Amino acid homeostasis and signalling in mammalian cells and organisms
Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino aci...
Gespeichert in:
| Veröffentlicht in: | Biochemical journal Jg. 474; H. 12; S. 1935 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
15.06.2017
|
| Schlagworte: | |
| ISSN: | 1470-8728, 1470-8728 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake. |
|---|---|
| AbstractList | Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake. Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake. |
| Author | Bröer, Angelika Bröer, Stefan |
| Author_xml | – sequence: 1 givenname: Stefan surname: Bröer fullname: Bröer, Stefan email: stefan.broeer@anu.edu.au organization: Research School of Biology, Australian National University, Linnaeus Way 134, Canberra, ACT 2601, Australia stefan.broeer@anu.edu.au – sequence: 2 givenname: Angelika surname: Bröer fullname: Bröer, Angelika organization: Research School of Biology, Australian National University, Linnaeus Way 134, Canberra, ACT 2601, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28546457$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjztPwzAUhS1URB8wsSOPLIFrx46dsUQtD1VigTlykutgFNslbgf-PUUtEtM5w6ej883JJMSAhFwzuGMg-P1D9cKBFaA5PyMzJhRkWnE9-denZJ7SJwATIOCCTLmWohBSzch66V2I1LSuox_RY0w7k1yiJnQ0uT6YYXChpy5Qb7w3gzOBtjgMRyKOvQku-XRJzq0ZEl6dckHe16u36inbvD4-V8tN1uaa7bJWNqXgDLCwBeaS5VZq3ha6UDZvQCrABgRifpARaEBZkFaXYNvGdKJTjC_I7XF3O8avPaZd7V36_WMCxn2qWQk5k2XJygN6c0L3jceu3o7Om_G7_nPnP5KzW54 |
| CitedBy_id | crossref_primary_10_1042_BST20180250 crossref_primary_10_1080_14767058_2018_1489795 crossref_primary_10_3168_jds_2020_18155 crossref_primary_10_3390_metabo12030239 crossref_primary_10_3389_fphar_2022_963066 crossref_primary_10_1016_j_jbior_2017_12_002 crossref_primary_10_3390_cells10061352 crossref_primary_10_3390_cancers15092593 crossref_primary_10_2174_0929867330666230408203820 crossref_primary_10_1080_15384101_2023_2260166 crossref_primary_10_1016_j_jfca_2024_106091 crossref_primary_10_1208_s12248_017_0164_7 crossref_primary_10_1016_j_psj_2022_102277 crossref_primary_10_3389_fendo_2017_00306 crossref_primary_10_1016_j_tem_2022_12_004 crossref_primary_10_3390_ijms21010119 crossref_primary_10_1002_jcp_27523 crossref_primary_10_1016_j_cmet_2023_12_001 crossref_primary_10_1097_MCO_0000000000000702 crossref_primary_10_3390_nu16233990 crossref_primary_10_1016_j_jbc_2023_105602 crossref_primary_10_3390_nu13072136 crossref_primary_10_1158_1541_7786_MCR_19_0217 crossref_primary_10_3390_ijms21165594 crossref_primary_10_1111_1462_2920_15982 crossref_primary_10_1016_j_cell_2022_08_020 crossref_primary_10_1007_s00394_019_02164_5 crossref_primary_10_1002_cbdv_202100300 crossref_primary_10_3390_pharmaceutics14102167 crossref_primary_10_1021_acs_jpclett_5c02341 crossref_primary_10_1134_S2075111724700462 crossref_primary_10_1134_S0022093023040038 crossref_primary_10_3168_jds_2023_23447 crossref_primary_10_1016_j_arabjc_2023_105539 crossref_primary_10_3390_metabo12080740 crossref_primary_10_1007_s10616_025_00844_1 crossref_primary_10_3390_ijms21176156 crossref_primary_10_1016_j_foodchem_2025_143268 crossref_primary_10_1371_journal_pone_0265428 crossref_primary_10_3390_nu12103211 crossref_primary_10_3390_ijms19113597 crossref_primary_10_3389_fonc_2017_00306 crossref_primary_10_3390_biom12091189 crossref_primary_10_1186_s40170_022_00295_8 crossref_primary_10_1016_j_aquaculture_2021_737699 crossref_primary_10_3390_geriatrics5040095 crossref_primary_10_1007_s11886_020_01282_5 crossref_primary_10_1134_S0006350922020105 crossref_primary_10_3390_nu11092024 crossref_primary_10_1038_s41430_018_0240_9 crossref_primary_10_1007_s11064_021_03331_z crossref_primary_10_3390_chemosensors12110236 crossref_primary_10_3389_fnut_2022_965771 crossref_primary_10_1073_pnas_2407633121 crossref_primary_10_1210_en_2018_01056 crossref_primary_10_1091_mbc_E24_04_0162 crossref_primary_10_2147_CCID_S433280 crossref_primary_10_3389_fnut_2021_655833 crossref_primary_10_3390_ijms20164043 crossref_primary_10_1016_j_foodchem_2025_145098 crossref_primary_10_1016_j_psj_2023_103181 crossref_primary_10_1128_MMBR_00024_19 crossref_primary_10_3390_jcm10040622 crossref_primary_10_1016_j_phrs_2020_105169 crossref_primary_10_1242_dmm_050233 crossref_primary_10_3390_metabo13101064 crossref_primary_10_1016_j_celrep_2025_115434 crossref_primary_10_3389_fonc_2017_00319 crossref_primary_10_1146_annurev_nutr_071816_064642 crossref_primary_10_1089_ars_2023_0349 crossref_primary_10_1016_j_bbamcr_2020_118889 crossref_primary_10_1371_journal_pone_0269131 crossref_primary_10_1016_j_isci_2023_106425 crossref_primary_10_3390_cancers14030585 crossref_primary_10_1017_S0954422422000245 crossref_primary_10_1186_s13071_022_05461_x crossref_primary_10_1016_j_ejcb_2022_151240 crossref_primary_10_3389_fcell_2020_594464 crossref_primary_10_1016_j_cell_2023_09_011 crossref_primary_10_3389_fchem_2018_00243 crossref_primary_10_3390_cells10071800 crossref_primary_10_3390_cancers13020203 crossref_primary_10_1016_j_ebiom_2019_03_015 crossref_primary_10_1002_mnfr_201900088 crossref_primary_10_1016_j_abb_2022_109419 crossref_primary_10_4103_NRR_NRR_D_23_02020 crossref_primary_10_1007_s00415_022_11534_9 crossref_primary_10_1007_s00726_020_02884_7 crossref_primary_10_1016_j_molcel_2022_05_025 crossref_primary_10_1007_s00726_021_03019_2 crossref_primary_10_3389_fimmu_2022_886822 crossref_primary_10_1016_j_chom_2024_04_004 crossref_primary_10_1016_j_pdpdt_2023_103346 crossref_primary_10_1101_gad_348787_121 crossref_primary_10_3390_nu11020316 crossref_primary_10_1002_fsn3_70346 crossref_primary_10_1007_s11094_023_02812_5 crossref_primary_10_1016_j_molmet_2021_101294 crossref_primary_10_1016_j_smhs_2022_11_004 crossref_primary_10_1016_j_tjnut_2023_05_008 crossref_primary_10_1016_j_biopha_2020_109950 crossref_primary_10_1002_admi_202400060 crossref_primary_10_1016_j_cmet_2020_03_004 crossref_primary_10_1002_j_2040_4603_2019_tb00056_x crossref_primary_10_3389_fnut_2022_785999 crossref_primary_10_3389_fpls_2022_847364 crossref_primary_10_1038_s41467_024_47465_4 crossref_primary_10_3390_molecules28124808 crossref_primary_10_1186_s12936_024_05077_9 crossref_primary_10_1016_j_tem_2021_03_003 crossref_primary_10_1016_j_animal_2023_100986 crossref_primary_10_1016_j_scitotenv_2020_140208 crossref_primary_10_3390_metabo12060514 crossref_primary_10_3390_metabo12100918 crossref_primary_10_1016_j_neuropharm_2019_107789 crossref_primary_10_3390_molecules27175483 crossref_primary_10_1002_btpr_3298 crossref_primary_10_1016_j_bbadis_2018_01_032 crossref_primary_10_1053_j_jrn_2025_02_004 crossref_primary_10_1186_s12864_025_11545_6 crossref_primary_10_1080_87559129_2024_2374822 crossref_primary_10_15252_emmm_202216951 crossref_primary_10_1016_j_jnutbio_2018_12_006 crossref_primary_10_1038_s41598_018_30774_2 crossref_primary_10_1111_febs_17255 crossref_primary_10_3390_ijms222312873 crossref_primary_10_4103_pm_pm_470_20 crossref_primary_10_1038_s41416_020_01113_y crossref_primary_10_1002_hsr2_70343 crossref_primary_10_1186_s12933_024_02395_9 crossref_primary_10_1016_j_rvsc_2023_05_017 crossref_primary_10_1016_j_molmet_2022_101478 crossref_primary_10_3390_ijms22136752 crossref_primary_10_1186_s12885_025_14661_4 crossref_primary_10_1002_lno_11563 crossref_primary_10_1016_j_animal_2024_101225 crossref_primary_10_1038_s42255_021_00517_1 crossref_primary_10_3390_nu15010142 crossref_primary_10_1161_JAHA_118_010711 crossref_primary_10_1016_j_jbiotec_2021_06_019 crossref_primary_10_1038_nrendo_2017_91 crossref_primary_10_1111_1750_3841_16452 crossref_primary_10_1007_s00726_023_03327_9 crossref_primary_10_3390_ijms241713260 crossref_primary_10_3390_livers4040043 crossref_primary_10_1038_s41467_020_20223_y crossref_primary_10_7554_eLife_56749 crossref_primary_10_3390_ijms21041212 crossref_primary_10_1016_j_nut_2020_111042 crossref_primary_10_1080_1028415X_2018_1443995 crossref_primary_10_1177_2472555218755629 crossref_primary_10_3390_cancers13061434 crossref_primary_10_3390_ijms20071633 crossref_primary_10_1016_j_brainresbull_2025_111437 crossref_primary_10_1186_s12934_023_02213_z crossref_primary_10_1016_j_aquaculture_2022_739204 crossref_primary_10_1016_j_ymgme_2017_11_011 crossref_primary_10_1016_j_nutres_2019_06_006 crossref_primary_10_3390_cells11091422 crossref_primary_10_3390_ijerph18189874 crossref_primary_10_3390_cells9092028 crossref_primary_10_1016_j_bbcan_2020_188366 crossref_primary_10_1113_JP276714 crossref_primary_10_1371_journal_pone_0225803 crossref_primary_10_1371_journal_ppat_1013331 crossref_primary_10_5937_jomb0_37514 crossref_primary_10_1134_S0022093021010166 crossref_primary_10_3389_fmolb_2020_585161 crossref_primary_10_3389_fphar_2024_1412231 crossref_primary_10_1371_journal_ppat_1007577 crossref_primary_10_1016_j_cmet_2021_02_005 crossref_primary_10_1016_j_clim_2022_109153 crossref_primary_10_1007_s11306_025_02276_6 crossref_primary_10_1016_j_bbadis_2019_165538 crossref_primary_10_1007_s00726_024_03417_2 crossref_primary_10_1186_s12964_019_0354_2 crossref_primary_10_1080_15548627_2021_1968228 crossref_primary_10_1017_S0029665120007880 crossref_primary_10_3390_v11030273 crossref_primary_10_1016_j_ecoenv_2025_118651 crossref_primary_10_1073_pnas_1722677115 crossref_primary_10_1016_j_lfs_2020_118938 crossref_primary_10_1016_j_foodchem_2017_12_062 crossref_primary_10_1038_s41467_024_50888_8 crossref_primary_10_1038_s41598_020_73225_7 crossref_primary_10_3168_jds_2020_18429 crossref_primary_10_1016_j_rbmo_2021_11_012 crossref_primary_10_3389_fonc_2022_916777 crossref_primary_10_1128_AEM_02593_19 crossref_primary_10_1038_s41467_021_25563_x crossref_primary_10_3390_ani12121554 crossref_primary_10_3390_antiox11010097 crossref_primary_10_1097_MCC_0000000000000486 crossref_primary_10_1002_1873_3468_14224 crossref_primary_10_1021_acsami_4c22969 crossref_primary_10_1093_jn_nxy172 crossref_primary_10_3390_cells7100149 crossref_primary_10_1038_s41467_021_26395_5 crossref_primary_10_1016_j_theriogenology_2023_02_019 crossref_primary_10_1093_jn_nxab342 crossref_primary_10_1242_jeb_193557 crossref_primary_10_1007_s10974_020_09584_5 crossref_primary_10_1002_j_2040_4603_2020_tb00119_x crossref_primary_10_2337_db24_0958 crossref_primary_10_3390_ijms24032604 crossref_primary_10_3390_metabo13040510 crossref_primary_10_1038_s41598_021_95646_8 crossref_primary_10_1080_10409238_2019_1611733 crossref_primary_10_3390_ani14060959 crossref_primary_10_1111_jdi_12797 crossref_primary_10_1042_BCJ20190859 crossref_primary_10_1002_cmtd_202500090 crossref_primary_10_3390_ijms22179245 crossref_primary_10_1016_j_scitotenv_2020_141097 crossref_primary_10_3390_metabo14060336 crossref_primary_10_1038_s41598_022_18718_3 crossref_primary_10_7554_eLife_75821 crossref_primary_10_3390_membranes11080602 crossref_primary_10_1038_s41598_020_73757_y crossref_primary_10_1002_bit_26794 crossref_primary_10_1017_S0007114524001600 crossref_primary_10_3390_molecules25235495 crossref_primary_10_1002_marc_202400201 crossref_primary_10_1186_s12284_021_00454_3 crossref_primary_10_1016_j_molcel_2021_08_026 crossref_primary_10_3390_nu13082794 crossref_primary_10_1002_advs_202507635 crossref_primary_10_1016_j_animal_2022_100663 crossref_primary_10_1111_jfbc_13441 crossref_primary_10_1038_s41420_024_02271_1 crossref_primary_10_1016_j_molmet_2021_101261 crossref_primary_10_1080_07391102_2023_2298390 crossref_primary_10_3389_fonc_2018_00013 crossref_primary_10_1074_jbc_RA118_006378 crossref_primary_10_3168_jds_2021_20187 crossref_primary_10_1182_blood_2021013990 crossref_primary_10_1002_jcp_27115 crossref_primary_10_52586_5032 crossref_primary_10_1038_s41467_021_27306_4 crossref_primary_10_1016_j_scitotenv_2024_171701 crossref_primary_10_3389_fphar_2018_00785 crossref_primary_10_1016_j_cell_2025_05_001 crossref_primary_10_3168_jds_2021_20527 crossref_primary_10_3390_genes14040835 crossref_primary_10_3389_fmolb_2022_897929 crossref_primary_10_3389_fcvm_2018_00127 crossref_primary_10_1016_j_archoralbio_2018_11_003 crossref_primary_10_1146_annurev_micro_032421_111819 crossref_primary_10_26508_lsa_202000863 crossref_primary_10_3390_cells11081372 crossref_primary_10_1371_journal_ppat_1009835 crossref_primary_10_1016_j_biomaterials_2017_09_002 crossref_primary_10_1073_pnas_2022447118 crossref_primary_10_1096_fj_202001773R crossref_primary_10_3389_fnut_2022_976818 crossref_primary_10_1134_S1990750822010061 crossref_primary_10_1186_s12964_023_01170_9 crossref_primary_10_1038_s41598_020_78559_w crossref_primary_10_1093_infdis_jiac392 crossref_primary_10_1038_s41581_024_00872_8 crossref_primary_10_1016_j_jhazmat_2023_132208 crossref_primary_10_1016_j_cbpa_2020_110780 crossref_primary_10_1038_s41574_018_0009_1 crossref_primary_10_1016_j_cmet_2021_03_006 crossref_primary_10_1371_journal_pone_0202970 crossref_primary_10_1016_j_heliyon_2023_e17598 crossref_primary_10_1038_s41556_024_01402_1 crossref_primary_10_3389_fvets_2021_685548 crossref_primary_10_1021_acscentsci_2c01325 crossref_primary_10_15252_embr_202051780 crossref_primary_10_1371_journal_pcbi_1010203 crossref_primary_10_1038_s41467_020_14285_1 crossref_primary_10_3389_fpubh_2024_1394023 crossref_primary_10_1016_j_tibs_2019_12_007 crossref_primary_10_1007_s12649_025_02932_x crossref_primary_10_1186_s41100_021_00391_3 crossref_primary_10_1016_j_jnutbio_2023_109548 crossref_primary_10_1186_s13020_018_0217_6 crossref_primary_10_1080_15384047_2024_2315651 crossref_primary_10_1038_s41467_022_31149_y crossref_primary_10_1038_s41598_022_16351_8 crossref_primary_10_1186_s13045_020_00949_4 crossref_primary_10_26599_NR_2025_94907082 crossref_primary_10_1016_j_bcp_2022_115074 crossref_primary_10_1186_s13578_023_01136_x crossref_primary_10_3168_jds_2024_24774 crossref_primary_10_3390_antiox10050654 crossref_primary_10_1016_j_lfs_2023_121662 crossref_primary_10_1002_bit_27288 crossref_primary_10_3390_ijms19072093 crossref_primary_10_1210_endocr_bqae004 crossref_primary_10_1016_j_cbpa_2020_110657 crossref_primary_10_3390_mps4030051 crossref_primary_10_1186_s12864_025_11382_7 crossref_primary_10_3390_foods14162833 crossref_primary_10_3390_jcm13144083 crossref_primary_10_1016_j_tem_2021_11_004 crossref_primary_10_1016_j_bbrc_2019_10_138 crossref_primary_10_1093_jas_skaf009 crossref_primary_10_3389_fphar_2025_1522130 crossref_primary_10_1016_j_anifeedsci_2023_115591 crossref_primary_10_3389_fphar_2021_686133 crossref_primary_10_3390_metabo13111163 crossref_primary_10_1016_j_phrs_2020_104844 crossref_primary_10_1016_j_ijbiomac_2024_136974 crossref_primary_10_1021_acs_jproteome_4c00937 crossref_primary_10_2337_dbi19_0021 crossref_primary_10_1007_s40200_020_00566_5 crossref_primary_10_3389_fphar_2020_00140 crossref_primary_10_1038_s41467_024_51748_1 crossref_primary_10_7759_cureus_88325 crossref_primary_10_1016_j_coph_2017_07_005 crossref_primary_10_3390_ijms19040954 |
| ContentType | Journal Article |
| Copyright | 2017 The Author(s). |
| Copyright_xml | – notice: 2017 The Author(s). |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1042/BCJ20160822 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1470-8728 |
| ExternalDocumentID | 28546457 |
| Genre | Journal Article Comparative Study Review |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 4.4 53G 5GY 5RE 6J9 79B A8Z AABGO AAHRG ABJNI ABPPZ ABRJW ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBD EBS ECM EIF EJD EMOBN F5P H13 HH6 HZ~ K-O L7B ML- MV1 N9A NPM NTEUP O9- OK1 P2P RHI RNS RPM RPO SV3 TR2 TWZ WH7 XSW Y6R YNY ~02 ~KM 7X8 ESTFP |
| ID | FETCH-LOGICAL-c381t-c5b94210e6f6e3513f582c6867f3b0570eb04ee36084ea07f05f890fcbad4d712 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 383 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404353400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8728 |
| IngestDate | Sun Nov 09 10:53:19 EST 2025 Wed Feb 19 02:42:27 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | amino acid transporters amino acid metabolism starvation signalling |
| Language | English |
| License | 2017 The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-c5b94210e6f6e3513f582c6867f3b0570eb04ee36084ea07f05f890fcbad4d712 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5444488 |
| PMID | 28546457 |
| PQID | 1903159919 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1903159919 pubmed_primary_28546457 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-15 |
| PublicationDateYYYYMMDD | 2017-06-15 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical journal |
| PublicationTitleAlternate | Biochem J |
| PublicationYear | 2017 |
| References | 884100 - Biochim Biophys Acta. 1977 Jun 3;476(3):218-27 26482881 - Nat Genet. 2015 Dec;47(12):1475-81 26724577 - Biochim Biophys Acta. 2016 Oct;1863(10):2531-9 26449471 - Science. 2016 Jan 1;351(6268):43-8 17488712 - J Biol Chem. 2007 Jul 6;282(27):19788-98 27313038 - Science. 2016 Jun 17;352(6292):1413-6 15657430 - Mol Cell Biol. 2005 Feb;25(3):1025-40 27125852 - Ageing Res Rev. 2016 Dec;32:22-37 21409388 - Amino Acids. 2012 Jan;42(1):231-46 26059772 - J Genet Genomics. 2015 May 20;42(5):249-60 28089565 - Cell Metab. 2017 Feb 7;25(2):472-480 28273481 - Cell Metab. 2017 Mar 7;25(3):610-621 23744068 - J Biol Chem. 2013 Jul 19;288(29):21074-81 18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34 8064410 - J Nutr. 1994 Aug;124(8 Suppl):1503S-1508S 15155792 - J Physiol. 2004 Jul 15;558(Pt 2):597-610 21386061 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1092-102 12482958 - Mol Cell Biol. 2003 Jan;23(1):26-37 19087445 - Nutr Res Rev. 1999 Jun;12(1):25-54 27530302 - Clin Pharmacol Ther. 2016 Nov;100(5):431-436 9751058 - Nature. 1998 Sep 17;395(6699):288-91 18032601 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50 27714515 - Amino Acids. 2017 Jan;49(1):161-172 20304764 - Am J Physiol Endocrinol Metab. 2010 May;298(5):E1011-8 26442437 - Annu Rev Physiol. 2016;78:277-99 1289083 - Enzyme. 1992;46(1-3):72-93 19033189 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7 27076075 - Cell Metab. 2016 Apr 12;23 (4):580-9 25574008 - Science. 2015 Jan 9;347(6218):128-9 10440122 - Diabetologia. 1999 Jul;42(7):812-8 12297216 - Nutrition. 2002 Sep;18(9):761-6 12935293 - Biochem J. 2003 Nov 15;376(Pt 1):179-88 23512805 - Am J Physiol Endocrinol Metab. 2013 Jun 1;304(11):E1175-87 5129318 - J Clin Invest. 1971 Dec;50(12):2703-14 21760589 - Nature. 2011 Aug 18;476(7360):346-50 23222708 - Curr Opin Clin Nutr Metab Care. 2013 Jan;16(1):96-101 18649974 - Clin Nutr. 2008 Dec;27(6):816-21 14402856 - Bull N Y Acad Med. 1960 Jul;36:431-50 19896463 - Biochem Biophys Res Commun. 2010 Jan 1;391(1):91-5 7922327 - Curr Biol. 1994 Mar 1;4(3):220-33 17767905 - Cell Metab. 2007 Sep;6(3):181-94 23436907 - Mol Cell Proteomics. 2013 Jun;12(6):1572-88 11834730 - J Biol Chem. 2002 Apr 19;277(16):13628-34 19158318 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E603-13 9932369 - Prog Brain Res. 1998;116:45-57 26661195 - J Cereb Blood Flow Metab. 2016 Nov;36(11):1929-1941 10600798 - Am J Physiol. 1999 Dec;277(6 Pt 1):E1077-86 26017155 - Cell Cycle. 2015;14(13):2011-7 10391916 - J Biol Chem. 1999 Jul 9;274(28):19745-51 6142902 - J Clin Invest. 1984 Mar;73(3):785-93 12805541 - Science. 2003 Jun 13;300(5626):1718-22 26972053 - Cell. 2016 Mar 24;165(1):153-64 21350187 - Am J Physiol Gastrointest Liver Physiol. 2011 Jul;301(1):G128-37 21960526 - Cold Spring Harb Symp Quant Biol. 2011;76:369-74 129473 - J Biol Chem. 1976 Feb 10;251(3):844-50 24745982 - Curr Top Membr. 2014;73:149-74 24965527 - Amino Acids. 2015 Oct;47(10 ):2065-88 21568940 - Biochem J. 2011 Jun 1;436(2):193-211 24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6 2103690 - Adv Exp Med Biol. 1990;272:23-46 22677001 - Biochem J. 2012 Aug 15;446(1):135-48 24122080 - Neurochem Res. 2014;39(3):433-45 9806879 - Biochem J. 1998 Nov 15;336 ( Pt 1):1-17 12444083 - J Biol Chem. 2003 Jan 31;278(5):2853-8 8101838 - J Biol Chem. 1993 Jul 25;268(21):15329-32 23506863 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58 22959274 - Mol Cell. 2012 Oct 26;48(2):242-53 15659336 - Semin Cell Dev Biol. 2005 Feb;16(1):21-7 12757712 - Cell. 2003 May 16;113(4):519-31 9435692 - Am J Physiol. 1997 Dec;273(6 Pt 2):F1023-9 11917093 - Physiol Rev. 2002 Apr;82(2):373-428 26937223 - J Int Soc Sports Nutr. 2016 Mar 01;13:8 27129276 - J Biol Chem. 2016 Jun 17;291(25):13194-205 14770310 - Pflugers Arch. 2004 Feb;447(5):532-42 25668017 - Annu Rev Physiol. 2015;77:57-80 2194222 - Physiol Rev. 1990 Jul;70(3):701-48 27322810 - PLoS One. 2016 Jun 20;11(6):e0157298 12558800 - Genes Cells. 2003 Jan;8(1):65-79 25451601 - J Mol Biol. 2015 Mar 27;427(6 Pt B):1495-512 27422517 - Adv Nutr. 2016 Jul 15;7(4):798S-805S 18424768 - FASEB J. 2008 Aug;22(8):2880-7 10903140 - Biochem J. 2000 Aug 1;349 Pt 3:787-95 571951 - Metabolism. 1979 Apr;28(4):313-9 19489727 - Annu Rev Biochem. 2009;78:477-513 18195088 - Physiol Rev. 2008 Jan;88(1):249-86 27273098 - Sci Signal. 2016 Jun 07;9(431):re5 6875973 - J Physiol. 1983 May;338:613-25 17127344 - Front Biosci. 2007 Jan 01;12 :874-82 22585903 - Adv Nutr. 2012 May 01;3(3):295-306 16174864 - Am J Physiol Renal Physiol. 2006 Feb;290(2):F376-83 1851687 - Clin Sci (Lond). 1991 May;80(5):471-4 25287287 - Nat Rev Endocrinol. 2014 Dec;10(12):723-36 12200047 - Mol Immunol. 2002 Oct;39(3-4):147-64 23872674 - Curr Opin Nephrol Hypertens. 2013 Sep;22(5):539-44 23645676 - J Biol Chem. 2013 Jun 14;288(24):17202-13 11377971 - Curr Opin Genet Dev. 2001 Jun;11(3):328-35 20473272 - EMBO J. 2010 Jun 16;29(12):2082-96 21423183 - Nat Med. 2011 Apr;17(4):448-53 23216249 - Biochem J. 2013 Jan 1;449(1):1-10 23506866 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219 26739563 - Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):775-80 19472175 - IUBMB Life. 2009 Jun;61(6):591-9 21501141 - Br J Pharmacol. 2011 Dec;164(7):1802-16 26051250 - Cell Death Differ. 2015 Jul;22(7):1234 3909197 - Q J Exp Physiol. 1985 Oct;70(4):473-89 11575165 - Prog Mol Subcell Biol. 2001;26:155-84 27010498 - Cell Signal. 2016 Aug;28(8):896-906 4829908 - J Appl Physiol. 1974 Jun;36(6):693-7 22300073 - Curr Med Chem. 2012;19(1):28-34 7711290 - Semin Cell Biol. 1994 Dec;5(6):417-26 20576612 - J Biol Chem. 2010 Sep 17;285(38):29027-32 23045339 - J Physiol. 2012 Dec 15;590(24):6413-24 16365084 - J Nutr. 2006 Jan;136(1 Suppl):207S-11S 7914198 - J Biol Chem. 1994 Aug 12;269(32):20599-606 18221502 - Mol Cancer. 2008 Jan 25;7:14 15611152 - FASEB J. 2005 Mar;19(3):461-3 6246103 - J Biol Chem. 1980 Jun 10;255(11):5270-80 11311116 - Biochem J. 2001 May 1;355(Pt 3):563-8 1637318 - Biochem J. 1992 Jul 1;285 ( Pt 1):339-40 25158238 - Semin Cell Dev Biol. 2014 Dec;36:121-9 23728461 - Nat Cell Biol. 2013 Jun;15(6):555-64 24284439 - Am J Clin Nutr. 2014 Jan;99(1):223S-230S 23624144 - Int J Biochem Cell Biol. 2013 Aug;45(8):1690-700 24483210 - FEMS Microbiol Rev. 2014 Mar;38(2):254-99 27422515 - Adv Nutr. 2016 Jul 15;7(4):780S-9S 25133427 - J Clin Invest. 2014 Sep;124(9):3913-22 23506876 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):350-9 3316280 - J Clin Invest. 1987 Dec;80(6):1784-93 17273864 - Pflugers Arch. 2007 Jun;454(3):507-16 23361334 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9 17452648 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7432-7 15521011 - Gastroenterology. 2004 Nov;127(5):1410-22 27542409 - J Biol Chem. 2016 Sep 30;291(40):20900-20910 25963655 - Mol Cell Biol. 2015 Jul;35(14):2479-94 14977407 - Annu Rev Physiol. 2004;66:361-84 18765678 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602 15050973 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S45-51 22850614 - J Pharmacol Sci. 2012;119(4):368-80 11704550 - Am J Physiol Renal Physiol. 2001 Dec;281(6):F995-1018 15459982 - Annu Rev Nutr. 2004;24:377-99 4579349 - Proc Nutr Soc. 1972 Dec;31(3):265-72 10821325 - Ann Med. 2000 Apr;32(3):181-6 27358398 - J Biol Chem. 2016 Aug 12;291(33):16927-35 22674217 - Mol Neurobiol. 2012 Oct;46(2):332-48 16621798 - J Biol Chem. 2006 Jun 30;281(26):17929-40 15050971 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S27-37 19219026 - Nature. 2009 Apr 9;458(7239):762-5 20570523 - Trends Biochem Sci. 2010 Aug;35(8):427-33 19184091 - Pflugers Arch. 2009 May;458(1):53-60 15930469 - J Nutr. 2005 Jun;135(6 Suppl):1557S-64S 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36 20223289 - Semin Cell Dev Biol. 2010 Sep;21(7):683-90 27939446 - Trends Pharmacol Sci. 2017 Mar;38(3):305-315 25561175 - Nature. 2015 Mar 26;519(7544):477-81 24880909 - Amino Acids. 2015 Oct;47(10 ):2037-63 15836464 - Obes Rev. 2005 May;6(2):133-42 15465780 - J Nutr. 2004 Oct;134(10 Suppl):2752S-2759S; discussion 2765S-2767S 23506861 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):108-20 27689005 - Mol Metab. 2016 Aug 06;5(10 ):926-36 26739710 - Pflugers Arch. 2016 Mar;468(3):371-83 8338146 - Am J Physiol. 1993 Jul;265(1 Pt 1):E135-44 26773603 - J Mol Cell Cardiol. 2016 Jun;95:31-41 25274824 - J Neurosci. 2014 Oct 1;34(40):13472-85 16742606 - Biochem J. 1968 May;107(6):807-15 25857264 - Cell Death Differ. 2015 Jul;22(7):1094-105 6380539 - Annu Rev Nutr. 1984;4:409-54 24193407 - Pflugers Arch. 2014 Jan;466(1):155-72 12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68 20381137 - Cell. 2010 Apr 16;141(2):290-303 25973388 - Mol Metab. 2015 Feb 16;4(5):406-17 11850497 - J Physiol. 2002 Feb 15;539(Pt 1):3-14 27690010 - Int J Mol Sci. 2016 Sep 29;17(10):null 26449607 - J Am Soc Nephrol. 2016 Jun;27(6):1678-88 21220943 - Cell Cycle. 2011 Jan 15;10(2):229-40 20965422 - Mol Cell. 2010 Oct 22;40(2):280-93 23820899 - Mol Endocrinol. 2013 Aug;27(8):1188-97 19411760 - J Clin Invest. 2009 Jun;119(6):1678-87 23624402 - Nat Cell Biol. 2013 May;15(5):481-90 7247944 - Biochem Biophys Res Commun. 1981 Apr 15;99(3):830-6 3938302 - Biosci Rep. 1985 Dec;5(12):1015-33 25474014 - Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):71-7 27174209 - Trends Biochem Sci. 2016 Jul;41(7):621-32 9790568 - Physiol Rev. 1998 Oct;78(4):969-1054 8504097 - Biochemistry. 1993 Jun 8;32(22):5781-5 5455559 - Am J Clin Nutr. 1970 Jul;23(7):986-92 27189933 - Am J Physiol Endocrinol Metab. 2016 Jul 1;311(1):E157-74 22319049 - Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R917-28 19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43 22460905 - Nature. 2012 Mar 28;483(7391):603-7 23268354 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):638-45 23105104 - J Biol Chem. 2012 Dec 14;287(51):42890-9 25043031 - Nature. 2014 Sep 18;513(7518):440-3 22233381 - Biochem J. 2012 Apr 1;443(1):165-71 22424946 - Cell. 2012 Apr 13;149(2):410-24 26968366 - Biochim Biophys Acta. 2016 Oct;1863(10):2362-78 8928783 - Am J Physiol. 1996 Apr;270(4 Pt 1):G541-53 24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8 25998567 - Nat Commun. 2015 May 22;6:7250 25157349 - Front Chem. 2014 Aug 11;2:61 7546750 - Neuron. 1995 Sep;15(3):721-8 1119429 - Am J Clin Nutr. 1975 Apr;28(4):316-24 25567906 - Science. 2015 |
| References_xml | – reference: 17767905 - Cell Metab. 2007 Sep;6(3):181-94 – reference: 12200047 - Mol Immunol. 2002 Oct;39(3-4):147-64 – reference: 808218 - Biochem J. 1975 Feb;146(2):457-64 – reference: 25157349 - Front Chem. 2014 Aug 11;2:61 – reference: 25274824 - J Neurosci. 2014 Oct 1;34(40):13472-85 – reference: 20473272 - EMBO J. 2010 Jun 16;29(12):2082-96 – reference: 23506861 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):108-20 – reference: 20056399 - Curr Opin Cell Biol. 2010 Apr;22(2):132-9 – reference: 8064410 - J Nutr. 1994 Aug;124(8 Suppl):1503S-1508S – reference: 26059772 - J Genet Genomics. 2015 May 20;42(5):249-60 – reference: 21568940 - Biochem J. 2011 Jun 1;436(2):193-211 – reference: 14770310 - Pflugers Arch. 2004 Feb;447(5):532-42 – reference: 15459982 - Annu Rev Nutr. 2004;24:377-99 – reference: 5941008 - Fed Proc. 1966 May-Jun;25(3):850-3 – reference: 22079166 - Arch Biochem Biophys. 2012 Mar 15;519(2):69-80 – reference: 7914198 - J Biol Chem. 1994 Aug 12;269(32):20599-606 – reference: 23403946 - Am J Physiol Endocrinol Metab. 2013 Apr 15;304(8):E789-99 – reference: 16621798 - J Biol Chem. 2006 Jun 30;281(26):17929-40 – reference: 19158318 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E603-13 – reference: 11575165 - Prog Mol Subcell Biol. 2001;26:155-84 – reference: 25668017 - Annu Rev Physiol. 2015;77:57-80 – reference: 27313038 - Science. 2016 Jun 17;352(6292):1413-6 – reference: 20451554 - Pharmacol Ther. 2010 Sep;127(3):252-60 – reference: 7711290 - Semin Cell Biol. 1994 Dec;5(6):417-26 – reference: 12297216 - Nutrition. 2002 Sep;18(9):761-6 – reference: 2194222 - Physiol Rev. 1990 Jul;70(3):701-48 – reference: 15964839 - J Biol Chem. 2005 Aug 12;280(32):29289-99 – reference: 21220943 - Cell Cycle. 2011 Jan 15;10(2):229-40 – reference: 15657430 - Mol Cell Biol. 2005 Feb;25(3):1025-40 – reference: 6246103 - J Biol Chem. 1980 Jun 10;255(11):5270-80 – reference: 571951 - Metabolism. 1979 Apr;28(4):313-9 – reference: 1289083 - Enzyme. 1992;46(1-3):72-93 – reference: 2103690 - Adv Exp Med Biol. 1990;272:23-46 – reference: 3938302 - Biosci Rep. 1985 Dec;5(12):1015-33 – reference: 4829908 - J Appl Physiol. 1974 Jun;36(6):693-7 – reference: 11850497 - J Physiol. 2002 Feb 15;539(Pt 1):3-14 – reference: 21960526 - Cold Spring Harb Symp Quant Biol. 2011;76:369-74 – reference: 17452648 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7432-7 – reference: 10821325 - Ann Med. 2000 Apr;32(3):181-6 – reference: 20959619 - Physiol Rev. 2010 Oct;90(4):1383-435 – reference: 22053050 - Science. 2011 Nov 4;334(6056):678-83 – reference: 25158238 - Semin Cell Dev Biol. 2014 Dec;36:121-9 – reference: 15155792 - J Physiol. 2004 Jul 15;558(Pt 2):597-610 – reference: 12805541 - Science. 2003 Jun 13;300(5626):1718-22 – reference: 27189933 - Am J Physiol Endocrinol Metab. 2016 Jul 1;311(1):E157-74 – reference: 19033189 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7 – reference: 4579349 - Proc Nutr Soc. 1972 Dec;31(3):265-72 – reference: 27129276 - J Biol Chem. 2016 Jun 17;291(25):13194-205 – reference: 26773603 - J Mol Cell Cardiol. 2016 Jun;95:31-41 – reference: 20570523 - Trends Biochem Sci. 2010 Aug;35(8):427-33 – reference: 10903140 - Biochem J. 2000 Aug 1;349 Pt 3:787-95 – reference: 26661195 - J Cereb Blood Flow Metab. 2016 Nov;36(11):1929-1941 – reference: 24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6 – reference: 21386061 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1092-102 – reference: 23045339 - J Physiol. 2012 Dec 15;590(24):6413-24 – reference: 23872674 - Curr Opin Nephrol Hypertens. 2013 Sep;22(5):539-44 – reference: 27010498 - Cell Signal. 2016 Aug;28(8):896-906 – reference: 24880909 - Amino Acids. 2015 Oct;47(10 ):2037-63 – reference: 5773094 - J Clin Invest. 1969 Mar;48(3):584-94 – reference: 20498635 - Oncogene. 2010 Jul 15;29(28):4068-79 – reference: 23506866 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219 – reference: 25759021 - Cancer Cell. 2015 Mar 9;27(3):354-69 – reference: 15521011 - Gastroenterology. 2004 Nov;127(5):1410-22 – reference: 16174864 - Am J Physiol Renal Physiol. 2006 Feb;290(2):F376-83 – reference: 22850614 - J Pharmacol Sci. 2012;119(4):368-80 – reference: 15050971 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S27-37 – reference: 23436907 - Mol Cell Proteomics. 2013 Jun;12(6):1572-88 – reference: 24483210 - FEMS Microbiol Rev. 2014 Mar;38(2):254-99 – reference: 25567906 - Science. 2015 Jan 9;347(6218):188-94 – reference: 27126896 - Nat Commun. 2016 Apr 29;7:11457 – reference: 884100 - Biochim Biophys Acta. 1977 Jun 3;476(3):218-27 – reference: 1119429 - Am J Clin Nutr. 1975 Apr;28(4):316-24 – reference: 26442437 - Annu Rev Physiol. 2016;78:277-99 – reference: 26724577 - Biochim Biophys Acta. 2016 Oct;1863(10):2531-9 – reference: 6875973 - J Physiol. 1983 May;338:613-25 – reference: 12482958 - Mol Cell Biol. 2003 Jan;23(1):26-37 – reference: 28273481 - Cell Metab. 2017 Mar 7;25(3):610-621 – reference: 18154499 - Annu Rev Psychol. 2008;59:55-92 – reference: 6142902 - J Clin Invest. 1984 Mar;73(3):785-93 – reference: 15277680 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74 – reference: 27872019 - Pharmacol Res. 2017 Jan;115:179-191 – reference: 23506876 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):350-9 – reference: 19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43 – reference: 23216249 - Biochem J. 2013 Jan 1;449(1):1-10 – reference: 14402856 - Bull N Y Acad Med. 1960 Jul;36:431-50 – reference: 23268354 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):638-45 – reference: 9806879 - Biochem J. 1998 Nov 15;336 ( Pt 1):1-17 – reference: 6380539 - Annu Rev Nutr. 1984;4:409-54 – reference: 22585903 - Adv Nutr. 2012 May 01;3(3):295-306 – reference: 25133427 - J Clin Invest. 2014 Sep;124(9):3913-22 – reference: 20965422 - Mol Cell. 2010 Oct 22;40(2):280-93 – reference: 23506860 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):95-107 – reference: 27358398 - J Biol Chem. 2016 Aug 12;291(33):16927-35 – reference: 11917093 - Physiol Rev. 2002 Apr;82(2):373-428 – reference: 27714515 - Amino Acids. 2017 Jan;49(1):161-172 – reference: 10440122 - Diabetologia. 1999 Jul;42(7):812-8 – reference: 7546750 - Neuron. 1995 Sep;15(3):721-8 – reference: 24965527 - Amino Acids. 2015 Oct;47(10 ):2065-88 – reference: 12558800 - Genes Cells. 2003 Jan;8(1):65-79 – reference: 27076075 - Cell Metab. 2016 Apr 12;23 (4):580-9 – reference: 21760589 - Nature. 2011 Aug 18;476(7360):346-50 – reference: 15050973 - Mol Genet Metab. 2004 Apr;81 Suppl 1:S45-51 – reference: 27273098 - Sci Signal. 2016 Jun 07;9(431):re5 – reference: 27542409 - J Biol Chem. 2016 Sep 30;291(40):20900-20910 – reference: 27322810 - PLoS One. 2016 Jun 20;11(6):e0157298 – reference: 19489727 - Annu Rev Biochem. 2009;78:477-513 – reference: 27530302 - Clin Pharmacol Ther. 2016 Nov;100(5):431-436 – reference: 19087445 - Nutr Res Rev. 1999 Jun;12(1):25-54 – reference: 23744068 - J Biol Chem. 2013 Jul 19;288(29):21074-81 – reference: 26739710 - Pflugers Arch. 2016 Mar;468(3):371-83 – reference: 22300073 - Curr Med Chem. 2012;19(1):28-34 – reference: 8662767 - J Biol Chem. 1996 Jun 21;271(25):14883-90 – reference: 26482881 - Nat Genet. 2015 Dec;47(12):1475-81 – reference: 5129318 - J Clin Invest. 1971 Dec;50(12):2703-14 – reference: 12444083 - J Biol Chem. 2003 Jan 31;278(5):2853-8 – reference: 11834730 - J Biol Chem. 2002 Apr 19;277(16):13628-34 – reference: 6181926 - Clin Sci (Lond). 1982 Dec;63(6):519-23 – reference: 17488712 - J Biol Chem. 2007 Jul 6;282(27):19788-98 – reference: 18032601 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50 – reference: 25857264 - Cell Death Differ. 2015 Jul;22(7):1094-105 – reference: 26449607 - J Am Soc Nephrol. 2016 Jun;27(6):1678-88 – reference: 21409388 - Amino Acids. 2012 Jan;42(1):231-46 – reference: 26937223 - J Int Soc Sports Nutr. 2016 Mar 01;13:8 – reference: 3909197 - Q J Exp Physiol. 1985 Oct;70(4):473-89 – reference: 23512805 - Am J Physiol Endocrinol Metab. 2013 Jun 1;304(11):E1175-87 – reference: 17273864 - Pflugers Arch. 2007 Jun;454(3):507-16 – reference: 25480797 - J Physiol. 2015 Mar 1;593(5):1273-89 – reference: 27422517 - Adv Nutr. 2016 Jul 15;7(4):798S-805S – reference: 25963655 - Mol Cell Biol. 2015 Jul;35(14):2479-94 – reference: 23105104 - J Biol Chem. 2012 Dec 14;287(51):42890-9 – reference: 16365084 - J Nutr. 2006 Jan;136(1 Suppl):207S-11S – reference: 23728461 - Nat Cell Biol. 2013 Jun;15(6):555-64 – reference: 22233381 - Biochem J. 2012 Apr 1;443(1):165-71 – reference: 14977407 - Annu Rev Physiol. 2004;66:361-84 – reference: 21350187 - Am J Physiol Gastrointest Liver Physiol. 2011 Jul;301(1):G128-37 – reference: 23222708 - Curr Opin Clin Nutr Metab Care. 2013 Jan;16(1):96-101 – reference: 20965424 - Mol Cell. 2010 Oct 22;40(2):310-22 – reference: 15611152 - FASEB J. 2005 Mar;19(3):461-3 – reference: 19298394 - Br J Pharmacol. 2009 Mar;156(6):869-84 – reference: 25561175 - Nature. 2015 Mar 26;519(7544):477-81 – reference: 18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34 – reference: 23624144 - Int J Biochem Cell Biol. 2013 Aug;45(8):1690-700 – reference: 16950139 - Cell Metab. 2006 Sep;4(3):223-33 – reference: 18649974 - Clin Nutr. 2008 Dec;27(6):816-21 – reference: 20034776 - Curr Opin Cell Biol. 2010 Apr;22(2):124-31 – reference: 12757712 - Cell. 2003 May 16;113(4):519-31 – reference: 25574008 - Science. 2015 Jan 9;347(6218):128-9 – reference: 19472175 - IUBMB Life. 2009 Jun;61(6):591-9 – reference: 5455559 - Am J Clin Nutr. 1970 Jul;23(7):986-92 – reference: 2610257 - Am J Physiol. 1989 Dec;257(6 Pt 1):E959-62 – reference: 16742606 - Biochem J. 1968 May;107(6):807-15 – reference: 10391916 - J Biol Chem. 1999 Jul 9;274(28):19745-51 – reference: 9435692 - Am J Physiol. 1997 Dec;273(6 Pt 2):F1023-9 – reference: 28089565 - Cell Metab. 2017 Feb 7;25(2):472-480 – reference: 23820899 - Mol Endocrinol. 2013 Aug;27(8):1188-97 – reference: 18221502 - Mol Cancer. 2008 Jan 25;7:14 – reference: 21501141 - Br J Pharmacol. 2011 Dec;164(7):1802-16 – reference: 19219026 - Nature. 2009 Apr 9;458(7239):762-5 – reference: 26968366 - Biochim Biophys Acta. 2016 Oct;1863(10):2362-78 – reference: 9790568 - Physiol Rev. 1998 Oct;78(4):969-1054 – reference: 14623874 - J Biol Chem. 2004 Jan 30;279(5):3463-71 – reference: 22519513 - Br J Pharmacol. 2012 Sep;167(2):256-78 – reference: 20576612 - J Biol Chem. 2010 Sep 17;285(38):29027-32 – reference: 27125852 - Ageing Res Rev. 2016 Dec;32:22-37 – reference: 18195088 - Physiol Rev. 2008 Jan;88(1):249-86 – reference: 15930469 - J Nutr. 2005 Jun;135(6 Suppl):1557S-64S – reference: 12935293 - Biochem J. 2003 Nov 15;376(Pt 1):179-88 – reference: 24193407 - Pflugers Arch. 2014 Jan;466(1):155-72 – reference: 19822663 - Mol Cell Biol. 2009 Dec;29(24):6515-26 – reference: 10600798 - Am J Physiol. 1999 Dec;277(6 Pt 1):E1077-86 – reference: 9751058 - Nature. 1998 Sep 17;395(6699):288-91 – reference: 27689005 - Mol Metab. 2016 Aug 06;5(10 ):926-36 – reference: 25676932 - Amino Acids. 2015 Apr;47(4):685-91 – reference: 8101838 - J Biol Chem. 1993 Jul 25;268(21):15329-32 – reference: 7247944 - Biochem Biophys Res Commun. 1981 Apr 15;99(3):830-6 – reference: 15659336 - Semin Cell Dev Biol. 2005 Feb;16(1):21-7 – reference: 21346154 - Am J Physiol Cell Physiol. 2011 Jun;300(6):C1270-9 – reference: 24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8 – reference: 25973388 - Mol Metab. 2015 Feb 16;4(5):406-17 – reference: 24745982 - Curr Top Membr. 2014;73:149-74 – reference: 19411760 - J Clin Invest. 2009 Jun;119(6):1678-87 – reference: 9726963 - J Biol Chem. 1998 Sep 11;273(37):23629-32 – reference: 22424946 - Cell. 2012 Apr 13;149(2):410-24 – reference: 7922327 - Curr Biol. 1994 Mar 1;4(3):220-33 – reference: 129473 - J Biol Chem. 1976 Feb 10;251(3):844-50 – reference: 27174209 - Trends Biochem Sci. 2016 Jul;41(7):621-32 – reference: 20223289 - Semin Cell Dev Biol. 2010 Sep;21(7):683-90 – reference: 27448843 - Int J Biochem Cell Biol. 2016 Oct;79:403-418 – reference: 20304764 - Am J Physiol Endocrinol Metab. 2010 May;298(5):E1011-8 – reference: 22460905 - Nature. 2012 Mar 28;483(7391):603-7 – reference: 18765678 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602 – reference: 22319049 - Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R917-28 – reference: 26739563 - Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):775-80 – reference: 1851687 - Clin Sci (Lond). 1991 May;80(5):471-4 – reference: 23645676 - J Biol Chem. 2013 Jun 14;288(24):17202-13 – reference: 15836464 - Obes Rev. 2005 May;6(2):133-42 – reference: 8097375 - Am J Physiol. 1993 Apr;264(4 Pt 1):E526-33 – reference: 8928783 - Am J Physiol. 1996 Apr;270(4 Pt 1):G541-53 – reference: 27690010 - Int J Mol Sci. 2016 Sep 29;17(10):null – reference: 8338146 - Am J Physiol. 1993 Jul;265(1 Pt 1):E135-44 – reference: 9932369 - Prog Brain Res. 1998;116:45-57 – reference: 22959274 - Mol Cell. 2012 Oct 26;48(2):242-53 – reference: 26972053 - Cell. 2016 Mar 24;165(1):153-64 – reference: 21423183 - Nat Med. 2011 Apr;17(4):448-53 – reference: 15525940 - Nature. 2004 Dec 23;432(7020):1032-6 – reference: 19211835 - Mol Biol Cell. 2009 Apr;20(7):1981-91 – reference: 19184091 - Pflugers Arch. 2009 May;458(1):53-60 – reference: 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36 – reference: 21147771 - J Biol Chem. 2011 Feb 18;286(7):5266-77 – reference: 23624402 - Nat Cell Biol. 2013 May;15(5):481-90 – reference: 15465780 - J Nutr. 2004 Oct;134(10 Suppl):2752S-2759S; discussion 2765S-2767S – reference: 25451601 - J Mol Biol. 2015 Mar 27;427(6 Pt B):1495-512 – reference: 27422515 - Adv Nutr. 2016 Jul 15;7(4):780S-9S – reference: 25263172 - Trends Mol Med. 2014 Nov;20(11):604-13 – reference: 26017155 - Cell Cycle. 2015;14(13):2011-7 – reference: 20381137 - Cell. 2010 Apr 16;141(2):290-303 – reference: 10903126 - Biochem J. 2000 Aug 1;349 Pt 3:667-88 – reference: 12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68 – reference: 26051250 - Cell Death Differ. 2015 Jul;22(7):1234 – reference: 22677001 - Biochem J. 2012 Aug 15;446(1):135-48 – reference: 17127344 - Front Biosci. 2007 Jan 01;12 :874-82 – reference: 24692143 - Compr Physiol. 2014 Jan;4(1):367-403 – reference: 11377971 - Curr Opin Genet Dev. 2001 Jun;11(3):328-35 – reference: 19896463 - Biochem Biophys Res Commun. 2010 Jan 1;391(1):91-5 – reference: 11311116 - Biochem J. 2001 May 1;355(Pt 3):563-8 – reference: 27939446 - Trends Pharmacol Sci. 2017 Mar;38(3):305-315 – reference: 8504097 - Biochemistry. 1993 Jun 8;32(22):5781-5 – reference: 18424768 - FASEB J. 2008 Aug;22(8):2880-7 – reference: 25474014 - Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):71-7 – reference: 23506863 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58 – reference: 26449471 - Science. 2016 Jan 1;351(6268):43-8 – reference: 24122080 - Neurochem Res. 2014;39(3):433-45 – reference: 23361334 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9 – reference: 25287287 - Nat Rev Endocrinol. 2014 Dec;10(12):723-36 – reference: 11704550 - Am J Physiol Renal Physiol. 2001 Dec;281(6):F995-1018 – reference: 3316280 - J Clin Invest. 1987 Dec;80(6):1784-93 – reference: 1637318 - Biochem J. 1992 Jul 1;285 ( Pt 1):339-40 – reference: 25998567 - Nat Commun. 2015 May 22;6:7250 – reference: 22674217 - Mol Neurobiol. 2012 Oct;46(2):332-48 – reference: 25043031 - Nature. 2014 Sep 18;513(7518):440-3 – reference: 24284439 - Am J Clin Nutr. 2014 Jan;99(1):223S-230S |
| SSID | ssj0014040 |
| Score | 2.6621401 |
| SecondaryResourceType | review_article |
| Snippet | Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1935 |
| SubjectTerms | Activating Transcription Factor 4 - metabolism Amino Acids - metabolism Animals Appetite Regulation Autophagy Biological Transport Central Nervous System - metabolism Central Nervous System - secretion Diet - adverse effects Fasting - metabolism Gene Expression Regulation Homeostasis Humans Malnutrition - etiology Malnutrition - metabolism Mechanistic Target of Rapamycin Complex 1 Models, Biological Multiprotein Complexes - metabolism Neurons - metabolism Neurons - secretion Oxidation-Reduction Postprandial Period Protein-Serine-Threonine Kinases - metabolism Signal Transduction TOR Serine-Threonine Kinases - metabolism |
| Title | Amino acid homeostasis and signalling in mammalian cells and organisms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28546457 https://www.proquest.com/docview/1903159919 |
| Volume | 474 |
| WOSCitedRecordID | wos000404353400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrxsetjfRFBvJVNm6RJT7IuLiK47EFhb0uaB_bQdrWr4L930nbZkyB46SmFZDKZ-TKZmQ-hm4gJpzXXgbKOBEzFJpAmVoGwYC-ZMSYNVU02ISYTOZsl0zbgVrVplSubWBtqU2ofIx-A46LgepMwuVu8B541yr-uthQam6hDAcp4rRaz9SsCI01BJBMETn0k2_o80NPB_egp8s3VpGfN_Q1b1j5mvP_f2R2gvRZd4mGjDodowxZd1BsWcLPOv_EtrvM960B6F-2MVlxvPTQe5llRYqUzg9_K3JaAGauswqow2Gd4qLpzN84KnKs8r0Mj2If8mxENM1SVV0fodfzwMnoMWoaFQIOnXgaapwmDS5-NXWwpD6njMtKxjIWjKSA5YlPCrKUgJ2YVEY5wJxPidKoMMyKMjtFWURb2FGFGRWgYpUkKewyYTIVSJ5JSGqYsTFLeR9cryc1hcX6OqrDlZzVfy66PThrxzxdNq425r--MGRdnf_j7HO1G3ud6YiF-gToOzq-9RNv6a5lVH1e1asB3Mn3-Afh5wrI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acid+homeostasis+and+signalling+in+mammalian+cells+and+organisms&rft.jtitle=Biochemical+journal&rft.au=Br%C3%B6er%2C+Stefan&rft.au=Br%C3%B6er%2C+Angelika&rft.date=2017-06-15&rft.issn=1470-8728&rft.eissn=1470-8728&rft.volume=474&rft.issue=12&rft.spage=1935&rft_id=info:doi/10.1042%2FBCJ20160822&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon |