Inference of gene regulatory networks using pseudo-time series data

Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics (Oxford, England) Ročník 37; číslo 16; s. 2423 - 2431
Hlavní autori: Zhang, Yuelei, Chang, Xiao, Liu, Xiaoping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 25.08.2021
Oxford Publishing Limited (England)
Predmet:
ISSN:1367-4803, 1367-4811, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary data are available at Bioinformatics online.
Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks.MOTIVATIONInferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks.Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods.RESULTSHere, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods.The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR.AVAILABILITYAND IMPLEMENTATIONThe GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online.
Author Zhang, Yuelei
Chang, Xiao
Liu, Xiaoping
Author_xml – sequence: 1
  givenname: Yuelei
  orcidid: 0000-0003-3517-4011
  surname: Zhang
  fullname: Zhang, Yuelei
– sequence: 2
  givenname: Xiao
  surname: Chang
  fullname: Chang, Xiao
  email: chxlaugh@163.com
– sequence: 3
  givenname: Xiaoping
  surname: Liu
  fullname: Liu, Xiaoping
  email: xpliu@ucas.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33576787$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVIaDZJ_0Iw9NKLE33YlgS9lKX5gEAvzdmM5NGixJa2kkzZf1-H3QSSSzuXmcPzzgzve0aOQwxIyCWjV4xqcW189MHFNEHxNl-bAoZqfURWTHSybhRjx28zFafkLOcnSmlL2-4TORWilZ1UckXW98FhwmCxiq7aYMAq4WYeocS0qwKWPzE952rOPmyqbcZ5iHXxE1YZk8dcDVDggpw4GDN-PvRz8njz49f6rn74eXu__v5QW6FYqY2jiksOtuMNHQCxa21joAWhO60pDFI0jbWGKSfBWQfamVYaMBqV5SDFOfm637tN8feMufSTzxbHEQLGOfe8UZq3nFO1oF8-oE9xTmH5rheMq8WIpRbq8kDNZsKh3yY_Qdr1r_YsQLcHbIo5J3RvCKP9Sw79-xz6Qw6L8NsHofVlQWIoCfz4bznby-O8_d-TfwHgPKkK
CitedBy_id crossref_primary_10_1093_bib_bbae143
crossref_primary_10_1038_s42005_025_02091_4
crossref_primary_10_1186_s12859_022_05055_5
crossref_primary_10_1016_j_mbs_2024_109284
crossref_primary_10_1093_bib_bbae180
crossref_primary_10_1093_pnasnexus_pgad113
crossref_primary_10_3390_math9212826
crossref_primary_10_2174_0115748936282613231211112920
crossref_primary_10_3390_cimb47060408
crossref_primary_10_7717_peerj_15695
crossref_primary_10_3389_fbioe_2022_954610
crossref_primary_10_1371_journal_pone_0288174
crossref_primary_10_1016_j_ins_2025_122492
crossref_primary_10_1093_bib_bbad129
crossref_primary_10_1371_journal_pcbi_1011254
crossref_primary_10_1093_insilicoplants_diad018
crossref_primary_10_1016_j_xpro_2024_103006
crossref_primary_10_1016_j_csbj_2022_02_019
crossref_primary_10_1093_bib_bbae309
Cites_doi 10.1093/bioinformatics/btx194
10.1016/j.cell.2009.03.032
10.1093/bioinformatics/btr373
10.1091/mbc.02-02-0030
10.1158/1078-0432.CCR-14-2124
10.1038/s41598-017-02762-5
10.1093/bioinformatics/btr274
10.1093/bioinformatics/bts619
10.1038/srep20533
10.1093/bioinformatics/btv257
10.1093/bioinformatics/btx605
10.18632/oncotarget.21268
10.1371/journal.pone.0043819
10.1038/ng881
10.1093/bioinformatics/btr626
10.1371/journal.pbio.0050008
10.1038/srep37140
10.1073/pnas.1610609114
10.1093/bioinformatics/btw729
10.1186/s12859-016-1398-6
10.1093/bib/bbaa190
10.3389/fgene.2013.00303
10.1016/j.jhep.2014.07.003
10.1186/s12859-016-1235-y
10.1158/0008-5472.CAN-08-0099
10.1016/j.compbiolchem.2015.04.012
10.1136/gutjnl-2017-314549
10.1038/srep39224
10.1007/978-1-4939-7125-1_21
10.1073/pnas.152046799
10.1186/s13059-019-1713-4
10.1186/s12859-016-1109-3
10.1371/journal.pone.0012776
10.1371/journal.pone.0029165
10.1073/pnas.0913357107
10.1093/bioinformatics/bts143
10.1038/s41467-018-03933-2
10.1093/nar/gkw772
10.1371/journal.pone.0165612
10.1093/nsr/nwy162
10.1093/bioinformatics/btx575
10.1038/s41467-018-05822-0
10.1109/TCBB.2015.2450740
10.1039/C5MB00560D
10.1016/j.cell.2009.01.055
10.1016/j.artmed.2017.05.004
10.1093/bioinformatics/btw522
10.1371/journal.pone.0158247
10.1371/journal.pone.0200094
10.1038/ng.2256
10.1109/IEMBS.2006.260091
10.1371/journal.pcbi.1005024
10.2147/OTT.S113281
10.1371/journal.pone.0092709
10.1016/S0092-8674(00)80740-0
10.1093/nar/gku1315
10.1093/bioinformatics/bty908
10.1186/1471-2105-7-S1-S7
10.1073/pnas.0806007105
10.1093/bioinformatics/btv672
10.1080/03610926.2012.659825
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1093/bioinformatics/btab099
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 2431
ExternalDocumentID 33576787
10_1093_bioinformatics_btab099
10.1093/bioinformatics/btab099
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61403363
– fundername: Key project of Anhui Finance and Economics University
  grantid: ackyb20015
– fundername: Key Project of Natural Science of Anhui Provincial Education Department
  grantid: KJ2020A0018
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACMRT
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BCRHZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
XJT
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
ABGNP
ABPQP
ACUXJ
ADMLS
AMNDL
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c381t-bf08272ac6240daee65c4ba5a396990ad7344ccb18f7afcfa9fb57bab9e8c2a73
IEDL.DBID TOX
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703909800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Jul 10 22:38:19 EDT 2025
Mon Oct 06 17:31:48 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Tue Nov 18 21:56:26 EST 2025
Sat Nov 29 03:49:20 EST 2025
Fri Nov 15 02:52:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-bf08272ac6240daee65c4ba5a396990ad7344ccb18f7afcfa9fb57bab9e8c2a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3517-4011
PMID 33576787
PQID 3128005555
PQPubID 36124
PageCount 9
ParticipantIDs proquest_miscellaneous_2489252208
proquest_journals_3128005555
pubmed_primary_33576787
crossref_primary_10_1093_bioinformatics_btab099
crossref_citationtrail_10_1093_bioinformatics_btab099
oup_primary_10_1093_bioinformatics_btab099
PublicationCentury 2000
PublicationDate 2021-Aug-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-Aug-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Omranian (2023051609133042800_btab099-B38) 2016; 6
Cosma (2023051609133042800_btab099-B6) 1999; 97
Liu (2023051609133042800_btab099-B22) 2016; 12
Zhang (2023051609133042800_btab099-B61) 2012; 28
Kuffner (2023051609133042800_btab099-B18) 2012; 28
Lan (2023051609133042800_btab099-B19) 2016; 32
Nguyen (2023051609133042800_btab099-B36) 2020
Mohammadi (2023051609133042800_btab099-B35) 2018; 9
Jafari (2023051609133042800_btab099-B17) 2017; 79
Pirgazi (2023051609133042800_btab099-B40) 2018; 13
Ruyssinck (2023051609133042800_btab099-B42) 2014; 9
Liu (2023051609133042800_btab099-B24) 2016; 44
Marks (2023051609133042800_btab099-B31) 2008; 68
Iacono (2023051609133042800_btab099-B15) 2019; 20
Singh (2023051609133042800_btab099-B48) 2016; 13
Cao (2023051609133042800_btab099-B4) 2018; 9
Guo (2023051609133042800_btab099-B12) 2016; 17
Zhang (2023051609133042800_btab099-B59) 2013; 29
Liu (2023051609133042800_btab099-B26) 2019; 6
Ocone (2023051609133042800_btab099-B37) 2015; 31
Hamey (2023051609133042800_btab099-B13) 2017; 114
Sales (2023051609133042800_btab099-B43) 2011; 27
Liu (2023051609133042800_btab099-B25) 2016; 9
Matsumoto (2023051609133042800_btab099-B32) 2016; 17
Zhang (2023051609133042800_btab099-B60) 2015; 43
Shen-Orr (2023051609133042800_btab099-B47) 2002; 31
Whitfield (2023051609133042800_btab099-B54) 2002; 13
Huynh-Thu (2023051609133042800_btab099-B14) 2010; 5
Ronen (2023051609133042800_btab099-B41) 2002; 99
Vignes (2023051609133042800_btab099-B52) 2011; 6
Vilarinho (2023051609133042800_btab099-B53) 2014; 61
Iglesias-Martinez (2023051609133042800_btab099-B16) 2016; 6
Marbach (2023051609133042800_btab099-B29) 2010; 107
Cordero (2023051609133042800_btab099-B5) 2017; 22
Guichard (2023051609133042800_btab099-B11) 2012; 44
Matsumoto (2023051609133042800_btab099-B33) 2017; 33
Xiong (2023051609133042800_btab099-B56) 2012; 7
Zheng (2023051609133042800_btab099-B62) 2019; 35
Cantone (2023051609133042800_btab099-B3) 2009; 137
Seidlitz (2023051609133042800_btab099-B46) 2019; 68
Schaffter (2023051609133042800_btab099-B45) 2011; 27
Lopes (2023051609133042800_btab099-B27) 2013; 4
Ud-Dean (2023051609133042800_btab099-B51) 2016; 32
Sanchez-Castillo (2023051609133042800_btab099-B44) 2018; 34
Davidson (2023051609133042800_btab099-B7) 2008; 105
de Luis Balaguer (2023051609133042800_btab099-B8) 2017; 1629
Liang (2023051609133042800_btab099-B20) 2006; 1
Liu (2023051609133042800_btab099-B23) 2016; 11
Specht (2023051609133042800_btab099-B49) 2017; 33
Yang (2023051609133042800_btab099-B57) 2017; 7
Yu (2023051609133042800_btab099-B58) 2017; 8
Mansson (2023051609133042800_btab099-B28) 2014; 43
Wu (2023051609133042800_btab099-B55) 2016; 12
Arcila (2023051609133042800_btab099-B1) 2015; 21
Camacho (2023051609133042800_btab099-B2) 2009; 137
Papili Gao (2023051609133042800_btab099-B39) 2018; 34
Mohamed Salleh (2023051609133042800_btab099-B34) 2015; 59
Lim (2023051609133042800_btab099-B21) 2016; 17
Faith (2023051609133042800_btab099-B9) 2007; 5
Thorne (2023051609133042800_btab099-B50) 2016; 6
Margolin (2023051609133042800_btab099-B30) 2006; 7
Furqan (2023051609133042800_btab099-B10) 2016; 11
References_xml – volume: 33
  start-page: 2314
  year: 2017
  ident: 2023051609133042800_btab099-B33
  article-title: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx194
– volume: 137
  start-page: 24
  year: 2009
  ident: 2023051609133042800_btab099-B2
  article-title: Systems biology strikes gold
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.032
– volume: 27
  start-page: 2263
  year: 2011
  ident: 2023051609133042800_btab099-B45
  article-title: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr373
– volume: 13
  start-page: 1977
  year: 2002
  ident: 2023051609133042800_btab099-B54
  article-title: Identification of genes periodically expressed in the human cell cycle and their expression in tumors
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.02-02-0030
– volume: 21
  start-page: 1935
  year: 2015
  ident: 2023051609133042800_btab099-B1
  article-title: MAP2K1 (MEK1) mutations define a distinct subset of lung adenocarcinoma associated with smoking
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-2124
– volume: 7
  start-page: 2991
  year: 2017
  ident: 2023051609133042800_btab099-B57
  article-title: Reconstruction of complex directional networks with group lasso nonlinear conditional granger causality
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-02762-5
– volume: 22
  start-page: 576
  year: 2017
  ident: 2023051609133042800_btab099-B5
  article-title: Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories
  publication-title: Pac. Symp. Biocomput
– volume: 27
  start-page: 1876
  year: 2011
  ident: 2023051609133042800_btab099-B43
  article-title: parmigene–a parallel R package for mutual information estimation and gene network reconstruction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr274
– volume: 29
  start-page: 106
  year: 2013
  ident: 2023051609133042800_btab099-B59
  article-title: NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts619
– volume: 6
  start-page: 20533
  year: 2016
  ident: 2023051609133042800_btab099-B38
  article-title: Gene regulatory network inference using fused LASSO on multiple data sets
  publication-title: Sci. Rep
  doi: 10.1038/srep20533
– volume: 31
  start-page: i89
  year: 2015
  ident: 2023051609133042800_btab099-B37
  article-title: Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv257
– volume: 34
  start-page: 964
  year: 2018
  ident: 2023051609133042800_btab099-B44
  article-title: A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx605
– volume: 8
  start-page: 80373
  year: 2017
  ident: 2023051609133042800_btab099-B58
  article-title: Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21268
– volume: 7
  start-page: e43819
  year: 2012
  ident: 2023051609133042800_btab099-B56
  article-title: Gene regulatory network inference from multifactorial perturbation data using both regression and correlation analyses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043819
– volume: 31
  start-page: 64
  year: 2002
  ident: 2023051609133042800_btab099-B47
  article-title: Network motifs in the transcriptional regulation network of Escherichia coli
  publication-title: Nat. Genet
  doi: 10.1038/ng881
– volume: 28
  start-page: 98
  year: 2012
  ident: 2023051609133042800_btab099-B61
  article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr626
– volume: 5
  start-page: e8
  year: 2007
  ident: 2023051609133042800_btab099-B9
  article-title: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050008
– volume: 6
  start-page: 37140
  year: 2016
  ident: 2023051609133042800_btab099-B16
  article-title: BGRMI: a method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research
  publication-title: Sci. Rep
  doi: 10.1038/srep37140
– volume: 114
  start-page: 5822
  year: 2017
  ident: 2023051609133042800_btab099-B13
  article-title: Reconstructing blood stem cell regulatory network models from single-cell molecular profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1610609114
– volume: 33
  start-page: 764
  year: 2017
  ident: 2023051609133042800_btab099-B49
  article-title: J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw729
– volume: 17
  start-page: 545
  year: 2016
  ident: 2023051609133042800_btab099-B12
  article-title: Gene regulatory network inference using PLS-based methods
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1398-6
– year: 2020
  ident: 2023051609133042800_btab099-B36
  article-title: A comprehensive survey of regulatory network inference methods using single-cell RNA sequencing data
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbaa190
– volume: 4
  start-page: 303
  year: 2013
  ident: 2023051609133042800_btab099-B27
  article-title: Experimental assessment of static and dynamic algorithms for gene regulation inference from time series expression data
  publication-title: Front. Genet
  doi: 10.3389/fgene.2013.00303
– volume: 61
  start-page: 1178
  year: 2014
  ident: 2023051609133042800_btab099-B53
  article-title: Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations
  publication-title: J. Hepatol
  doi: 10.1016/j.jhep.2014.07.003
– volume: 17
  start-page: 355
  year: 2016
  ident: 2023051609133042800_btab099-B21
  article-title: BTR: training asynchronous Boolean models using single-cell expression data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1235-y
– volume: 68
  start-page: 5524
  year: 2008
  ident: 2023051609133042800_btab099-B31
  article-title: Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-0099
– volume: 59
  start-page: 3
  year: 2015
  ident: 2023051609133042800_btab099-B34
  article-title: Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient
  publication-title: Comput. Biol. Chem
  doi: 10.1016/j.compbiolchem.2015.04.012
– volume: 68
  start-page: 207
  year: 2019
  ident: 2023051609133042800_btab099-B46
  article-title: Human gastric cancer modelling using organoids
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314549
– volume: 6
  start-page: 39224
  year: 2016
  ident: 2023051609133042800_btab099-B50
  article-title: NetDiff - Bayesian model selection for differential gene regulatory network inference
  publication-title: Sci. Rep
  doi: 10.1038/srep39224
– volume: 1629
  start-page: 331
  year: 2017
  ident: 2023051609133042800_btab099-B8
  article-title: Inferring gene regulatory networks in the arabidopsis root using a Dynamic Bayesian Network Approach
  publication-title: Methods Mol. Biol
  doi: 10.1007/978-1-4939-7125-1_21
– volume: 99
  start-page: 10555
  year: 2002
  ident: 2023051609133042800_btab099-B41
  article-title: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.152046799
– volume: 20
  start-page: 11
  year: 2019
  ident: 2023051609133042800_btab099-B15
  article-title: Single-cell transcriptomics unveils gene regulatory network plasticity
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1713-4
– volume: 17
  start-page: 232
  year: 2016
  ident: 2023051609133042800_btab099-B32
  article-title: SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1109-3
– volume: 5
  start-page: e12776
  year: 2010
  ident: 2023051609133042800_btab099-B14
  article-title: Inferring regulatory networks from expression data using tree-based methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 6
  start-page: e29165
  year: 2011
  ident: 2023051609133042800_btab099-B52
  article-title: Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029165
– volume: 107
  start-page: 6286
  year: 2010
  ident: 2023051609133042800_btab099-B29
  article-title: Revealing strengths and weaknesses of methods for gene network inference
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913357107
– volume: 28
  start-page: 1376
  year: 2012
  ident: 2023051609133042800_btab099-B18
  article-title: Inferring gene regulatory networks by ANOVA
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts143
– volume: 9
  start-page: 1516
  year: 2018
  ident: 2023051609133042800_btab099-B35
  article-title: A geometric approach to characterize the functional identity of single cells
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-03933-2
– volume: 44
  start-page: e164
  year: 2016
  ident: 2023051609133042800_btab099-B24
  article-title: Personalized characterization of diseases using sample-specific networks
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw772
– volume: 11
  start-page: e0165612
  year: 2016
  ident: 2023051609133042800_btab099-B10
  article-title: Elastic-net copula granger causality for inference of biological networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0165612
– volume: 6
  start-page: 775
  year: 2019
  ident: 2023051609133042800_btab099-B26
  article-title: Detection for disease tipping points by landscape dynamic network biomarkers
  publication-title: Natl. Sci. Rev
  doi: 10.1093/nsr/nwy162
– volume: 34
  start-page: 258
  year: 2018
  ident: 2023051609133042800_btab099-B39
  article-title: SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx575
– volume: 9
  start-page: 3305
  year: 2018
  ident: 2023051609133042800_btab099-B4
  article-title: Linear mapping approximation of gene regulatory networks with stochastic dynamics
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-05822-0
– volume: 13
  start-page: 301
  year: 2016
  ident: 2023051609133042800_btab099-B48
  article-title: bLARS: an algorithm to infer gene regulatory networks
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2015.2450740
– volume: 12
  start-page: 588
  year: 2016
  ident: 2023051609133042800_btab099-B55
  article-title: Large scale gene regulatory network inference with a multi-level strategy
  publication-title: Mol. Biosyst
  doi: 10.1039/C5MB00560D
– volume: 137
  start-page: 172
  year: 2009
  ident: 2023051609133042800_btab099-B3
  article-title: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.055
– volume: 79
  start-page: 15
  year: 2017
  ident: 2023051609133042800_btab099-B17
  article-title: A hybrid framework for reverse engineering of robust Gene Regulatory Networks
  publication-title: Artif. Intell. Med
  doi: 10.1016/j.artmed.2017.05.004
– volume: 32
  start-page: 3685
  year: 2016
  ident: 2023051609133042800_btab099-B19
  article-title: Bayesian network feature finder (BANFF): an R package for gene network feature selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw522
– volume: 11
  start-page: e0158247
  year: 2016
  ident: 2023051609133042800_btab099-B23
  article-title: Nonlinear network reconstruction from gene expression data using marginal dependencies measured by DCOL
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158247
– volume: 13
  start-page: e0200094
  year: 2018
  ident: 2023051609133042800_btab099-B40
  article-title: A robust gene regulatory network inference method base on Kalman filter and linear regression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0200094
– volume: 44
  start-page: 694
  year: 2012
  ident: 2023051609133042800_btab099-B11
  article-title: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma
  publication-title: Nat. Genet
  doi: 10.1038/ng.2256
– volume: 1
  start-page: 2041
  year: 2006
  ident: 2023051609133042800_btab099-B20
  article-title: Bayesian dynamic multivariate models for inferring gene interaction networks
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc
  doi: 10.1109/IEMBS.2006.260091
– volume: 12
  start-page: e1005024
  year: 2016
  ident: 2023051609133042800_btab099-B22
  article-title: Inference of gene regulatory network based on Local Bayesian Networks
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005024
– volume: 9
  start-page: 5701
  year: 2016
  ident: 2023051609133042800_btab099-B25
  article-title: Identifying module biomarkers from gastric cancer by differential correlation network
  publication-title: Oncol. Targets Ther
  doi: 10.2147/OTT.S113281
– volume: 9
  start-page: e92709
  year: 2014
  ident: 2023051609133042800_btab099-B42
  article-title: NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092709
– volume: 97
  start-page: 299
  year: 1999
  ident: 2023051609133042800_btab099-B6
  article-title: Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80740-0
– volume: 43
  start-page: e31
  year: 2015
  ident: 2023051609133042800_btab099-B60
  article-title: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1315
– volume: 35
  start-page: 1893
  year: 2019
  ident: 2023051609133042800_btab099-B62
  article-title: BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty908
– volume: 7
  start-page: S7
  year: 2006
  ident: 2023051609133042800_btab099-B30
  article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 105
  start-page: 20063
  year: 2008
  ident: 2023051609133042800_btab099-B7
  article-title: Properties of developmental gene regulatory networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0806007105
– volume: 32
  start-page: 875
  year: 2016
  ident: 2023051609133042800_btab099-B51
  article-title: Optimal design of gene knockout experiments for gene regulatory network inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv672
– volume: 43
  start-page: 235
  year: 2014
  ident: 2023051609133042800_btab099-B28
  article-title: A new ridge regression causality test in the presence of multicollinearity
  publication-title: Commun. Stat. Theor
  doi: 10.1080/03610926.2012.659825
SSID ssj0005056
Score 2.4916065
Snippet Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although...
Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods...
Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2423
SubjectTerms Algorithms
Bioinformatics
Biological effects
Cancer
Datasets
Gene expression
Hepatocellular carcinoma
Inference
Liver cancer
Networks
Regression analysis
Time series
Urological cancer
Urothelial cancer
Urothelial carcinoma
Title Inference of gene regulatory networks using pseudo-time series data
URI https://www.ncbi.nlm.nih.gov/pubmed/33576787
https://www.proquest.com/docview/3128005555
https://www.proquest.com/docview/2489252208
Volume 37
WOSCitedRecordID wos000703909800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5UFHzxPtaLCD4JYbtN0uNRRFEQ9UGlbyVJJyJIu7S7wv57kx4rq4jHc5s0TCbzTcnM9wGcIM9MgL6gBpWhPMaASgtclPlKsmAgGdbagE834e1tlCTx_RwMul6Yz1f4Meurl6IlEXXExX01ksqmNTbqDkTkNAse7pKPog6v1mt1PGSURx7reoK_nWYGjmZa3L5kmjXiXK7-Y61rsNKml-Ss8Yd1mMN8A5YawcnJJpxfd_19pDDE-g6SshGjL8oJyZuS8Iq4YvhnMqxwnBXUqc8T56hYEVdPugWPlxcP51e0lVGg2sLxiCpjYT70pQ4semcSMRCaKykkiwOLRTILGedaq0FkQmm0kbFRIlRSxRhpX4ZsGxbyIsddIDpjxlOeyoxGHmImHTWOF2jpaRMzjj0QnTVT3XKMO6mL17S562bprIHS1kA96E_HDRuWjR9HnNrN-vXLB92epu0RrVJmkdkxkAnRg-PpY3u43I2JzLEYV6nPo9i3GaoX9WCn8YXpJxmzv2o23O39ZSX7sOy7ohjPhidxAAujcoyHsKjfRi9VeQTzYRId1R79DhC0_t8
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+of+gene+regulatory+networks+using+pseudo-time+series+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Zhang%2C+Yuelei&rft.au=Chang%2C+Xiao&rft.au=Liu%2C+Xiaoping&rft.date=2021-08-25&rft.eissn=1367-4811&rft.volume=37&rft.issue=16&rft.spage=2423&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab099&rft_id=info%3Apmid%2F33576787&rft.externalDocID=33576787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon