_10_7554_eLife_56749
crossref_primary_10_3390_ijms21041212
crossref_primary_10_1016_j_nut_2020_111042
crossref_primary_10_1080_1028415X_2018_1443995
crossref_primary_10_1177_2472555218755629
crossref_primary_10_3390_cancers13061434
crossref_primary_10_3390_ijms20071633
crossref_primary_10_1016_j_brainresbull_2025_111437
crossref_primary_10_1186_s12934_023_02213_z
crossref_primary_10_1016_j_aquaculture_2022_739204
crossref_primary_10_1016_j_ymgme_2017_11_011
crossref_primary_10_1016_j_nutres_2019_06_006
crossref_primary_10_3390_cells11091422
crossref_primary_10_3390_ijerph18189874
crossref_primary_10_3390_cells9092028
crossref_primary_10_1016_j_bbcan_2020_188366
crossref_primary_10_1113_JP276714
crossref_primary_10_1371_journal_pone_0225803
crossref_primary_10_1371_journal_ppat_1013331
crossref_primary_10_5937_jomb0_37514
crossref_primary_10_1134_S0022093021010166
crossref_primary_10_3389_fmolb_2020_585161
crossref_primary_10_3389_fphar_2024_1412231
crossref_primary_10_1371_journal_ppat_1007577
crossref_primary_10_1016_j_cmet_2021_02_005
crossref_primary_10_1016_j_clim_2022_109153
crossref_primary_10_1007_s11306_025_02276_6
crossref_primary_10_1016_j_bbadis_2019_165538
crossref_primary_10_1007_s00726_024_03417_2
crossref_primary_10_1186_s12964_019_0354_2
crossref_primary_10_1080_15548627_2021_1968228
crossref_primary_10_1017_S0029665120007880
crossref_primary_10_3390_v11030273
crossref_primary_10_1016_j_ecoenv_2025_118651
crossref_primary_10_1073_pnas_1722677115
crossref_primary_10_1016_j_lfs_2020_118938
crossref_primary_10_1016_j_foodchem_2017_12_062
crossref_primary_10_1038_s41467_024_50888_8
crossref_primary_10_1038_s41598_020_73225_7
crossref_primary_10_3168_jds_2020_18429
crossref_primary_10_1016_j_rbmo_2021_11_012
crossref_primary_10_3389_fonc_2022_916777
crossref_primary_10_1128_AEM_02593_19
crossref_primary_10_1038_s41467_021_25563_x
crossref_primary_10_3390_ani12121554
crossref_primary_10_3390_antiox11010097
crossref_primary_10_1097_MCC_0000000000000486
crossref_primary_10_1002_1873_3468_14224
crossref_primary_10_1021_acsami_4c22969
crossref_primary_10_1093_jn_nxy172
crossref_primary_10_3390_cells7100149
crossref_primary_10_1038_s41467_021_26395_5
crossref_primary_10_1016_j_theriogenology_2023_02_019
crossref_primary_10_1093_jn_nxab342
crossref_primary_10_1242_jeb_193557
crossref_primary_10_1007_s10974_020_09584_5
crossref_primary_10_1002_j_2040_4603_2020_tb00119_x
crossref_primary_10_2337_db24_0958
crossref_primary_10_3390_ijms24032604
crossref_primary_10_3390_metabo13040510
crossref_primary_10_1038_s41598_021_95646_8
crossref_primary_10_1080_10409238_2019_1611733
crossref_primary_10_3390_ani14060959
crossref_primary_10_1111_jdi_12797
crossref_primary_10_1042_BCJ20190859
crossref_primary_10_1002_cmtd_202500090
crossref_primary_10_3390_ijms22179245
crossref_primary_10_1016_j_scitotenv_2020_141097
crossref_primary_10_3390_metabo14060336
crossref_primary_10_1038_s41598_022_18718_3
crossref_primary_10_7554_eLife_75821
crossref_primary_10_3390_membranes11080602
crossref_primary_10_1038_s41598_020_73757_y
crossref_primary_10_1002_bit_26794
crossref_primary_10_1017_S0007114524001600
crossref_primary_10_3390_molecules25235495
crossref_primary_10_1002_marc_202400201
crossref_primary_10_1186_s12284_021_00454_3
crossref_primary_10_1016_j_molcel_2021_08_026
crossref_primary_10_3390_nu13082794
crossref_primary_10_1002_advs_202507635
crossref_primary_10_1016_j_animal_2022_100663
crossref_primary_10_1111_jfbc_13441
crossref_primary_10_1038_s41420_024_02271_1
crossref_primary_10_1016_j_molmet_2021_101261
crossref_primary_10_1080_07391102_2023_2298390
crossref_primary_10_3389_fonc_2018_00013
crossref_primary_10_1074_jbc_RA118_006378
crossref_primary_10_3168_jds_2021_20187
crossref_primary_10_1182_blood_2021013990
crossref_primary_10_1002_jcp_27115
crossref_primary_10_52586_5032
crossref_primary_10_1038_s41467_021_27306_4
crossref_primary_10_1016_j_scitotenv_2024_171701
crossref_primary_10_3389_fphar_2018_00785
crossref_primary_10_1016_j_cell_2025_05_001
crossref_primary_10_3168_jds_2021_20527
crossref_primary_10_3390_genes14040835
crossref_primary_10_3389_fmolb_2022_897929
crossref_primary_10_3389_fcvm_2018_00127
crossref_primary_10_1016_j_archoralbio_2018_11_003
crossref_primary_10_1146_annurev_micro_032421_111819
crossref_primary_10_26508_lsa_202000863
crossref_primary_10_3390_cells11081372
crossref_primary_10_1371_journal_ppat_1009835
crossref_primary_10_1016_j_biomaterials_2017_09_002
crossref_primary_10_1073_pnas_2022447118
crossref_primary_10_1096_fj_202001773R
crossref_primary_10_3389_fnut_2022_976818
crossref_primary_10_1134_S1990750822010061
crossref_primary_10_1186_s12964_023_01170_9
crossref_primary_10_1038_s41598_020_78559_w
crossref_primary_10_1093_infdis_jiac392
crossref_primary_10_1038_s41581_024_00872_8
crossref_primary_10_1016_j_jhazmat_2023_132208
crossref_primary_10_1016_j_cbpa_2020_110780
crossref_primary_10_1038_s41574_018_0009_1
crossref_primary_10_1016_j_cmet_2021_03_006
crossref_primary_10_1371_journal_pone_0202970
crossref_primary_10_1016_j_heliyon_2023_e17598
crossref_primary_10_1038_s41556_024_01402_1
crossref_primary_10_3389_fvets_2021_685548
crossref_primary_10_1021_acscentsci_2c01325
crossref_primary_10_15252_embr_202051780
crossref_primary_10_1371_journal_pcbi_1010203
crossref_primary_10_1038_s41467_020_14285_1
crossref_primary_10_3389_fpubh_2024_1394023
crossref_primary_10_1016_j_tibs_2019_12_007
crossref_primary_10_1007_s12649_025_02932_x
crossref_primary_10_1186_s41100_021_00391_3
crossref_primary_10_1016_j_jnutbio_2023_109548
crossref_primary_10_1186_s13020_018_0217_6
crossref_primary_10_1080_15384047_2024_2315651
crossref_primary_10_1038_s41467_022_31149_y
crossref_primary_10_1038_s41598_022_16351_8
crossref_primary_10_1186_s13045_020_00949_4
crossref_primary_10_26599_NR_2025_94907082
crossref_primary_10_1016_j_bcp_2022_115074
crossref_primary_10_1186_s13578_023_01136_x
crossref_primary_10_3168_jds_2024_24774
crossref_primary_10_3390_antiox10050654
crossref_primary_10_1016_j_lfs_2023_121662
crossref_primary_10_1002_bit_27288
crossref_primary_10_3390_ijms19072093
crossref_primary_10_1210_endocr_bqae004
crossref_primary_10_1016_j_cbpa_2020_110657
crossref_primary_10_3390_mps4030051
crossref_primary_10_1186_s12864_025_11382_7
crossref_primary_10_3390_foods14162833
crossref_primary_10_3390_jcm13144083
crossref_primary_10_1016_j_tem_2021_11_004
crossref_primary_10_1016_j_bbrc_2019_10_138
crossref_primary_10_1093_jas_skaf009
crossref_primary_10_3389_fphar_2025_1522130
crossref_primary_10_1016_j_anifeedsci_2023_115591
crossref_primary_10_3389_fphar_2021_686133
crossref_primary_10_3390_metabo13111163
crossref_primary_10_1016_j_phrs_2020_104844
crossref_primary_10_1016_j_ijbiomac_2024_136974
crossref_primary_10_1021_acs_jproteome_4c00937
crossref_primary_10_2337_dbi19_0021
crossref_primary_10_1007_s40200_020_00566_5
crossref_primary_10_3389_fphar_2020_00140
crossref_primary_10_1038_s41467_024_51748_1
crossref_primary_10_7759_cureus_88325
crossref_primary_10_1016_j_coph_2017_07_005
crossref_primary_10_3390_ijms19040954
ContentType Journal Article
Copyright 2017 The Author(s).
Copyright_xml – notice: 2017 The Author(s).
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BCJ20160822
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 28546457
Genre Journal Article
Comparative Study
Review
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
53G
5GY
5RE
6J9
79B
A8Z
AABGO
AAHRG
ABJNI
ABPPZ
ABRJW
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
HH6
HZ~
K-O
L7B
ML-
MV1
N9A
NPM
NTEUP
O9-
OK1
P2P
RHI
RNS
RPM
RPO
SV3
TR2
TWZ
WH7
XSW
Y6R
YNY
~02
~KM
7X8
ESTFP
ID FETCH-LOGICAL-c381t-c5b94210e6f6e3513f582c6867f3b0570eb04ee36084ea07f05f890fcbad4d712
IEDL.DBID 7X8
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404353400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Sun Nov 09 10:53:19 EST 2025
Wed Feb 19 02:42:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords amino acid transporters
amino acid metabolism
starvation signalling
Language English
License 2017 The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-c5b94210e6f6e3513f582c6867f3b0570eb04ee36084ea07f05f890fcbad4d712
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5444488
PMID 28546457
PQID 1903159919
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1903159919
pubmed_primary_28546457
PublicationCentury 2000
PublicationDate 2017-06-15
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2017
References 884100 - Biochim Biophys Acta. 1977 Jun 3;476(3):218-27
26482881 - Nat Genet. 2015 Dec;47(12):1475-81
26724577 - Biochim Biophys Acta. 2016 Oct;1863(10):2531-9
26449471 - Science. 2016 Jan 1;351(6268):43-8
17488712 - J Biol Chem. 2007 Jul 6;282(27):19788-98
27313038 - Science. 2016 Jun 17;352(6292):1413-6
15657430 - Mol Cell Biol. 2005 Feb;25(3):1025-40
27125852 - Ageing Res Rev. 2016 Dec;32:22-37
21409388 - Amino Acids. 2012 Jan;42(1):231-46
26059772 - J Genet Genomics. 2015 May 20;42(5):249-60
28089565 - Cell Metab. 2017 Feb 7;25(2):472-480
28273481 - Cell Metab. 2017 Mar 7;25(3):610-621
23744068 - J Biol Chem. 2013 Jul 19;288(29):21074-81
18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34
8064410 - J Nutr. 1994 Aug;124(8 Suppl):1503S-1508S
15155792 - J Physiol. 2004 Jul 15;558(Pt 2):597-610
21386061 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1092-102
12482958 - Mol Cell Biol. 2003 Jan;23(1):26-37
19087445 - Nutr Res Rev. 1999 Jun;12(1):25-54
27530302 - Clin Pharmacol Ther. 2016 Nov;100(5):431-436
9751058 - Nature. 1998 Sep 17;395(6699):288-91
18032601 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50
27714515 - Amino Acids. 2017 Jan;49(1):161-172
20304764 - Am J Physiol Endocrinol Metab. 2010 May;298(5):E1011-8
26442437 - Annu Rev Physiol. 2016;78:277-99
1289083 - Enzyme. 1992;46(1-3):72-93
19033189 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7
27076075 - Cell Metab. 2016 Apr 12;23 (4):580-9
25574008 - Science. 2015 Jan 9;347(6218):128-9
10440122 - Diabetologia. 1999 Jul;42(7):812-8
12297216 - Nutrition. 2002 Sep;18(9):761-6
12935293 - Biochem J. 2003 Nov 15;376(Pt 1):179-88
23512805 - Am J Physiol Endocrinol Metab. 2013 Jun 1;304(11):E1175-87
5129318 - J Clin Invest. 1971 Dec;50(12):2703-14
21760589 - Nature. 2011 Aug 18;476(7360):346-50
23222708 - Curr Opin Clin Nutr Metab Care. 2013 Jan;16(1):96-101
18649974 - Clin Nutr. 2008 Dec;27(6):816-21
14402856 - Bull N Y Acad Med. 1960 Jul;36:431-50
19896463 - Biochem Biophys Res Commun. 2010 Jan 1;391(1):91-5
7922327 - Curr Biol. 1994 Mar 1;4(3):220-33
17767905 - Cell Metab. 2007 Sep;6(3):181-94
23436907 - Mol Cell Proteomics. 2013 Jun;12(6):1572-88
11834730 - J Biol Chem. 2002 Apr 19;277(16):13628-34
19158318 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E603-13
9932369 - Prog Brain Res. 1998;116:45-57
26661195 - J Cereb Blood Flow Metab. 2016 Nov;36(11):1929-1941
10600798 - Am J Physiol. 1999 Dec;277(6 Pt 1):E1077-86
26017155 - Cell Cycle. 2015;14(13):2011-7
10391916 - J Biol Chem. 1999 Jul 9;274(28):19745-51
6142902 - J Clin Invest. 1984 Mar;73(3):785-93
12805541 - Science. 2003 Jun 13;300(5626):1718-22
26972053 - Cell. 2016 Mar 24;165(1):153-64
21350187 - Am J Physiol Gastrointest Liver Physiol. 2011 Jul;301(1):G128-37
21960526 - Cold Spring Harb Symp Quant Biol. 2011;76:369-74
129473 - J Biol Chem. 1976 Feb 10;251(3):844-50
24745982 - Curr Top Membr. 2014;73:149-74
24965527 - Amino Acids. 2015 Oct;47(10 ):2065-88
21568940 - Biochem J. 2011 Jun 1;436(2):193-211
24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6
2103690 - Adv Exp Med Biol. 1990;272:23-46
22677001 - Biochem J. 2012 Aug 15;446(1):135-48
24122080 - Neurochem Res. 2014;39(3):433-45
9806879 - Biochem J. 1998 Nov 15;336 ( Pt 1):1-17
12444083 - J Biol Chem. 2003 Jan 31;278(5):2853-8
8101838 - J Biol Chem. 1993 Jul 25;268(21):15329-32
23506863 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58
22959274 - Mol Cell. 2012 Oct 26;48(2):242-53
15659336 - Semin Cell Dev Biol. 2005 Feb;16(1):21-7
12757712 - Cell. 2003 May 16;113(4):519-31
9435692 - Am J Physiol. 1997 Dec;273(6 Pt 2):F1023-9
11917093 - Physiol Rev. 2002 Apr;82(2):373-428
26937223 - J Int Soc Sports Nutr. 2016 Mar 01;13:8
27129276 - J Biol Chem. 2016 Jun 17;291(25):13194-205
14770310 - Pflugers Arch. 2004 Feb;447(5):532-42
25668017 - Annu Rev Physiol. 2015;77:57-80
2194222 - Physiol Rev. 1990 Jul;70(3):701-48
27322810 - PLoS One. 2016 Jun 20;11(6):e0157298
12558800 - Genes Cells. 2003 Jan;8(1):65-79
25451601 - J Mol Biol. 2015 Mar 27;427(6 Pt B):1495-512
27422517 - Adv Nutr. 2016 Jul 15;7(4):798S-805S
18424768 - FASEB J. 2008 Aug;22(8):2880-7
10903140 - Biochem J. 2000 Aug 1;349 Pt 3:787-95
571951 - Metabolism. 1979 Apr;28(4):313-9
19489727 - Annu Rev Biochem. 2009;78:477-513
18195088 - Physiol Rev. 2008 Jan;88(1):249-86
27273098 - Sci Signal. 2016 Jun 07;9(431):re5
6875973 - J Physiol. 1983 May;338:613-25
17127344 - Front Biosci. 2007 Jan 01;12 :874-82
22585903 - Adv Nutr. 2012 May 01;3(3):295-306
16174864 - Am J Physiol Renal Physiol. 2006 Feb;290(2):F376-83
1851687 - Clin Sci (Lond). 1991 May;80(5):471-4
25287287 - Nat Rev Endocrinol. 2014 Dec;10(12):723-36
12200047 - Mol Immunol. 2002 Oct;39(3-4):147-64
23872674 - Curr Opin Nephrol Hypertens. 2013 Sep;22(5):539-44
23645676 - J Biol Chem. 2013 Jun 14;288(24):17202-13
11377971 - Curr Opin Genet Dev. 2001 Jun;11(3):328-35
20473272 - EMBO J. 2010 Jun 16;29(12):2082-96
21423183 - Nat Med. 2011 Apr;17(4):448-53
23216249 - Biochem J. 2013 Jan 1;449(1):1-10
23506866 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219
26739563 - Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):775-80
19472175 - IUBMB Life. 2009 Jun;61(6):591-9
21501141 - Br J Pharmacol. 2011 Dec;164(7):1802-16
26051250 - Cell Death Differ. 2015 Jul;22(7):1234
3909197 - Q J Exp Physiol. 1985 Oct;70(4):473-89
11575165 - Prog Mol Subcell Biol. 2001;26:155-84
27010498 - Cell Signal. 2016 Aug;28(8):896-906
4829908 - J Appl Physiol. 1974 Jun;36(6):693-7
22300073 - Curr Med Chem. 2012;19(1):28-34
7711290 - Semin Cell Biol. 1994 Dec;5(6):417-26
20576612 - J Biol Chem. 2010 Sep 17;285(38):29027-32
23045339 - J Physiol. 2012 Dec 15;590(24):6413-24
16365084 - J Nutr. 2006 Jan;136(1 Suppl):207S-11S
7914198 - J Biol Chem. 1994 Aug 12;269(32):20599-606
18221502 - Mol Cancer. 2008 Jan 25;7:14
15611152 - FASEB J. 2005 Mar;19(3):461-3
6246103 - J Biol Chem. 1980 Jun 10;255(11):5270-80
11311116 - Biochem J. 2001 May 1;355(Pt 3):563-8
1637318 - Biochem J. 1992 Jul 1;285 ( Pt 1):339-40
25158238 - Semin Cell Dev Biol. 2014 Dec;36:121-9
23728461 - Nat Cell Biol. 2013 Jun;15(6):555-64
24284439 - Am J Clin Nutr. 2014 Jan;99(1):223S-230S
23624144 - Int J Biochem Cell Biol. 2013 Aug;45(8):1690-700
24483210 - FEMS Microbiol Rev. 2014 Mar;38(2):254-99
27422515 - Adv Nutr. 2016 Jul 15;7(4):780S-9S
25133427 - J Clin Invest. 2014 Sep;124(9):3913-22
23506876 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):350-9
3316280 - J Clin Invest. 1987 Dec;80(6):1784-93
17273864 - Pflugers Arch. 2007 Jun;454(3):507-16
23361334 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9
17452648 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7432-7
15521011 - Gastroenterology. 2004 Nov;127(5):1410-22
27542409 - J Biol Chem. 2016 Sep 30;291(40):20900-20910
25963655 - Mol Cell Biol. 2015 Jul;35(14):2479-94
14977407 - Annu Rev Physiol. 2004;66:361-84
18765678 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602
15050973 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S45-51
22850614 - J Pharmacol Sci. 2012;119(4):368-80
11704550 - Am J Physiol Renal Physiol. 2001 Dec;281(6):F995-1018
15459982 - Annu Rev Nutr. 2004;24:377-99
4579349 - Proc Nutr Soc. 1972 Dec;31(3):265-72
10821325 - Ann Med. 2000 Apr;32(3):181-6
27358398 - J Biol Chem. 2016 Aug 12;291(33):16927-35
22674217 - Mol Neurobiol. 2012 Oct;46(2):332-48
16621798 - J Biol Chem. 2006 Jun 30;281(26):17929-40
15050971 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S27-37
19219026 - Nature. 2009 Apr 9;458(7239):762-5
20570523 - Trends Biochem Sci. 2010 Aug;35(8):427-33
19184091 - Pflugers Arch. 2009 May;458(1):53-60
15930469 - J Nutr. 2005 Jun;135(6 Suppl):1557S-64S
23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36
20223289 - Semin Cell Dev Biol. 2010 Sep;21(7):683-90
27939446 - Trends Pharmacol Sci. 2017 Mar;38(3):305-315
25561175 - Nature. 2015 Mar 26;519(7544):477-81
24880909 - Amino Acids. 2015 Oct;47(10 ):2037-63
15836464 - Obes Rev. 2005 May;6(2):133-42
15465780 - J Nutr. 2004 Oct;134(10 Suppl):2752S-2759S; discussion 2765S-2767S
23506861 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):108-20
27689005 - Mol Metab. 2016 Aug 06;5(10 ):926-36
26739710 - Pflugers Arch. 2016 Mar;468(3):371-83
8338146 - Am J Physiol. 1993 Jul;265(1 Pt 1):E135-44
26773603 - J Mol Cell Cardiol. 2016 Jun;95:31-41
25274824 - J Neurosci. 2014 Oct 1;34(40):13472-85
16742606 - Biochem J. 1968 May;107(6):807-15
25857264 - Cell Death Differ. 2015 Jul;22(7):1094-105
6380539 - Annu Rev Nutr. 1984;4:409-54
24193407 - Pflugers Arch. 2014 Jan;466(1):155-72
12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68
20381137 - Cell. 2010 Apr 16;141(2):290-303
25973388 - Mol Metab. 2015 Feb 16;4(5):406-17
11850497 - J Physiol. 2002 Feb 15;539(Pt 1):3-14
27690010 - Int J Mol Sci. 2016 Sep 29;17(10):null
26449607 - J Am Soc Nephrol. 2016 Jun;27(6):1678-88
21220943 - Cell Cycle. 2011 Jan 15;10(2):229-40
20965422 - Mol Cell. 2010 Oct 22;40(2):280-93
23820899 - Mol Endocrinol. 2013 Aug;27(8):1188-97
19411760 - J Clin Invest. 2009 Jun;119(6):1678-87
23624402 - Nat Cell Biol. 2013 May;15(5):481-90
7247944 - Biochem Biophys Res Commun. 1981 Apr 15;99(3):830-6
3938302 - Biosci Rep. 1985 Dec;5(12):1015-33
25474014 - Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):71-7
27174209 - Trends Biochem Sci. 2016 Jul;41(7):621-32
9790568 - Physiol Rev. 1998 Oct;78(4):969-1054
8504097 - Biochemistry. 1993 Jun 8;32(22):5781-5
5455559 - Am J Clin Nutr. 1970 Jul;23(7):986-92
27189933 - Am J Physiol Endocrinol Metab. 2016 Jul 1;311(1):E157-74
22319049 - Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R917-28
19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43
22460905 - Nature. 2012 Mar 28;483(7391):603-7
23268354 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):638-45
23105104 - J Biol Chem. 2012 Dec 14;287(51):42890-9
25043031 - Nature. 2014 Sep 18;513(7518):440-3
22233381 - Biochem J. 2012 Apr 1;443(1):165-71
22424946 - Cell. 2012 Apr 13;149(2):410-24
26968366 - Biochim Biophys Acta. 2016 Oct;1863(10):2362-78
8928783 - Am J Physiol. 1996 Apr;270(4 Pt 1):G541-53
24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8
25998567 - Nat Commun. 2015 May 22;6:7250
25157349 - Front Chem. 2014 Aug 11;2:61
7546750 - Neuron. 1995 Sep;15(3):721-8
1119429 - Am J Clin Nutr. 1975 Apr;28(4):316-24
25567906 - Science. 2015
References_xml – reference: 17767905 - Cell Metab. 2007 Sep;6(3):181-94
– reference: 12200047 - Mol Immunol. 2002 Oct;39(3-4):147-64
– reference: 808218 - Biochem J. 1975 Feb;146(2):457-64
– reference: 25157349 - Front Chem. 2014 Aug 11;2:61
– reference: 25274824 - J Neurosci. 2014 Oct 1;34(40):13472-85
– reference: 20473272 - EMBO J. 2010 Jun 16;29(12):2082-96
– reference: 23506861 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):108-20
– reference: 20056399 - Curr Opin Cell Biol. 2010 Apr;22(2):132-9
– reference: 8064410 - J Nutr. 1994 Aug;124(8 Suppl):1503S-1508S
– reference: 26059772 - J Genet Genomics. 2015 May 20;42(5):249-60
– reference: 21568940 - Biochem J. 2011 Jun 1;436(2):193-211
– reference: 14770310 - Pflugers Arch. 2004 Feb;447(5):532-42
– reference: 15459982 - Annu Rev Nutr. 2004;24:377-99
– reference: 5941008 - Fed Proc. 1966 May-Jun;25(3):850-3
– reference: 22079166 - Arch Biochem Biophys. 2012 Mar 15;519(2):69-80
– reference: 7914198 - J Biol Chem. 1994 Aug 12;269(32):20599-606
– reference: 23403946 - Am J Physiol Endocrinol Metab. 2013 Apr 15;304(8):E789-99
– reference: 16621798 - J Biol Chem. 2006 Jun 30;281(26):17929-40
– reference: 19158318 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E603-13
– reference: 11575165 - Prog Mol Subcell Biol. 2001;26:155-84
– reference: 25668017 - Annu Rev Physiol. 2015;77:57-80
– reference: 27313038 - Science. 2016 Jun 17;352(6292):1413-6
– reference: 20451554 - Pharmacol Ther. 2010 Sep;127(3):252-60
– reference: 7711290 - Semin Cell Biol. 1994 Dec;5(6):417-26
– reference: 12297216 - Nutrition. 2002 Sep;18(9):761-6
– reference: 2194222 - Physiol Rev. 1990 Jul;70(3):701-48
– reference: 15964839 - J Biol Chem. 2005 Aug 12;280(32):29289-99
– reference: 21220943 - Cell Cycle. 2011 Jan 15;10(2):229-40
– reference: 15657430 - Mol Cell Biol. 2005 Feb;25(3):1025-40
– reference: 6246103 - J Biol Chem. 1980 Jun 10;255(11):5270-80
– reference: 571951 - Metabolism. 1979 Apr;28(4):313-9
– reference: 1289083 - Enzyme. 1992;46(1-3):72-93
– reference: 2103690 - Adv Exp Med Biol. 1990;272:23-46
– reference: 3938302 - Biosci Rep. 1985 Dec;5(12):1015-33
– reference: 4829908 - J Appl Physiol. 1974 Jun;36(6):693-7
– reference: 11850497 - J Physiol. 2002 Feb 15;539(Pt 1):3-14
– reference: 21960526 - Cold Spring Harb Symp Quant Biol. 2011;76:369-74
– reference: 17452648 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7432-7
– reference: 10821325 - Ann Med. 2000 Apr;32(3):181-6
– reference: 20959619 - Physiol Rev. 2010 Oct;90(4):1383-435
– reference: 22053050 - Science. 2011 Nov 4;334(6056):678-83
– reference: 25158238 - Semin Cell Dev Biol. 2014 Dec;36:121-9
– reference: 15155792 - J Physiol. 2004 Jul 15;558(Pt 2):597-610
– reference: 12805541 - Science. 2003 Jun 13;300(5626):1718-22
– reference: 27189933 - Am J Physiol Endocrinol Metab. 2016 Jul 1;311(1):E157-74
– reference: 19033189 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7
– reference: 4579349 - Proc Nutr Soc. 1972 Dec;31(3):265-72
– reference: 27129276 - J Biol Chem. 2016 Jun 17;291(25):13194-205
– reference: 26773603 - J Mol Cell Cardiol. 2016 Jun;95:31-41
– reference: 20570523 - Trends Biochem Sci. 2010 Aug;35(8):427-33
– reference: 10903140 - Biochem J. 2000 Aug 1;349 Pt 3:787-95
– reference: 26661195 - J Cereb Blood Flow Metab. 2016 Nov;36(11):1929-1941
– reference: 24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6
– reference: 21386061 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1092-102
– reference: 23045339 - J Physiol. 2012 Dec 15;590(24):6413-24
– reference: 23872674 - Curr Opin Nephrol Hypertens. 2013 Sep;22(5):539-44
– reference: 27010498 - Cell Signal. 2016 Aug;28(8):896-906
– reference: 24880909 - Amino Acids. 2015 Oct;47(10 ):2037-63
– reference: 5773094 - J Clin Invest. 1969 Mar;48(3):584-94
– reference: 20498635 - Oncogene. 2010 Jul 15;29(28):4068-79
– reference: 23506866 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219
– reference: 25759021 - Cancer Cell. 2015 Mar 9;27(3):354-69
– reference: 15521011 - Gastroenterology. 2004 Nov;127(5):1410-22
– reference: 16174864 - Am J Physiol Renal Physiol. 2006 Feb;290(2):F376-83
– reference: 22850614 - J Pharmacol Sci. 2012;119(4):368-80
– reference: 15050971 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S27-37
– reference: 23436907 - Mol Cell Proteomics. 2013 Jun;12(6):1572-88
– reference: 24483210 - FEMS Microbiol Rev. 2014 Mar;38(2):254-99
– reference: 25567906 - Science. 2015 Jan 9;347(6218):188-94
– reference: 27126896 - Nat Commun. 2016 Apr 29;7:11457
– reference: 884100 - Biochim Biophys Acta. 1977 Jun 3;476(3):218-27
– reference: 1119429 - Am J Clin Nutr. 1975 Apr;28(4):316-24
– reference: 26442437 - Annu Rev Physiol. 2016;78:277-99
– reference: 26724577 - Biochim Biophys Acta. 2016 Oct;1863(10):2531-9
– reference: 6875973 - J Physiol. 1983 May;338:613-25
– reference: 12482958 - Mol Cell Biol. 2003 Jan;23(1):26-37
– reference: 28273481 - Cell Metab. 2017 Mar 7;25(3):610-621
– reference: 18154499 - Annu Rev Psychol. 2008;59:55-92
– reference: 6142902 - J Clin Invest. 1984 Mar;73(3):785-93
– reference: 15277680 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74
– reference: 27872019 - Pharmacol Res. 2017 Jan;115:179-191
– reference: 23506876 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):350-9
– reference: 19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43
– reference: 23216249 - Biochem J. 2013 Jan 1;449(1):1-10
– reference: 14402856 - Bull N Y Acad Med. 1960 Jul;36:431-50
– reference: 23268354 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):638-45
– reference: 9806879 - Biochem J. 1998 Nov 15;336 ( Pt 1):1-17
– reference: 6380539 - Annu Rev Nutr. 1984;4:409-54
– reference: 22585903 - Adv Nutr. 2012 May 01;3(3):295-306
– reference: 25133427 - J Clin Invest. 2014 Sep;124(9):3913-22
– reference: 20965422 - Mol Cell. 2010 Oct 22;40(2):280-93
– reference: 23506860 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):95-107
– reference: 27358398 - J Biol Chem. 2016 Aug 12;291(33):16927-35
– reference: 11917093 - Physiol Rev. 2002 Apr;82(2):373-428
– reference: 27714515 - Amino Acids. 2017 Jan;49(1):161-172
– reference: 10440122 - Diabetologia. 1999 Jul;42(7):812-8
– reference: 7546750 - Neuron. 1995 Sep;15(3):721-8
– reference: 24965527 - Amino Acids. 2015 Oct;47(10 ):2065-88
– reference: 12558800 - Genes Cells. 2003 Jan;8(1):65-79
– reference: 27076075 - Cell Metab. 2016 Apr 12;23 (4):580-9
– reference: 21760589 - Nature. 2011 Aug 18;476(7360):346-50
– reference: 15050973 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S45-51
– reference: 27273098 - Sci Signal. 2016 Jun 07;9(431):re5
– reference: 27542409 - J Biol Chem. 2016 Sep 30;291(40):20900-20910
– reference: 27322810 - PLoS One. 2016 Jun 20;11(6):e0157298
– reference: 19489727 - Annu Rev Biochem. 2009;78:477-513
– reference: 27530302 - Clin Pharmacol Ther. 2016 Nov;100(5):431-436
– reference: 19087445 - Nutr Res Rev. 1999 Jun;12(1):25-54
– reference: 23744068 - J Biol Chem. 2013 Jul 19;288(29):21074-81
– reference: 26739710 - Pflugers Arch. 2016 Mar;468(3):371-83
– reference: 22300073 - Curr Med Chem. 2012;19(1):28-34
– reference: 8662767 - J Biol Chem. 1996 Jun 21;271(25):14883-90
– reference: 26482881 - Nat Genet. 2015 Dec;47(12):1475-81
– reference: 5129318 - J Clin Invest. 1971 Dec;50(12):2703-14
– reference: 12444083 - J Biol Chem. 2003 Jan 31;278(5):2853-8
– reference: 11834730 - J Biol Chem. 2002 Apr 19;277(16):13628-34
– reference: 6181926 - Clin Sci (Lond). 1982 Dec;63(6):519-23
– reference: 17488712 - J Biol Chem. 2007 Jul 6;282(27):19788-98
– reference: 18032601 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50
– reference: 25857264 - Cell Death Differ. 2015 Jul;22(7):1094-105
– reference: 26449607 - J Am Soc Nephrol. 2016 Jun;27(6):1678-88
– reference: 21409388 - Amino Acids. 2012 Jan;42(1):231-46
– reference: 26937223 - J Int Soc Sports Nutr. 2016 Mar 01;13:8
– reference: 3909197 - Q J Exp Physiol. 1985 Oct;70(4):473-89
– reference: 23512805 - Am J Physiol Endocrinol Metab. 2013 Jun 1;304(11):E1175-87
– reference: 17273864 - Pflugers Arch. 2007 Jun;454(3):507-16
– reference: 25480797 - J Physiol. 2015 Mar 1;593(5):1273-89
– reference: 27422517 - Adv Nutr. 2016 Jul 15;7(4):798S-805S
– reference: 25963655 - Mol Cell Biol. 2015 Jul;35(14):2479-94
– reference: 23105104 - J Biol Chem. 2012 Dec 14;287(51):42890-9
– reference: 16365084 - J Nutr. 2006 Jan;136(1 Suppl):207S-11S
– reference: 23728461 - Nat Cell Biol. 2013 Jun;15(6):555-64
– reference: 22233381 - Biochem J. 2012 Apr 1;443(1):165-71
– reference: 14977407 - Annu Rev Physiol. 2004;66:361-84
– reference: 21350187 - Am J Physiol Gastrointest Liver Physiol. 2011 Jul;301(1):G128-37
– reference: 23222708 - Curr Opin Clin Nutr Metab Care. 2013 Jan;16(1):96-101
– reference: 20965424 - Mol Cell. 2010 Oct 22;40(2):310-22
– reference: 15611152 - FASEB J. 2005 Mar;19(3):461-3
– reference: 19298394 - Br J Pharmacol. 2009 Mar;156(6):869-84
– reference: 25561175 - Nature. 2015 Mar 26;519(7544):477-81
– reference: 18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34
– reference: 23624144 - Int J Biochem Cell Biol. 2013 Aug;45(8):1690-700
– reference: 16950139 - Cell Metab. 2006 Sep;4(3):223-33
– reference: 18649974 - Clin Nutr. 2008 Dec;27(6):816-21
– reference: 20034776 - Curr Opin Cell Biol. 2010 Apr;22(2):124-31
– reference: 12757712 - Cell. 2003 May 16;113(4):519-31
– reference: 25574008 - Science. 2015 Jan 9;347(6218):128-9
– reference: 19472175 - IUBMB Life. 2009 Jun;61(6):591-9
– reference: 5455559 - Am J Clin Nutr. 1970 Jul;23(7):986-92
– reference: 2610257 - Am J Physiol. 1989 Dec;257(6 Pt 1):E959-62
– reference: 16742606 - Biochem J. 1968 May;107(6):807-15
– reference: 10391916 - J Biol Chem. 1999 Jul 9;274(28):19745-51
– reference: 9435692 - Am J Physiol. 1997 Dec;273(6 Pt 2):F1023-9
– reference: 28089565 - Cell Metab. 2017 Feb 7;25(2):472-480
– reference: 23820899 - Mol Endocrinol. 2013 Aug;27(8):1188-97
– reference: 18221502 - Mol Cancer. 2008 Jan 25;7:14
– reference: 21501141 - Br J Pharmacol. 2011 Dec;164(7):1802-16
– reference: 19219026 - Nature. 2009 Apr 9;458(7239):762-5
– reference: 26968366 - Biochim Biophys Acta. 2016 Oct;1863(10):2362-78
– reference: 9790568 - Physiol Rev. 1998 Oct;78(4):969-1054
– reference: 14623874 - J Biol Chem. 2004 Jan 30;279(5):3463-71
– reference: 22519513 - Br J Pharmacol. 2012 Sep;167(2):256-78
– reference: 20576612 - J Biol Chem. 2010 Sep 17;285(38):29027-32
– reference: 27125852 - Ageing Res Rev. 2016 Dec;32:22-37
– reference: 18195088 - Physiol Rev. 2008 Jan;88(1):249-86
– reference: 15930469 - J Nutr. 2005 Jun;135(6 Suppl):1557S-64S
– reference: 12935293 - Biochem J. 2003 Nov 15;376(Pt 1):179-88
– reference: 24193407 - Pflugers Arch. 2014 Jan;466(1):155-72
– reference: 19822663 - Mol Cell Biol. 2009 Dec;29(24):6515-26
– reference: 10600798 - Am J Physiol. 1999 Dec;277(6 Pt 1):E1077-86
– reference: 9751058 - Nature. 1998 Sep 17;395(6699):288-91
– reference: 27689005 - Mol Metab. 2016 Aug 06;5(10 ):926-36
– reference: 25676932 - Amino Acids. 2015 Apr;47(4):685-91
– reference: 8101838 - J Biol Chem. 1993 Jul 25;268(21):15329-32
– reference: 7247944 - Biochem Biophys Res Commun. 1981 Apr 15;99(3):830-6
– reference: 15659336 - Semin Cell Dev Biol. 2005 Feb;16(1):21-7
– reference: 21346154 - Am J Physiol Cell Physiol. 2011 Jun;300(6):C1270-9
– reference: 24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8
– reference: 25973388 - Mol Metab. 2015 Feb 16;4(5):406-17
– reference: 24745982 - Curr Top Membr. 2014;73:149-74
– reference: 19411760 - J Clin Invest. 2009 Jun;119(6):1678-87
– reference: 9726963 - J Biol Chem. 1998 Sep 11;273(37):23629-32
– reference: 22424946 - Cell. 2012 Apr 13;149(2):410-24
– reference: 7922327 - Curr Biol. 1994 Mar 1;4(3):220-33
– reference: 129473 - J Biol Chem. 1976 Feb 10;251(3):844-50
– reference: 27174209 - Trends Biochem Sci. 2016 Jul;41(7):621-32
– reference: 20223289 - Semin Cell Dev Biol. 2010 Sep;21(7):683-90
– reference: 27448843 - Int J Biochem Cell Biol. 2016 Oct;79:403-418
– reference: 20304764 - Am J Physiol Endocrinol Metab. 2010 May;298(5):E1011-8
– reference: 22460905 - Nature. 2012 Mar 28;483(7391):603-7
– reference: 18765678 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602
– reference: 22319049 - Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R917-28
– reference: 26739563 - Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):775-80
– reference: 1851687 - Clin Sci (Lond). 1991 May;80(5):471-4
– reference: 23645676 - J Biol Chem. 2013 Jun 14;288(24):17202-13
– reference: 15836464 - Obes Rev. 2005 May;6(2):133-42
– reference: 8097375 - Am J Physiol. 1993 Apr;264(4 Pt 1):E526-33
– reference: 8928783 - Am J Physiol. 1996 Apr;270(4 Pt 1):G541-53
– reference: 27690010 - Int J Mol Sci. 2016 Sep 29;17(10):null
– reference: 8338146 - Am J Physiol. 1993 Jul;265(1 Pt 1):E135-44
– reference: 9932369 - Prog Brain Res. 1998;116:45-57
– reference: 22959274 - Mol Cell. 2012 Oct 26;48(2):242-53
– reference: 26972053 - Cell. 2016 Mar 24;165(1):153-64
– reference: 21423183 - Nat Med. 2011 Apr;17(4):448-53
– reference: 15525940 - Nature. 2004 Dec 23;432(7020):1032-6
– reference: 19211835 - Mol Biol Cell. 2009 Apr;20(7):1981-91
– reference: 19184091 - Pflugers Arch. 2009 May;458(1):53-60
– reference: 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36
– reference: 21147771 - J Biol Chem. 2011 Feb 18;286(7):5266-77
– reference: 23624402 - Nat Cell Biol. 2013 May;15(5):481-90
– reference: 15465780 - J Nutr. 2004 Oct;134(10 Suppl):2752S-2759S; discussion 2765S-2767S
– reference: 25451601 - J Mol Biol. 2015 Mar 27;427(6 Pt B):1495-512
– reference: 27422515 - Adv Nutr. 2016 Jul 15;7(4):780S-9S
– reference: 25263172 - Trends Mol Med. 2014 Nov;20(11):604-13
– reference: 26017155 - Cell Cycle. 2015;14(13):2011-7
– reference: 20381137 - Cell. 2010 Apr 16;141(2):290-303
– reference: 10903126 - Biochem J. 2000 Aug 1;349 Pt 3:667-88
– reference: 12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68
– reference: 26051250 - Cell Death Differ. 2015 Jul;22(7):1234
– reference: 22677001 - Biochem J. 2012 Aug 15;446(1):135-48
– reference: 17127344 - Front Biosci. 2007 Jan 01;12 :874-82
– reference: 24692143 - Compr Physiol. 2014 Jan;4(1):367-403
– reference: 11377971 - Curr Opin Genet Dev. 2001 Jun;11(3):328-35
– reference: 19896463 - Biochem Biophys Res Commun. 2010 Jan 1;391(1):91-5
– reference: 11311116 - Biochem J. 2001 May 1;355(Pt 3):563-8
– reference: 27939446 - Trends Pharmacol Sci. 2017 Mar;38(3):305-315
– reference: 8504097 - Biochemistry. 1993 Jun 8;32(22):5781-5
– reference: 18424768 - FASEB J. 2008 Aug;22(8):2880-7
– reference: 25474014 - Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):71-7
– reference: 23506863 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58
– reference: 26449471 - Science. 2016 Jan 1;351(6268):43-8
– reference: 24122080 - Neurochem Res. 2014;39(3):433-45
– reference: 23361334 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9
– reference: 25287287 - Nat Rev Endocrinol. 2014 Dec;10(12):723-36
– reference: 11704550 - Am J Physiol Renal Physiol. 2001 Dec;281(6):F995-1018
– reference: 3316280 - J Clin Invest. 1987 Dec;80(6):1784-93
– reference: 1637318 - Biochem J. 1992 Jul 1;285 ( Pt 1):339-40
– reference: 25998567 - Nat Commun. 2015 May 22;6:7250
– reference: 22674217 - Mol Neurobiol. 2012 Oct;46(2):332-48
– reference: 25043031 - Nature. 2014 Sep 18;513(7518):440-3
– reference: 24284439 - Am J Clin Nutr. 2014 Jan;99(1):223S-230S
SSID ssj0014040
Score 2.6621518
SecondaryResourceType review_article
Snippet Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1935
SubjectTerms Activating Transcription Factor 4 - metabolism
Amino Acids - metabolism
Animals
Appetite Regulation
Autophagy
Biological Transport
Central Nervous System - metabolism
Central Nervous System - secretion
Diet - adverse effects
Fasting - metabolism
Gene Expression Regulation
Homeostasis
Humans
Malnutrition - etiology
Malnutrition - metabolism
Mechanistic Target of Rapamycin Complex 1
Models, Biological
Multiprotein Complexes - metabolism
Neurons - metabolism
Neurons - secretion
Oxidation-Reduction
Postprandial Period
Protein-Serine-Threonine Kinases - metabolism
Signal Transduction
TOR Serine-Threonine Kinases - metabolism
Title Amino acid homeostasis and signalling in mammalian cells and organisms
URI https://www.ncbi.nlm.nih.gov/pubmed/28546457
https://www.proquest.com/docview/1903159919
Volume 474
WOSCitedRecordID wos000404353400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34aH3UFxHE29J9JLvJSWqxiGDpQaG3kmQnuIfdrW4V_PdOdrf0JAhectpAdpjk-zKZmY-QG6YRo5WwHpO-8pgOpacDCZ4GZSFJnbRDIzaRTCZiNpPTNuBWtWmVqzOxPqjT0rgY-QCBK0LolYG8W7x7TjXKva62EhqbpBMhlXFenczWrwjMbwoiWeLjrg9FW5-Hfjq4Hz2FrrmacKq5v3HLGmPG-_9d3QHZa9klHTbucEg2oOiS3rDAm3X-TW9pne9ZB9K7ZGe00nrrkfEwz4qSKpOl9K3MoUTOWGUVVUVKXYaHqjt306ygucrzOjRCXci_-aJRhqry6oi8jh9eRo9eq7DgGUTqpWe4lgwvfRDbGCIeRJaL0MQiTmykkcn5oH0GEKGdGCg_sT63QvrWaJWyNAnCY7JVlAWcEqohAJ4GJlBGMM6VFCEg-bJIL6xlNu2T65Xl5vhzbo2qgPKzmq9t1ycnjfnni6bVxtzVd8aMJ2d_mH1OdkOHuU5YiF-QjsX9C5dk23wts-rjqnYNHCfT5x8mbMOP
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acid+homeostasis+and+signalling+in+mammalian+cells+and+organisms&rft.jtitle=Biochemical+journal&rft.au=Br%C3%B6er%2C+Stefan&rft.au=Br%C3%B6er%2C+Angelika&rft.date=2017-06-15&rft.eissn=1470-8728&rft.volume=474&rft.issue=12&rft.spage=1935&rft_id=info:doi/10.1042%2FBCJ20160822&rft_id=info%3Apmid%2F28546457&rft_id=info%3Apmid%2F28546457&rft.externalDocID=28546457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon