Inference of gene regulatory networks using pseudo-time series data
Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish...
Uložené v:
| Vydané v: | Bioinformatics (Oxford, England) Ročník 37; číslo 16; s. 2423 - 2431 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
25.08.2021
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1367-4803, 1367-4811, 1367-4811 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Motivation
Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks.
Results
Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods.
Availabilityand implementation
The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR.
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks.
Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods.
The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR.
Supplementary data are available at Bioinformatics online. Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks.MOTIVATIONInferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks.Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods.RESULTSHere, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods.The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR.AVAILABILITYAND IMPLEMENTATIONThe GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online. Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online. |
| Author | Zhang, Yuelei Chang, Xiao Liu, Xiaoping |
| Author_xml | – sequence: 1 givenname: Yuelei orcidid: 0000-0003-3517-4011 surname: Zhang fullname: Zhang, Yuelei – sequence: 2 givenname: Xiao surname: Chang fullname: Chang, Xiao email: chxlaugh@163.com – sequence: 3 givenname: Xiaoping surname: Liu fullname: Liu, Xiaoping email: xpliu@ucas.ac.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33576787$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1r3DAQhkVIaDZJ_0Iw9NKLE33YlgS9lKX5gEAvzdmM5NGixJa2kkzZf1-H3QSSSzuXmcPzzgzve0aOQwxIyCWjV4xqcW189MHFNEHxNl-bAoZqfURWTHSybhRjx28zFafkLOcnSmlL2-4TORWilZ1UckXW98FhwmCxiq7aYMAq4WYeocS0qwKWPzE952rOPmyqbcZ5iHXxE1YZk8dcDVDggpw4GDN-PvRz8njz49f6rn74eXu__v5QW6FYqY2jiksOtuMNHQCxa21joAWhO60pDFI0jbWGKSfBWQfamVYaMBqV5SDFOfm637tN8feMufSTzxbHEQLGOfe8UZq3nFO1oF8-oE9xTmH5rheMq8WIpRbq8kDNZsKh3yY_Qdr1r_YsQLcHbIo5J3RvCKP9Sw79-xz6Qw6L8NsHofVlQWIoCfz4bznby-O8_d-TfwHgPKkK |
| CitedBy_id | crossref_primary_10_1093_bib_bbae143 crossref_primary_10_1038_s42005_025_02091_4 crossref_primary_10_1186_s12859_022_05055_5 crossref_primary_10_1016_j_mbs_2024_109284 crossref_primary_10_1093_bib_bbae180 crossref_primary_10_1093_pnasnexus_pgad113 crossref_primary_10_3390_math9212826 crossref_primary_10_2174_0115748936282613231211112920 crossref_primary_10_3390_cimb47060408 crossref_primary_10_7717_peerj_15695 crossref_primary_10_3389_fbioe_2022_954610 crossref_primary_10_1371_journal_pone_0288174 crossref_primary_10_1016_j_ins_2025_122492 crossref_primary_10_1093_bib_bbad129 crossref_primary_10_1371_journal_pcbi_1011254 crossref_primary_10_1093_insilicoplants_diad018 crossref_primary_10_1016_j_xpro_2024_103006 crossref_primary_10_1016_j_csbj_2022_02_019 crossref_primary_10_1093_bib_bbae309 |
| Cites_doi | 10.1093/bioinformatics/btx194 10.1016/j.cell.2009.03.032 10.1093/bioinformatics/btr373 10.1091/mbc.02-02-0030 10.1158/1078-0432.CCR-14-2124 10.1038/s41598-017-02762-5 10.1093/bioinformatics/btr274 10.1093/bioinformatics/bts619 10.1038/srep20533 10.1093/bioinformatics/btv257 10.1093/bioinformatics/btx605 10.18632/oncotarget.21268 10.1371/journal.pone.0043819 10.1038/ng881 10.1093/bioinformatics/btr626 10.1371/journal.pbio.0050008 10.1038/srep37140 10.1073/pnas.1610609114 10.1093/bioinformatics/btw729 10.1186/s12859-016-1398-6 10.1093/bib/bbaa190 10.3389/fgene.2013.00303 10.1016/j.jhep.2014.07.003 10.1186/s12859-016-1235-y 10.1158/0008-5472.CAN-08-0099 10.1016/j.compbiolchem.2015.04.012 10.1136/gutjnl-2017-314549 10.1038/srep39224 10.1007/978-1-4939-7125-1_21 10.1073/pnas.152046799 10.1186/s13059-019-1713-4 10.1186/s12859-016-1109-3 10.1371/journal.pone.0012776 10.1371/journal.pone.0029165 10.1073/pnas.0913357107 10.1093/bioinformatics/bts143 10.1038/s41467-018-03933-2 10.1093/nar/gkw772 10.1371/journal.pone.0165612 10.1093/nsr/nwy162 10.1093/bioinformatics/btx575 10.1038/s41467-018-05822-0 10.1109/TCBB.2015.2450740 10.1039/C5MB00560D 10.1016/j.cell.2009.01.055 10.1016/j.artmed.2017.05.004 10.1093/bioinformatics/btw522 10.1371/journal.pone.0158247 10.1371/journal.pone.0200094 10.1038/ng.2256 10.1109/IEMBS.2006.260091 10.1371/journal.pcbi.1005024 10.2147/OTT.S113281 10.1371/journal.pone.0092709 10.1016/S0092-8674(00)80740-0 10.1093/nar/gku1315 10.1093/bioinformatics/bty908 10.1186/1471-2105-7-S1-S7 10.1073/pnas.0806007105 10.1093/bioinformatics/btv672 10.1080/03610926.2012.659825 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com |
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com |
| DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1093/bioinformatics/btab099 |
| DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| EndPage | 2431 |
| ExternalDocumentID | 33576787 10_1093_bioinformatics_btab099 10.1093/bioinformatics/btab099 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61403363 – fundername: Key project of Anhui Finance and Economics University grantid: ackyb20015 – fundername: Key Project of Natural Science of Anhui Provincial Education Department grantid: KJ2020A0018 |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACMRT ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BCRHZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL ROX RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H XJT YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX ABGNP ABPQP ACUXJ ADMLS AMNDL CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c381t-bf08272ac6240daee65c4ba5a396990ad7344ccb18f7afcfa9fb57bab9e8c2a73 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703909800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Thu Jul 10 22:38:19 EDT 2025 Mon Oct 06 17:31:48 EDT 2025 Thu Apr 03 06:56:57 EDT 2025 Tue Nov 18 21:56:26 EST 2025 Sat Nov 29 03:49:20 EST 2025 Fri Nov 15 02:52:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-bf08272ac6240daee65c4ba5a396990ad7344ccb18f7afcfa9fb57bab9e8c2a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3517-4011 |
| PMID | 33576787 |
| PQID | 3128005555 |
| PQPubID | 36124 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2489252208 proquest_journals_3128005555 pubmed_primary_33576787 crossref_primary_10_1093_bioinformatics_btab099 crossref_citationtrail_10_1093_bioinformatics_btab099 oup_primary_10_1093_bioinformatics_btab099 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Aug-25 |
| PublicationDateYYYYMMDD | 2021-08-25 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-Aug-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2021 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Omranian (2023051609133042800_btab099-B38) 2016; 6 Cosma (2023051609133042800_btab099-B6) 1999; 97 Liu (2023051609133042800_btab099-B22) 2016; 12 Zhang (2023051609133042800_btab099-B61) 2012; 28 Kuffner (2023051609133042800_btab099-B18) 2012; 28 Lan (2023051609133042800_btab099-B19) 2016; 32 Nguyen (2023051609133042800_btab099-B36) 2020 Mohammadi (2023051609133042800_btab099-B35) 2018; 9 Jafari (2023051609133042800_btab099-B17) 2017; 79 Pirgazi (2023051609133042800_btab099-B40) 2018; 13 Ruyssinck (2023051609133042800_btab099-B42) 2014; 9 Liu (2023051609133042800_btab099-B24) 2016; 44 Marks (2023051609133042800_btab099-B31) 2008; 68 Iacono (2023051609133042800_btab099-B15) 2019; 20 Singh (2023051609133042800_btab099-B48) 2016; 13 Cao (2023051609133042800_btab099-B4) 2018; 9 Guo (2023051609133042800_btab099-B12) 2016; 17 Zhang (2023051609133042800_btab099-B59) 2013; 29 Liu (2023051609133042800_btab099-B26) 2019; 6 Ocone (2023051609133042800_btab099-B37) 2015; 31 Hamey (2023051609133042800_btab099-B13) 2017; 114 Sales (2023051609133042800_btab099-B43) 2011; 27 Liu (2023051609133042800_btab099-B25) 2016; 9 Matsumoto (2023051609133042800_btab099-B32) 2016; 17 Zhang (2023051609133042800_btab099-B60) 2015; 43 Shen-Orr (2023051609133042800_btab099-B47) 2002; 31 Whitfield (2023051609133042800_btab099-B54) 2002; 13 Huynh-Thu (2023051609133042800_btab099-B14) 2010; 5 Ronen (2023051609133042800_btab099-B41) 2002; 99 Vignes (2023051609133042800_btab099-B52) 2011; 6 Vilarinho (2023051609133042800_btab099-B53) 2014; 61 Iglesias-Martinez (2023051609133042800_btab099-B16) 2016; 6 Marbach (2023051609133042800_btab099-B29) 2010; 107 Cordero (2023051609133042800_btab099-B5) 2017; 22 Guichard (2023051609133042800_btab099-B11) 2012; 44 Matsumoto (2023051609133042800_btab099-B33) 2017; 33 Xiong (2023051609133042800_btab099-B56) 2012; 7 Zheng (2023051609133042800_btab099-B62) 2019; 35 Cantone (2023051609133042800_btab099-B3) 2009; 137 Seidlitz (2023051609133042800_btab099-B46) 2019; 68 Schaffter (2023051609133042800_btab099-B45) 2011; 27 Lopes (2023051609133042800_btab099-B27) 2013; 4 Ud-Dean (2023051609133042800_btab099-B51) 2016; 32 Sanchez-Castillo (2023051609133042800_btab099-B44) 2018; 34 Davidson (2023051609133042800_btab099-B7) 2008; 105 de Luis Balaguer (2023051609133042800_btab099-B8) 2017; 1629 Liang (2023051609133042800_btab099-B20) 2006; 1 Liu (2023051609133042800_btab099-B23) 2016; 11 Specht (2023051609133042800_btab099-B49) 2017; 33 Yang (2023051609133042800_btab099-B57) 2017; 7 Yu (2023051609133042800_btab099-B58) 2017; 8 Mansson (2023051609133042800_btab099-B28) 2014; 43 Wu (2023051609133042800_btab099-B55) 2016; 12 Arcila (2023051609133042800_btab099-B1) 2015; 21 Camacho (2023051609133042800_btab099-B2) 2009; 137 Papili Gao (2023051609133042800_btab099-B39) 2018; 34 Mohamed Salleh (2023051609133042800_btab099-B34) 2015; 59 Lim (2023051609133042800_btab099-B21) 2016; 17 Faith (2023051609133042800_btab099-B9) 2007; 5 Thorne (2023051609133042800_btab099-B50) 2016; 6 Margolin (2023051609133042800_btab099-B30) 2006; 7 Furqan (2023051609133042800_btab099-B10) 2016; 11 |
| References_xml | – volume: 33 start-page: 2314 year: 2017 ident: 2023051609133042800_btab099-B33 article-title: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx194 – volume: 137 start-page: 24 year: 2009 ident: 2023051609133042800_btab099-B2 article-title: Systems biology strikes gold publication-title: Cell doi: 10.1016/j.cell.2009.03.032 – volume: 27 start-page: 2263 year: 2011 ident: 2023051609133042800_btab099-B45 article-title: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr373 – volume: 13 start-page: 1977 year: 2002 ident: 2023051609133042800_btab099-B54 article-title: Identification of genes periodically expressed in the human cell cycle and their expression in tumors publication-title: Mol. Biol. Cell doi: 10.1091/mbc.02-02-0030 – volume: 21 start-page: 1935 year: 2015 ident: 2023051609133042800_btab099-B1 article-title: MAP2K1 (MEK1) mutations define a distinct subset of lung adenocarcinoma associated with smoking publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2124 – volume: 7 start-page: 2991 year: 2017 ident: 2023051609133042800_btab099-B57 article-title: Reconstruction of complex directional networks with group lasso nonlinear conditional granger causality publication-title: Sci. Rep doi: 10.1038/s41598-017-02762-5 – volume: 22 start-page: 576 year: 2017 ident: 2023051609133042800_btab099-B5 article-title: Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories publication-title: Pac. Symp. Biocomput – volume: 27 start-page: 1876 year: 2011 ident: 2023051609133042800_btab099-B43 article-title: parmigene–a parallel R package for mutual information estimation and gene network reconstruction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr274 – volume: 29 start-page: 106 year: 2013 ident: 2023051609133042800_btab099-B59 article-title: NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts619 – volume: 6 start-page: 20533 year: 2016 ident: 2023051609133042800_btab099-B38 article-title: Gene regulatory network inference using fused LASSO on multiple data sets publication-title: Sci. Rep doi: 10.1038/srep20533 – volume: 31 start-page: i89 year: 2015 ident: 2023051609133042800_btab099-B37 article-title: Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv257 – volume: 34 start-page: 964 year: 2018 ident: 2023051609133042800_btab099-B44 article-title: A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx605 – volume: 8 start-page: 80373 year: 2017 ident: 2023051609133042800_btab099-B58 article-title: Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method publication-title: Oncotarget doi: 10.18632/oncotarget.21268 – volume: 7 start-page: e43819 year: 2012 ident: 2023051609133042800_btab099-B56 article-title: Gene regulatory network inference from multifactorial perturbation data using both regression and correlation analyses publication-title: PLoS One doi: 10.1371/journal.pone.0043819 – volume: 31 start-page: 64 year: 2002 ident: 2023051609133042800_btab099-B47 article-title: Network motifs in the transcriptional regulation network of Escherichia coli publication-title: Nat. Genet doi: 10.1038/ng881 – volume: 28 start-page: 98 year: 2012 ident: 2023051609133042800_btab099-B61 article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr626 – volume: 5 start-page: e8 year: 2007 ident: 2023051609133042800_btab099-B9 article-title: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050008 – volume: 6 start-page: 37140 year: 2016 ident: 2023051609133042800_btab099-B16 article-title: BGRMI: a method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research publication-title: Sci. Rep doi: 10.1038/srep37140 – volume: 114 start-page: 5822 year: 2017 ident: 2023051609133042800_btab099-B13 article-title: Reconstructing blood stem cell regulatory network models from single-cell molecular profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1610609114 – volume: 33 start-page: 764 year: 2017 ident: 2023051609133042800_btab099-B49 article-title: J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw729 – volume: 17 start-page: 545 year: 2016 ident: 2023051609133042800_btab099-B12 article-title: Gene regulatory network inference using PLS-based methods publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1398-6 – year: 2020 ident: 2023051609133042800_btab099-B36 article-title: A comprehensive survey of regulatory network inference methods using single-cell RNA sequencing data publication-title: Brief. Bioinform doi: 10.1093/bib/bbaa190 – volume: 4 start-page: 303 year: 2013 ident: 2023051609133042800_btab099-B27 article-title: Experimental assessment of static and dynamic algorithms for gene regulation inference from time series expression data publication-title: Front. Genet doi: 10.3389/fgene.2013.00303 – volume: 61 start-page: 1178 year: 2014 ident: 2023051609133042800_btab099-B53 article-title: Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations publication-title: J. Hepatol doi: 10.1016/j.jhep.2014.07.003 – volume: 17 start-page: 355 year: 2016 ident: 2023051609133042800_btab099-B21 article-title: BTR: training asynchronous Boolean models using single-cell expression data publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1235-y – volume: 68 start-page: 5524 year: 2008 ident: 2023051609133042800_btab099-B31 article-title: Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-0099 – volume: 59 start-page: 3 year: 2015 ident: 2023051609133042800_btab099-B34 article-title: Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient publication-title: Comput. Biol. Chem doi: 10.1016/j.compbiolchem.2015.04.012 – volume: 68 start-page: 207 year: 2019 ident: 2023051609133042800_btab099-B46 article-title: Human gastric cancer modelling using organoids publication-title: Gut doi: 10.1136/gutjnl-2017-314549 – volume: 6 start-page: 39224 year: 2016 ident: 2023051609133042800_btab099-B50 article-title: NetDiff - Bayesian model selection for differential gene regulatory network inference publication-title: Sci. Rep doi: 10.1038/srep39224 – volume: 1629 start-page: 331 year: 2017 ident: 2023051609133042800_btab099-B8 article-title: Inferring gene regulatory networks in the arabidopsis root using a Dynamic Bayesian Network Approach publication-title: Methods Mol. Biol doi: 10.1007/978-1-4939-7125-1_21 – volume: 99 start-page: 10555 year: 2002 ident: 2023051609133042800_btab099-B41 article-title: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.152046799 – volume: 20 start-page: 11 year: 2019 ident: 2023051609133042800_btab099-B15 article-title: Single-cell transcriptomics unveils gene regulatory network plasticity publication-title: Genome Biol doi: 10.1186/s13059-019-1713-4 – volume: 17 start-page: 232 year: 2016 ident: 2023051609133042800_btab099-B32 article-title: SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1109-3 – volume: 5 start-page: e12776 year: 2010 ident: 2023051609133042800_btab099-B14 article-title: Inferring regulatory networks from expression data using tree-based methods publication-title: PLoS One doi: 10.1371/journal.pone.0012776 – volume: 6 start-page: e29165 year: 2011 ident: 2023051609133042800_btab099-B52 article-title: Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis publication-title: PLoS One doi: 10.1371/journal.pone.0029165 – volume: 107 start-page: 6286 year: 2010 ident: 2023051609133042800_btab099-B29 article-title: Revealing strengths and weaknesses of methods for gene network inference publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913357107 – volume: 28 start-page: 1376 year: 2012 ident: 2023051609133042800_btab099-B18 article-title: Inferring gene regulatory networks by ANOVA publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts143 – volume: 9 start-page: 1516 year: 2018 ident: 2023051609133042800_btab099-B35 article-title: A geometric approach to characterize the functional identity of single cells publication-title: Nat. Commun doi: 10.1038/s41467-018-03933-2 – volume: 44 start-page: e164 year: 2016 ident: 2023051609133042800_btab099-B24 article-title: Personalized characterization of diseases using sample-specific networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw772 – volume: 11 start-page: e0165612 year: 2016 ident: 2023051609133042800_btab099-B10 article-title: Elastic-net copula granger causality for inference of biological networks publication-title: PLoS One doi: 10.1371/journal.pone.0165612 – volume: 6 start-page: 775 year: 2019 ident: 2023051609133042800_btab099-B26 article-title: Detection for disease tipping points by landscape dynamic network biomarkers publication-title: Natl. Sci. Rev doi: 10.1093/nsr/nwy162 – volume: 34 start-page: 258 year: 2018 ident: 2023051609133042800_btab099-B39 article-title: SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx575 – volume: 9 start-page: 3305 year: 2018 ident: 2023051609133042800_btab099-B4 article-title: Linear mapping approximation of gene regulatory networks with stochastic dynamics publication-title: Nat. Commun doi: 10.1038/s41467-018-05822-0 – volume: 13 start-page: 301 year: 2016 ident: 2023051609133042800_btab099-B48 article-title: bLARS: an algorithm to infer gene regulatory networks publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2015.2450740 – volume: 12 start-page: 588 year: 2016 ident: 2023051609133042800_btab099-B55 article-title: Large scale gene regulatory network inference with a multi-level strategy publication-title: Mol. Biosyst doi: 10.1039/C5MB00560D – volume: 137 start-page: 172 year: 2009 ident: 2023051609133042800_btab099-B3 article-title: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches publication-title: Cell doi: 10.1016/j.cell.2009.01.055 – volume: 79 start-page: 15 year: 2017 ident: 2023051609133042800_btab099-B17 article-title: A hybrid framework for reverse engineering of robust Gene Regulatory Networks publication-title: Artif. Intell. Med doi: 10.1016/j.artmed.2017.05.004 – volume: 32 start-page: 3685 year: 2016 ident: 2023051609133042800_btab099-B19 article-title: Bayesian network feature finder (BANFF): an R package for gene network feature selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw522 – volume: 11 start-page: e0158247 year: 2016 ident: 2023051609133042800_btab099-B23 article-title: Nonlinear network reconstruction from gene expression data using marginal dependencies measured by DCOL publication-title: PLoS One doi: 10.1371/journal.pone.0158247 – volume: 13 start-page: e0200094 year: 2018 ident: 2023051609133042800_btab099-B40 article-title: A robust gene regulatory network inference method base on Kalman filter and linear regression publication-title: PLoS One doi: 10.1371/journal.pone.0200094 – volume: 44 start-page: 694 year: 2012 ident: 2023051609133042800_btab099-B11 article-title: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma publication-title: Nat. Genet doi: 10.1038/ng.2256 – volume: 1 start-page: 2041 year: 2006 ident: 2023051609133042800_btab099-B20 article-title: Bayesian dynamic multivariate models for inferring gene interaction networks publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc doi: 10.1109/IEMBS.2006.260091 – volume: 12 start-page: e1005024 year: 2016 ident: 2023051609133042800_btab099-B22 article-title: Inference of gene regulatory network based on Local Bayesian Networks publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005024 – volume: 9 start-page: 5701 year: 2016 ident: 2023051609133042800_btab099-B25 article-title: Identifying module biomarkers from gastric cancer by differential correlation network publication-title: Oncol. Targets Ther doi: 10.2147/OTT.S113281 – volume: 9 start-page: e92709 year: 2014 ident: 2023051609133042800_btab099-B42 article-title: NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms publication-title: PLoS One doi: 10.1371/journal.pone.0092709 – volume: 97 start-page: 299 year: 1999 ident: 2023051609133042800_btab099-B6 article-title: Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter publication-title: Cell doi: 10.1016/S0092-8674(00)80740-0 – volume: 43 start-page: e31 year: 2015 ident: 2023051609133042800_btab099-B60 article-title: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1315 – volume: 35 start-page: 1893 year: 2019 ident: 2023051609133042800_btab099-B62 article-title: BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty908 – volume: 7 start-page: S7 year: 2006 ident: 2023051609133042800_btab099-B30 article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-S1-S7 – volume: 105 start-page: 20063 year: 2008 ident: 2023051609133042800_btab099-B7 article-title: Properties of developmental gene regulatory networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0806007105 – volume: 32 start-page: 875 year: 2016 ident: 2023051609133042800_btab099-B51 article-title: Optimal design of gene knockout experiments for gene regulatory network inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv672 – volume: 43 start-page: 235 year: 2014 ident: 2023051609133042800_btab099-B28 article-title: A new ridge regression causality test in the presence of multicollinearity publication-title: Commun. Stat. Theor doi: 10.1080/03610926.2012.659825 |
| SSID | ssj0005056 |
| Score | 2.4916065 |
| Snippet | Abstract
Motivation
Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although... Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods... Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2423 |
| SubjectTerms | Algorithms Bioinformatics Biological effects Cancer Datasets Gene expression Hepatocellular carcinoma Inference Liver cancer Networks Regression analysis Time series Urological cancer Urothelial cancer Urothelial carcinoma |
| Title | Inference of gene regulatory networks using pseudo-time series data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33576787 https://www.proquest.com/docview/3128005555 https://www.proquest.com/docview/2489252208 |
| Volume | 37 |
| WOSCitedRecordID | wos000703909800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5UFHzxPtaLCD4JYbtN0uNRRFEQ9UGlbyVJJyJIu7S7wv57kx4rq4jHc5s0TCbzTcnM9wGcIM9MgL6gBpWhPMaASgtclPlKsmAgGdbagE834e1tlCTx_RwMul6Yz1f4Meurl6IlEXXExX01ksqmNTbqDkTkNAse7pKPog6v1mt1PGSURx7reoK_nWYGjmZa3L5kmjXiXK7-Y61rsNKml-Ss8Yd1mMN8A5YawcnJJpxfd_19pDDE-g6SshGjL8oJyZuS8Iq4YvhnMqxwnBXUqc8T56hYEVdPugWPlxcP51e0lVGg2sLxiCpjYT70pQ4semcSMRCaKykkiwOLRTILGedaq0FkQmm0kbFRIlRSxRhpX4ZsGxbyIsddIDpjxlOeyoxGHmImHTWOF2jpaRMzjj0QnTVT3XKMO6mL17S562bprIHS1kA96E_HDRuWjR9HnNrN-vXLB92epu0RrVJmkdkxkAnRg-PpY3u43I2JzLEYV6nPo9i3GaoX9WCn8YXpJxmzv2o23O39ZSX7sOy7ohjPhidxAAujcoyHsKjfRi9VeQTzYRId1R79DhC0_t8 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+of+gene+regulatory+networks+using+pseudo-time+series+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Zhang%2C+Yuelei&rft.au=Chang%2C+Xiao&rft.au=Liu%2C+Xiaoping&rft.date=2021-08-25&rft.eissn=1367-4811&rft.volume=37&rft.issue=16&rft.spage=2423&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab099&rft_id=info%3Apmid%2F33576787&rft.externalDocID=33576787 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |