Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming

Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In this research, an innovative artificial intelligence technique i.e. Multi-Expression Programming (MEP) is applied to model the split tensile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment Jg. 780; S. 146524
Hauptverfasser: Iqbal, Muhammad Farjad, Javed, Muhammad Faisal, Rauf, Momina, Azim, Iftikhar, Ashraf, Muhammad, Yang, Jian, Liu, Qing-feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2021
Schlagworte:
ISSN:0048-9697, 1879-1026, 1879-1026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In this research, an innovative artificial intelligence technique i.e. Multi-Expression Programming (MEP) is applied to model the split tensile strength (ST) and modulus of elasticity (E) of concrete containing waste foundry sand (CWFS). The presented formulations correlate mechanical properties with four input variables i.e. w/c, foundry sand content, superplasticizer content and compressive strength. The results of statistical analysis validate the model accuracy as evident by the low values of objective function (0.033 for E and 0.052 for ST). Moreover, the average error in the predicted values is significantly low i.e. 0.287 MPa and 1.75 GPa for ST and E model, respectively. Parametric study depicts that the models are well trained to accurately predict the trends of mechanical properties with variation in mix parameters. The prediction models can promote the usage of WFS in green concrete thereby preventing waste disposal and contributing towards and sustainable construction. [Display omitted] •WFS, a hazardous solid waste, causes adverse environmental impact.•Artificial intelligence is used to model mechanical properties of green concrete.•Validation and parametric study is performed to ensure the accuracy of models.•Application of proposed models can contribute towards sustainable construction.
AbstractList Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In this research, an innovative artificial intelligence technique i.e. Multi-Expression Programming (MEP) is applied to model the split tensile strength (ST) and modulus of elasticity (E) of concrete containing waste foundry sand (CWFS). The presented formulations correlate mechanical properties with four input variables i.e. w/c, foundry sand content, superplasticizer content and compressive strength. The results of statistical analysis validate the model accuracy as evident by the low values of objective function (0.033 for E and 0.052 for ST). Moreover, the average error in the predicted values is significantly low i.e. 0.287 MPa and 1.75 GPa for ST and E model, respectively. Parametric study depicts that the models are well trained to accurately predict the trends of mechanical properties with variation in mix parameters. The prediction models can promote the usage of WFS in green concrete thereby preventing waste disposal and contributing towards and sustainable construction. [Display omitted] •WFS, a hazardous solid waste, causes adverse environmental impact.•Artificial intelligence is used to model mechanical properties of green concrete.•Validation and parametric study is performed to ensure the accuracy of models.•Application of proposed models can contribute towards sustainable construction.
Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In this research, an innovative artificial intelligence technique i.e. Multi-Expression Programming (MEP) is applied to model the split tensile strength (ST) and modulus of elasticity (E) of concrete containing waste foundry sand (CWFS). The presented formulations correlate mechanical properties with four input variables i.e. w/c, foundry sand content, superplasticizer content and compressive strength. The results of statistical analysis validate the model accuracy as evident by the low values of objective function (0.033 for E and 0.052 for ST). Moreover, the average error in the predicted values is significantly low i.e. 0.287 MPa and 1.75 GPa for ST and E model, respectively. Parametric study depicts that the models are well trained to accurately predict the trends of mechanical properties with variation in mix parameters. The prediction models can promote the usage of WFS in green concrete thereby preventing waste disposal and contributing towards and sustainable construction.Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In this research, an innovative artificial intelligence technique i.e. Multi-Expression Programming (MEP) is applied to model the split tensile strength (ST) and modulus of elasticity (E) of concrete containing waste foundry sand (CWFS). The presented formulations correlate mechanical properties with four input variables i.e. w/c, foundry sand content, superplasticizer content and compressive strength. The results of statistical analysis validate the model accuracy as evident by the low values of objective function (0.033 for E and 0.052 for ST). Moreover, the average error in the predicted values is significantly low i.e. 0.287 MPa and 1.75 GPa for ST and E model, respectively. Parametric study depicts that the models are well trained to accurately predict the trends of mechanical properties with variation in mix parameters. The prediction models can promote the usage of WFS in green concrete thereby preventing waste disposal and contributing towards and sustainable construction.
Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In this research, an innovative artificial intelligence technique i.e. Multi-Expression Programming (MEP) is applied to model the split tensile strength (ST) and modulus of elasticity (E) of concrete containing waste foundry sand (CWFS). The presented formulations correlate mechanical properties with four input variables i.e. w/c, foundry sand content, superplasticizer content and compressive strength. The results of statistical analysis validate the model accuracy as evident by the low values of objective function (0.033 for E and 0.052 for ST). Moreover, the average error in the predicted values is significantly low i.e. 0.287 MPa and 1.75 GPa for ST and E model, respectively. Parametric study depicts that the models are well trained to accurately predict the trends of mechanical properties with variation in mix parameters. The prediction models can promote the usage of WFS in green concrete thereby preventing waste disposal and contributing towards and sustainable construction.
ArticleNumber 146524
Author Iqbal, Muhammad Farjad
Javed, Muhammad Faisal
Yang, Jian
Rauf, Momina
Ashraf, Muhammad
Liu, Qing-feng
Azim, Iftikhar
Author_xml – sequence: 1
  givenname: Muhammad Farjad
  surname: Iqbal
  fullname: Iqbal, Muhammad Farjad
  organization: State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Muhammad Faisal
  surname: Javed
  fullname: Javed, Muhammad Faisal
  organization: Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Pakistan
– sequence: 3
  givenname: Momina
  surname: Rauf
  fullname: Rauf, Momina
  organization: Military College of Engineering, NUST, Risalpur 24080, Pakistan
– sequence: 4
  givenname: Iftikhar
  surname: Azim
  fullname: Azim, Iftikhar
  organization: State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 5
  givenname: Muhammad
  surname: Ashraf
  fullname: Ashraf, Muhammad
  organization: Department of Civil Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23460, Swabi, Pakistan
– sequence: 6
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 7
  givenname: Qing-feng
  surname: Liu
  fullname: Liu, Qing-feng
  email: liuqf@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
BookMark eNqNkcFO3DAURa2KSh1ov6FesslgO46dILFAqBQkpC7arq0X5wU8SuzBdmjpP_Sf8TBVVbGh3tiS77lPeueQHPjgkZCPnK054-pks07W5ZDRP6wFE3zNpWqEfENWvNVdxZlQB2TFmGyrTnX6HTlMacPK0S1fkd9fl5TBeegnpEt2k_sF2QVPw0jHsPghPtIfkDKe0ssQ0Zan87d0RnsH3lmY6DaGLcbsMP3LJPAD7SHhQG3wNmIu9ekZXabsKvy5jZjSblIpuI0wz-XzPXk7wpTww5_7iHy__PTt4qq6-fL5-uL8prJ1y3MFKEfb1rWGvsG26aDplELBAVBJywZm-xps3_GxB9ZpqwUwxaGR_dAMONb1ETne95bZ9wumbGaXLE4TeAxLMqJrG1n2qPXr0aYWQkohVYme7aM2hpQijqaIed5mjuAmw5nZGTMb89eY2Rkze2OF1y_4bXQzxMf_IM_3JJalPTiMuxx6i4MrzrIZgnu14wnXD728
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e15362
crossref_primary_10_1038_s41598_024_69271_0
crossref_primary_10_1038_s41598_024_69316_4
crossref_primary_10_3390_w14060947
crossref_primary_10_1016_j_conbuildmat_2021_124291
crossref_primary_10_3390_ma15134386
crossref_primary_10_1515_rams_2024_0051
crossref_primary_10_3390_su14116801
crossref_primary_10_1016_j_mtcomm_2024_109946
crossref_primary_10_1007_s44416_025_00005_9
crossref_primary_10_1515_rams_2023_0179
crossref_primary_10_1038_s41598_024_79869_z
crossref_primary_10_3390_buildings12030314
crossref_primary_10_3390_ma15010039
crossref_primary_10_3390_ma15165797
crossref_primary_10_1007_s40831_024_00790_w
crossref_primary_10_1016_j_totert_2023_100048
crossref_primary_10_1016_j_istruc_2024_106837
crossref_primary_10_1186_s40069_022_00553_5
crossref_primary_10_1515_rams_2024_0068
crossref_primary_10_1016_j_engstruct_2021_112903
crossref_primary_10_1016_j_mtcomm_2023_107639
crossref_primary_10_1016_j_rineng_2025_104813
crossref_primary_10_1007_s42107_025_01501_w
crossref_primary_10_1063_5_0273780
crossref_primary_10_1016_j_conbuildmat_2023_134092
crossref_primary_10_32604_cmes_2024_052505
crossref_primary_10_4028_p_1v7aKe
crossref_primary_10_1080_09640568_2024_2303630
crossref_primary_10_3390_polym14112145
crossref_primary_10_1515_rams_2025_0088
crossref_primary_10_1515_rams_2024_0038
crossref_primary_10_1007_s44290_025_00215_x
crossref_primary_10_1016_j_mtcomm_2025_112181
crossref_primary_10_1515_rams_2025_0126
crossref_primary_10_1515_rams_2025_0128
crossref_primary_10_1016_j_cpc_2025_109649
crossref_primary_10_1016_j_engappai_2023_107834
crossref_primary_10_3390_ma15175823
crossref_primary_10_1016_j_scp_2024_101763
crossref_primary_10_1016_j_cscm_2024_e02901
crossref_primary_10_3390_ma16206788
crossref_primary_10_1016_j_geothermics_2024_103144
crossref_primary_10_1515_rams_2024_0049
crossref_primary_10_3390_buildings12122160
crossref_primary_10_3390_ma14195659
crossref_primary_10_1016_j_istruc_2021_06_045
crossref_primary_10_1016_j_heliyon_2023_e23375
crossref_primary_10_3390_buildings12020211
crossref_primary_10_1016_j_cscm_2024_e03270
crossref_primary_10_36937_ben_2021_004_004
crossref_primary_10_1515_rams_2024_0042
crossref_primary_10_1515_rams_2023_0187
crossref_primary_10_1016_j_conbuildmat_2024_137002
crossref_primary_10_1002_suco_70302
crossref_primary_10_1016_j_jece_2022_107872
crossref_primary_10_3390_su15086335
crossref_primary_10_3390_sym13112009
crossref_primary_10_1016_j_mtcomm_2024_110434
crossref_primary_10_1016_j_cscm_2022_e01446
crossref_primary_10_1515_rams_2023_0189
crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_1016_j_jobe_2023_106595
crossref_primary_10_1002_suco_202100213
crossref_primary_10_1016_j_scitotenv_2023_162804
crossref_primary_10_1038_s41598_024_52500_x
crossref_primary_10_3390_eng6090219
crossref_primary_10_3390_su142114388
crossref_primary_10_1038_s41598_024_77490_8
crossref_primary_10_3390_ma15113808
crossref_primary_10_1016_j_conbuildmat_2023_134101
crossref_primary_10_1016_j_jclepro_2021_130315
crossref_primary_10_1038_s41598_024_67850_9
crossref_primary_10_1016_j_mtcomm_2024_109222
crossref_primary_10_1016_j_jclepro_2022_131364
crossref_primary_10_3390_su14063274
crossref_primary_10_1007_s11356_024_35388_y
crossref_primary_10_1016_j_cscm_2023_e02581
crossref_primary_10_1016_j_scitotenv_2022_155424
crossref_primary_10_1007_s43452_025_01236_0
crossref_primary_10_3390_ma14071661
crossref_primary_10_1016_j_jenvman_2023_117855
crossref_primary_10_1016_j_cemconcomp_2021_104153
crossref_primary_10_1038_s41598_025_90468_4
crossref_primary_10_3390_constrmater5030057
crossref_primary_10_1016_j_cscm_2023_e02459
crossref_primary_10_1155_2023_1827117
crossref_primary_10_1016_j_istruc_2023_01_019
crossref_primary_10_1016_j_cscm_2025_e05024
crossref_primary_10_1155_2021_5582150
crossref_primary_10_3390_buildings14041091
crossref_primary_10_1016_j_engappai_2025_112190
crossref_primary_10_1016_j_conbuildmat_2021_122806
crossref_primary_10_1016_j_mtcomm_2024_108834
crossref_primary_10_3390_sym14112324
crossref_primary_10_1007_s41062_025_02063_1
crossref_primary_10_3390_polym14071303
crossref_primary_10_1007_s12145_024_01520_2
crossref_primary_10_7717_peerj_cs_1853
crossref_primary_10_1038_s41598_024_61313_x
crossref_primary_10_1016_j_conbuildmat_2025_139897
crossref_primary_10_1016_j_mtcomm_2024_109764
crossref_primary_10_1016_j_cscm_2022_e01774
crossref_primary_10_1016_j_conbuildmat_2021_125634
crossref_primary_10_1016_j_cscm_2023_e02102
crossref_primary_10_1080_21650373_2022_2093291
crossref_primary_10_1016_j_cscm_2024_e03750
crossref_primary_10_3390_ma15114025
crossref_primary_10_1515_rams_2024_0008
crossref_primary_10_1007_s40808_024_02061_9
crossref_primary_10_1016_j_jobe_2023_107252
crossref_primary_10_1002_suco_202300313
crossref_primary_10_3390_buildings15132244
crossref_primary_10_3390_buildings14051347
crossref_primary_10_1016_j_istruc_2023_105821
crossref_primary_10_1016_j_istruc_2023_04_050
crossref_primary_10_1016_j_mtcomm_2023_107333
crossref_primary_10_1016_j_cemconcomp_2025_106272
Cites_doi 10.1016/j.scitotenv.2020.141418
10.1016/j.istruc.2020.02.028
10.1016/j.eswa.2013.04.014
10.1016/j.conbuildmat.2013.06.071
10.1111/mice.12422
10.1016/j.rser.2015.11.058
10.1061/(ASCE)MT.1943-5533.0003645
10.1016/j.conbuildmat.2011.06.041
10.1016/j.jclepro.2018.07.068
10.1016/j.istruc.2017.07.002
10.1007/s12205-011-1117-9
10.1016/j.envsoft.2011.07.007
10.1007/s12205-021-0431-0
10.1016/j.scitotenv.2020.140162
10.3846/13923730.2014.893910
10.1016/j.conbuildmat.2018.11.225
10.12989/sem.2010.36.6.759
10.1007/s00366-009-0140-7
10.1016/j.jclepro.2017.10.255
10.1016/j.conbuildmat.2014.07.070
10.1016/j.scitotenv.2020.139729
10.1016/j.asoc.2019.105842
10.1016/j.jhazmat.2019.121322
10.25088/ComplexSystems.14.4.285
10.1016/j.conbuildmat.2021.122806
10.1016/j.scs.2016.10.009
10.1016/j.wasman.2010.02.018
10.1016/j.conbuildmat.2020.121082
10.1016/j.istruc.2020.06.011
10.1016/j.conbuildmat.2018.09.097
10.1109/ICCIS.2012.207
10.1016/j.jobe.2018.09.004
10.1016/j.scitotenv.2019.06.535
10.1016/j.cemconcomp.2016.10.006
10.1016/j.conbuildmat.2005.01.054
10.1016/j.conbuildmat.2015.03.011
10.1016/j.conbuildmat.2012.04.078
10.1016/j.advengsoft.2015.05.007
10.1016/j.istruc.2019.09.019
10.1016/j.conbuildmat.2020.118152
10.1061/(ASCE)MT.1943-5533.0000154
10.1002/qsar.200710043
10.1016/j.scs.2018.11.017
10.1109/72.329697
10.1016/j.resconrec.2011.05.001
10.1016/S1093-3263(01)00123-1
10.1016/j.jhazmat.2018.05.006
10.1016/j.wasman.2017.10.022
10.1016/j.conbuildmat.2013.01.016
10.3846/jcem.2020.11931
10.1016/j.compstruct.2018.09.063
10.1016/j.conbuildmat.2019.117266
10.1016/j.conbuildmat.2016.10.114
10.1016/B978-081551373-5.50011-8
10.1016/j.conbuildmat.2020.119578
10.1016/j.conbuildmat.2011.08.022
10.3846/jcem.2019.10798
10.1016/j.conbuildmat.2010.11.065
10.1016/j.jclepro.2020.120678
10.1016/j.conbuildmat.2016.06.143
10.1016/j.cemconcomp.2016.10.010
10.1533/9780857093103.339
10.1016/j.scitotenv.2020.141182
10.1007/s13042-018-00913-2
10.1016/j.resconrec.2010.04.006
10.1016/j.compstruct.2017.03.088
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.146524
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2021_146524
S0048969721015928
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c381t-ae4fc8337ab5e859a5966e21aae64c0d0cb3acb91fba097c72a061a54bd5def33
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653089300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sun Sep 28 00:14:20 EDT 2025
Sun Sep 28 14:43:54 EDT 2025
Sat Nov 29 06:36:02 EST 2025
Tue Nov 18 21:10:09 EST 2025
Wed Dec 04 16:48:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Landfill disposal
Solid waste
Multi-expression programming
Parametric analysis
Sustainable construction
Foundry sand
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-ae4fc8337ab5e859a5966e21aae64c0d0cb3acb91fba097c72a061a54bd5def33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2532244246
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2985414677
proquest_miscellaneous_2532244246
crossref_citationtrail_10_1016_j_scitotenv_2021_146524
crossref_primary_10_1016_j_scitotenv_2021_146524
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_146524
PublicationCentury 2000
PublicationDate 2021-08-01
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Behnood, Golafshani (bb0070) 2020; 243
Despotovic, Nedic, Despotovic, Cvetanovic (bb0085) 2016; 56
Beheshti Aval, Ketabdari, Asil Gharebaghi (bb0065) 2017; 12
Alonso-Santurde, Coz, Viguri, Andrés (bb0020) 2012; 27
Du, Tan (bb0100) 2017; 75
Martins, Barros, Silva, Santos (bb0240) 2019; 45
Oltean, Grosan (bb0295) 2003; 14
Guney, Sari, Yalcin, Tuncan, Donmez (bb0175) 2010; 30
Alavi, Gandomi, Sahab, Gandomi (bb0010) 2010; 26
British Standards Institution (bb0075) 2004; 2004
New Zealand Standard, 2006. Concrete Structures Standard, NZS 3101: 2006, The Design of Concrete Structures, 2006, Wellington, New Zealand.
Gholampour, Gandomi, Ozbakkaloglu (bb0155) 2017; 130
Sadrmomtazi, Sobhani, Mirgozar (bb0340) 2013; 42
Azim, Yang, Javed, Iqbal, Mahmood, Wang, Liu (bb0050) 2020; 25
Pyo, Hong, Kwon, Kim, Cho (bb0315) 2020; 741
Wang, Chen, Tsang, Guo, Yang, Shen, Hou, Ok, Poon (bb0400) 2020; 258
Azim, Yang, Farjad Iqbal, Faisal Javed, Nazar, Wang, Liu (bb0045) 2020; 27
Rauf, Khaliq, Khushnood, Ahmed (bb0330) 2020; 258
Arulrajah, Yaghoubi, Imteaz, Horpibulsuk (bb0030) 2017; 28
Gandomi, Alavi, Yun (bb0140) 2011; 15
Öztaş, Pala, Özbay, Kanca, Çaǧlar, Bhatti (bb0305) 2006
Zhang, Chen, Mu, Šavija, Liu (bb0415) 2021; 285
Du, Pang (bb0095) 2018; 198
Siddique, Singh, Belarbi, Ait-Mokhtar, Kunal (bb0365) 2015; 83
Tavakoli, Soroushian (bb0390) 1996; 93
Oltean, Grosan (bb0300) 2004; 14
Basar, Deveci (bb0060) 2012; 35
.
Golbraikh, Tropsha (bb0170) 2002; 20
Oltean, M., Dumitrescu, D., 2002. Multi expression programming. J. Genet. Program. Evolvable Mach. Kluwer, Second tour Rev.
Zhang, Q., Yang, B., Wang, L., Zhu, F., 2012. Predicting cement compressive strength using double-layer multi-expression programming, in: 2012 Fourth International Conference on Computational and Information Sciences. IEEE, pp. 94–97.
Gandomi, Roke (bb0130) 2015; 88
Shen, Jiang, Hou, Hu, Yang, Liu (bb0350) 2019; 103402
Roy, Roy (bb0335) 2008; 27
Singh, Siddique (bb0380) 2012; 26
Japan Society of Civil Engineers (bb0205) 2007
ACI 318-11 (bb0005) 2011
Liu, Iqbal, Yang, XY, Zhang, Rauf (bb0220) 2021; 268
Mousavi, Alavi, Gandomi, Arab Esmaeili, Gandomi (bb0255) 2010; 36
Oltean, Grosan (bb0290) 2003
Manoharan, Laksmanan, Mylsamy, Sivakumar, Sircar (bb0230) 2018; 71
Miyandehi, Feizbakhsh, Yazdi, Liu, Yang, Alipour (bb0245) 2016; 74
Gurumoorthy, Arunachalam (bb0180) 2016; 123
Siddique, Singh, Singh (bb0370) 2018; 172
Golafshani, Behnood, Arashpour (bb0160) 2020; 232
Ashteyat, Obaidat, Murad, Haddad (bb0035) 2020; 26
Wang, Song, Mo (bb0405) 2020; 1–13
Getahun, Shitote, Abiero Gariy (bb0150) 2018; 190
Huang, Deng, Wu, Japenga, Li, Yang, He (bb0195) 2018; 354
Iqbal, Liu, Azim, Zhu, Yang, Javed, Rauf (bb0200) 2020; 384
Prabhu, Hyun, Kim (bb0310) 2014; 70
Alavi, Mollahasani, Gandomi, Bazaz (bb0015) 2012
Siddique, Singh (bb0355) 2011; 55
Liu, Zhuge, Chow, Keegan, Pham, Li, Qian, Wang (bb0215) 2020; 746
Nazari, Pacheco Torgal (bb0270) 2013; 40
Qiu, Wang, Wang, Qiu, Wu, Tao (bb0320) 2020; 737
Hagan, Menhaj (bb0185) 1994; 5
Faris, Mirjalili, Aljarah (bb0110) 2019; 10
Tavana Amlashi, Alidoust, Pazhouhi, Pourrostami Niavol, Khabiri, Ghanizadeh (bb0395) 2021; 33
Makul, Sokrai (bb0225) 2018; 20
Liu, Hu, Lu, Yang, Azim, Sun (bb7000) 2020; 13(1)
Montoya, Gadde, Champion, Li, Hubler (bb0250) 2019; 690
Ramachandran, V.S., Malhotra, V.M., 1996. 7 - Superplasticizers, in: Ramachandran, V.S.B.T.-C.A.H. (Second E. (Ed.)). William Andrew Publishing, Park Ridge, NJ, pp. 410–517. doi
Ferreira (bb0120) 2006
Murad, Imam, Hajar, Hammad, Shawash (bb0265) 2019
Siddique, Aggarwal, Aggarwal, Kadri, Bennacer (bb0360) 2011; 25
Mao, Hu, Xia, Feng, Azim, Yang, Liu (bb0235) 2019; 207
Frank, Todeschini (bb0125) 1994; vol. (14)
Australia, S.A. of (bb0040) 2001
Murad, Ashteyat, Hunaifat (bb0260) 2019; 25
Elwell, D.J., Fu, G., 1995. Compression testing of concrete: cylinders vs. cubes.
Hashmi, Shamseldin, Melville (bb0190) 2011; 26
Liu, Feng, Xia, Yang, Li (bb8000) 2018; 183
Nguyen, Kashani, Ngo, Bordas (bb0280) 2019; 34
Arabshahi, Gharaei-Moghaddam, Tavakkolizadeh (bb0025) 2020; 23
Gandomi, Faramarzifar, Rezaee, Asghari, Talatahari (bb0145) 2015; 21
Bagheri, He, Oustriere, Liu, Shi, Limmer, Burken (bb0055) 2021; 751
Gandomi, Alavi, Mirzahosseini, Nejad (bb0135) 2011; 23
Du (bb0090) 2019; 199
Smith (bb0385) 1986; 244
Canadian Standard (bb0080) 2004
Gołaszewski, J., Szwabowski, J., 2003. Influence of cement and superplasticizer on rheological properties of mortars, in: Brittle Matrix Composites 7. Elsevier, pp. 339–350.
Koza (bb0210) 1992; 1
Sharifi, Abrishami, Gandomi (bb0345) 2020; 86
Siddiquea, Kaur, Rajor (bb0375) 2010; 54
Fernández, Duran, Sirera, Álvarez (bb0115) 2013; 48
Azim, Yang, Iqbal, Mahmood, Javed, Wang, Liu (bb9000) 2021; 25
Liu (10.1016/j.scitotenv.2021.146524_bb0215) 2020; 746
Liu (10.1016/j.scitotenv.2021.146524_bb0220) 2021; 268
Sharifi (10.1016/j.scitotenv.2021.146524_bb0345) 2020; 86
10.1016/j.scitotenv.2021.146524_bb0410
Murad (10.1016/j.scitotenv.2021.146524_bb0265) 2019
Beheshti Aval (10.1016/j.scitotenv.2021.146524_bb0065) 2017; 12
Gandomi (10.1016/j.scitotenv.2021.146524_bb0145) 2015; 21
Pyo (10.1016/j.scitotenv.2021.146524_bb0315) 2020; 741
Iqbal (10.1016/j.scitotenv.2021.146524_bb0200) 2020; 384
Nguyen (10.1016/j.scitotenv.2021.146524_bb0280) 2019; 34
Murad (10.1016/j.scitotenv.2021.146524_bb0260) 2019; 25
Golafshani (10.1016/j.scitotenv.2021.146524_bb0160) 2020; 232
Singh (10.1016/j.scitotenv.2021.146524_bb0380) 2012; 26
Gholampour (10.1016/j.scitotenv.2021.146524_bb0155) 2017; 130
Mousavi (10.1016/j.scitotenv.2021.146524_bb0255) 2010; 36
Behnood (10.1016/j.scitotenv.2021.146524_bb0070) 2020; 243
Despotovic (10.1016/j.scitotenv.2021.146524_bb0085) 2016; 56
Roy (10.1016/j.scitotenv.2021.146524_bb0335) 2008; 27
Sadrmomtazi (10.1016/j.scitotenv.2021.146524_bb0340) 2013; 42
Alavi (10.1016/j.scitotenv.2021.146524_bb0015) 2012
Manoharan (10.1016/j.scitotenv.2021.146524_bb0230) 2018; 71
Azim (10.1016/j.scitotenv.2021.146524_bb9000) 2021; 25
Golbraikh (10.1016/j.scitotenv.2021.146524_bb0170) 2002; 20
Hagan (10.1016/j.scitotenv.2021.146524_bb0185) 1994; 5
Faris (10.1016/j.scitotenv.2021.146524_bb0110) 2019; 10
Shen (10.1016/j.scitotenv.2021.146524_bb0350) 2019; 103402
Du (10.1016/j.scitotenv.2021.146524_bb0100) 2017; 75
Arabshahi (10.1016/j.scitotenv.2021.146524_bb0025) 2020; 23
Montoya (10.1016/j.scitotenv.2021.146524_bb0250) 2019; 690
Oltean (10.1016/j.scitotenv.2021.146524_bb0300) 2004; 14
Siddiquea (10.1016/j.scitotenv.2021.146524_bb0375) 2010; 54
Frank (10.1016/j.scitotenv.2021.146524_bb0125) 1994; vol. (14)
Azim (10.1016/j.scitotenv.2021.146524_bb0050) 2020; 25
Gandomi (10.1016/j.scitotenv.2021.146524_bb0135) 2011; 23
Arulrajah (10.1016/j.scitotenv.2021.146524_bb0030) 2017; 28
Hashmi (10.1016/j.scitotenv.2021.146524_bb0190) 2011; 26
Huang (10.1016/j.scitotenv.2021.146524_bb0195) 2018; 354
Siddique (10.1016/j.scitotenv.2021.146524_bb0365) 2015; 83
Ferreira (10.1016/j.scitotenv.2021.146524_bb0120) 2006
Getahun (10.1016/j.scitotenv.2021.146524_bb0150) 2018; 190
10.1016/j.scitotenv.2021.146524_bb0105
Tavakoli (10.1016/j.scitotenv.2021.146524_bb0390) 1996; 93
Alavi (10.1016/j.scitotenv.2021.146524_bb0010) 2010; 26
10.1016/j.scitotenv.2021.146524_bb0275
Du (10.1016/j.scitotenv.2021.146524_bb0095) 2018; 198
Canadian Standard (10.1016/j.scitotenv.2021.146524_bb0080) 2004
Wang (10.1016/j.scitotenv.2021.146524_bb0400) 2020; 258
Gurumoorthy (10.1016/j.scitotenv.2021.146524_bb0180) 2016; 123
Australia, S.A. of (10.1016/j.scitotenv.2021.146524_bb0040) 2001
Alonso-Santurde (10.1016/j.scitotenv.2021.146524_bb0020) 2012; 27
Oltean (10.1016/j.scitotenv.2021.146524_bb0295) 2003; 14
Smith (10.1016/j.scitotenv.2021.146524_bb0385) 1986; 244
Qiu (10.1016/j.scitotenv.2021.146524_bb0320) 2020; 737
Du (10.1016/j.scitotenv.2021.146524_bb0090) 2019; 199
Oltean (10.1016/j.scitotenv.2021.146524_bb0290) 2003
Azim (10.1016/j.scitotenv.2021.146524_bb0045) 2020; 27
Öztaş (10.1016/j.scitotenv.2021.146524_bb0305) 2006
Tavana Amlashi (10.1016/j.scitotenv.2021.146524_bb0395) 2021; 33
Wang (10.1016/j.scitotenv.2021.146524_bb0405) 2020; 1–13
Basar (10.1016/j.scitotenv.2021.146524_bb0060) 2012; 35
Miyandehi (10.1016/j.scitotenv.2021.146524_bb0245) 2016; 74
Rauf (10.1016/j.scitotenv.2021.146524_bb0330) 2020; 258
Liu (10.1016/j.scitotenv.2021.146524_bb8000) 2018; 183
Martins (10.1016/j.scitotenv.2021.146524_bb0240) 2019; 45
Guney (10.1016/j.scitotenv.2021.146524_bb0175) 2010; 30
British Standards Institution (10.1016/j.scitotenv.2021.146524_bb0075) 2004; 2004
Siddique (10.1016/j.scitotenv.2021.146524_bb0370) 2018; 172
Zhang (10.1016/j.scitotenv.2021.146524_bb0415) 2021; 285
10.1016/j.scitotenv.2021.146524_bb0165
Ashteyat (10.1016/j.scitotenv.2021.146524_bb0035) 2020; 26
10.1016/j.scitotenv.2021.146524_bb0285
Siddique (10.1016/j.scitotenv.2021.146524_bb0355) 2011; 55
Japan Society of Civil Engineers (10.1016/j.scitotenv.2021.146524_bb0205) 2007
Liu (10.1016/j.scitotenv.2021.146524_bb7000) 2020; 13(1)
Prabhu (10.1016/j.scitotenv.2021.146524_bb0310) 2014; 70
Siddique (10.1016/j.scitotenv.2021.146524_bb0360) 2011; 25
Bagheri (10.1016/j.scitotenv.2021.146524_bb0055) 2021; 751
Makul (10.1016/j.scitotenv.2021.146524_bb0225) 2018; 20
Fernández (10.1016/j.scitotenv.2021.146524_bb0115) 2013; 48
ACI 318-11 (10.1016/j.scitotenv.2021.146524_bb0005) 2011
Gandomi (10.1016/j.scitotenv.2021.146524_bb0130) 2015; 88
Mao (10.1016/j.scitotenv.2021.146524_bb0235) 2019; 207
Nazari (10.1016/j.scitotenv.2021.146524_bb0270) 2013; 40
Gandomi (10.1016/j.scitotenv.2021.146524_bb0140) 2011; 15
Koza (10.1016/j.scitotenv.2021.146524_bb0210) 1992; 1
10.1016/j.scitotenv.2021.146524_bb0325
References_xml – volume: 21
  start-page: 761
  year: 2015
  end-page: 774
  ident: bb0145
  article-title: New design equations for elastic modulus of concrete using multi expression programming
  publication-title: J. Civ. Eng. Manag.
– volume: 384
  year: 2020
  ident: bb0200
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: J. Hazard. Mater.
– reference: Gołaszewski, J., Szwabowski, J., 2003. Influence of cement and superplasticizer on rheological properties of mortars, in: Brittle Matrix Composites 7. Elsevier, pp. 339–350.
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bb0185
  article-title: Training feedforward networks with the Marquardt algorithm. IEEE Trans
  publication-title: Neural Netw.
– volume: 86
  start-page: 105842
  year: 2020
  ident: bb0345
  article-title: Consolidation assessment using multi expression programming
  publication-title: Appl. Soft Comput. J.
– volume: 2004
  year: 2004
  ident: bb0075
  article-title: Eurocode 2: design of concrete structures: part 1-1: general rules and rules for buildings
  publication-title: British Standards Institution
– volume: 207
  start-page: 176
  year: 2019
  end-page: 189
  ident: bb0235
  article-title: Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites
  publication-title: Compos. Struct.
– year: 2006
  ident: bb0120
  article-title: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence
– volume: 30
  start-page: 1705
  year: 2010
  end-page: 1713
  ident: bb0175
  article-title: Re-usage of waste foundry sand in high-strength concrete
  publication-title: Waste Manag.
– volume: 14
  start-page: 285
  year: 2004
  end-page: 313
  ident: bb0300
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst.
– volume: 244
  year: 1986
  ident: bb0385
  article-title: Probability and statistics in civil engineering
  publication-title: Collins Prof. Tech. Books
– volume: 42
  start-page: 205
  year: 2013
  end-page: 216
  ident: bb0340
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr. Build. Mater.
– volume: 25
  start-page: 1916
  year: 2011
  end-page: 1925
  ident: bb0360
  article-title: Strength, durability, and micro-structural properties of concrete made with used-foundry sand (UFS)
  publication-title: Constr. Build. Mater.
– year: 2019
  ident: bb0265
  article-title: Predictive Compressive Strength Models for Green Concrete
– volume: 20
  start-page: 269
  year: 2002
  end-page: 276
  ident: bb0170
  article-title: Beware of q2!
  publication-title: J. Mol. Graph. Model.
– volume: 23
  start-page: 248
  year: 2011
  end-page: 263
  ident: bb0135
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J. Mater. Civ. Eng.
– volume: 74
  start-page: 225
  year: 2016
  end-page: 235
  ident: bb0245
  article-title: Performance and properties of mortar mixed with nano-CuO and rice husk ash
  publication-title: Cem. Concr. Compos.
– volume: 14
  start-page: 285
  year: 2003
  end-page: 314
  ident: bb0295
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst.
– volume: 232
  start-page: 117266
  year: 2020
  ident: bb0160
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
– volume: 33
  year: 2021
  ident: bb0395
  article-title: AI-based formulation for mechanical and workability properties of eco-friendly concrete made by waste foundry sand
  publication-title: J. Mater. Civ. Eng.
– start-page: 2004
  year: 2004
  ident: bb0080
  article-title: C S A. A23.3-04, Design of Concrete Structures
– volume: 13(1)
  start-page: 1
  year: 2020
  end-page: 16
  ident: bb7000
  article-title: Prediction of chloride distribution for offshore concrete based on statistical analysis
  publication-title: Materials
– volume: 26
  start-page: 111
  year: 2010
  end-page: 118
  ident: bb0010
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng. Comput.
– volume: 737
  start-page: 139729
  year: 2020
  ident: bb0320
  article-title: Water temperature forecasting based on modified artificial neural network methods: two cases of the Yangtze River
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 2901
  year: 2019
  end-page: 2920
  ident: bb0110
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 26
  start-page: 416
  year: 2012
  end-page: 422
  ident: bb0380
  article-title: Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete
  publication-title: Constr. Build. Mater.
– volume: 28
  start-page: 343
  year: 2017
  end-page: 349
  ident: bb0030
  article-title: Recycled waste foundry sand as a sustainable subgrade fill and pipe-bedding construction material: engineering and environmental evaluation
  publication-title: Sustain. Cities Soc.
– volume: 35
  start-page: 508
  year: 2012
  end-page: 515
  ident: bb0060
  article-title: The effect of waste foundry sand (WFS) as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete
  publication-title: Constr. Build. Mater.
– volume: 12
  start-page: 13
  year: 2017
  end-page: 23
  ident: bb0065
  article-title: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming
  publication-title: Structures
– volume: 26
  start-page: 1639
  year: 2011
  end-page: 1646
  ident: bb0190
  article-title: Statistical downscaling of watershed precipitation using Gene Expression Programming (GEP)
  publication-title: Environ. Model. Softw.
– volume: 183
  start-page: 371
  year: 2018
  end-page: 380
  ident: bb8000
  article-title: Ionic transport features in concrete composites containing various shaped aggregates: a numerical study
  publication-title: Composite Structures
– volume: 75
  start-page: 22
  year: 2017
  end-page: 29
  ident: bb0100
  article-title: Properties of high volume glass powder concrete
  publication-title: Cem. Concr. Compos.
– volume: 15
  start-page: 363
  year: 2011
  end-page: 373
  ident: bb0140
  article-title: Formulation of uplift capacity of suction caissons using multi expression programming
  publication-title: KSCE J. Civ. Eng.
– volume: 1
  start-page: 17
  year: 1992
  end-page: 63
  ident: bb0210
  article-title: Genetic programming: on the programming of computers by means of natural selection
  publication-title: The MIT Press
– volume: 70
  start-page: 514
  year: 2014
  end-page: 521
  ident: bb0310
  article-title: Effects of foundry sand as a fine aggregate in concrete production
  publication-title: Constr. Build. Mater.
– volume: 243
  start-page: 118152
  year: 2020
  ident: bb0070
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
– volume: 751
  start-page: 141418
  year: 2021
  ident: bb0055
  article-title: Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models
  publication-title: Sci. Total Environ.
– reference: Ramachandran, V.S., Malhotra, V.M., 1996. 7 - Superplasticizers, in: Ramachandran, V.S.B.T.-C.A.H. (Second E. (Ed.)). William Andrew Publishing, Park Ridge, NJ, pp. 410–517. doi:
– reference: Zhang, Q., Yang, B., Wang, L., Zhu, F., 2012. Predicting cement compressive strength using double-layer multi-expression programming, in: 2012 Fourth International Conference on Computational and Information Sciences. IEEE, pp. 94–97.
– year: 2003
  ident: bb0290
  article-title: Evolving evolutionary algorithms using multi expression programming
  publication-title: Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science).
– volume: 27
  start-page: 1231
  year: 2020
  end-page: 1245
  ident: bb0045
  article-title: Semi analytical model for compressive arch action capacity of RC frame structures
  publication-title: Structures
– volume: 25
  start-page: 891
  year: 2021
  end-page: 905
  ident: bb9000
  article-title: Prediction of catenary action capacity of RC beam-column substructures under a missing column scenario using evolutionary algorithm
  publication-title: KSCE Journal of Civil Engineering
– volume: 285
  start-page: 122806
  year: 2021
  ident: bb0415
  article-title: Numerical investigation of external sulfate attack and its effect on chloride binding and diffusion in concrete
  publication-title: Constr. Build. Mater.
– volume: 258
  start-page: 119578
  year: 2020
  ident: bb0330
  article-title: Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete
  publication-title: Constr. Build. Mater.
– volume: 103402
  year: 2019
  ident: bb0350
  article-title: Numerical study of carbonation and its effect on chloride binding in concrete
  publication-title: Cem. Concr. Compos.
– volume: 1–13
  year: 2020
  ident: bb0405
  article-title: Shear loading detection of through bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 741
  start-page: 140162
  year: 2020
  ident: bb0315
  article-title: Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 97
  year: 2012
  end-page: 106
  ident: bb0020
  article-title: Recycling of foundry by-products in the ceramic industry: green and core sand in clay bricks
  publication-title: Constr. Build. Mater.
– volume: 26
  start-page: 189
  year: 2020
  end-page: 199
  ident: bb0035
  article-title: Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programing and artificial neural network
  publication-title: J. Civ. Eng. Manag.
– volume: 190
  start-page: 517
  year: 2018
  end-page: 525
  ident: bb0150
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
– year: 2007
  ident: bb0205
  article-title: Standard Specification for Concrete Structure
– volume: 55
  start-page: 885
  year: 2011
  end-page: 892
  ident: bb0355
  article-title: Utilization of waste foundry sand (WFS) in concrete manufacturing
  publication-title: Resources, Conserv. Recycl.
– volume: 34
  start-page: 316
  year: 2019
  end-page: 332
  ident: bb0280
  article-title: Deep neural network with high-order neuron for the prediction of foamed concrete strength
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 172
  start-page: 1111
  year: 2018
  end-page: 1120
  ident: bb0370
  article-title: Recycle option for metallurgical by-product (Spent Foundry Sand) in green concrete for sustainable construction
  publication-title: J. Clean. Prod.
– reference: Elwell, D.J., Fu, G., 1995. Compression testing of concrete: cylinders vs. cubes.
– volume: 36
  start-page: 759
  year: 2010
  ident: bb0255
  article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders
  publication-title: Struct. Eng. Mech.
– volume: 20
  start-page: 544
  year: 2018
  end-page: 558
  ident: bb0225
  article-title: Influences of fine waste foundry sand from the automobile engine-part casting process and water-cementitious ratio on the properties of concrete: a new approach to use of a partial cement replacement material
  publication-title: J. Build. Eng.
– volume: 93
  start-page: 178
  year: 1996
  end-page: 181
  ident: bb0390
  article-title: Strengths of recycled aggregate concrete made using field-demolished concrete as aggregate
  publication-title: Mater. J.
– year: 2012
  ident: bb0015
  article-title: Formulation of Secant and Reloading Soil Deformation Moduli Using Multi Expression Programming
– volume: 354
  start-page: 161
  year: 2018
  end-page: 169
  ident: bb0195
  article-title: A modified receptor model for source apportionment of heavy metal pollution in soil
  publication-title: J. Hazard. Mater.
– volume: 199
  start-page: 696
  year: 2019
  end-page: 704
  ident: bb0090
  article-title: Properties of ultra-lightweight cement composites with nano-silica
  publication-title: Constr. Build. Mater.
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  ident: bb0130
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
– volume: 45
  start-page: 187
  year: 2019
  end-page: 196
  ident: bb0240
  article-title: Study on waste foundry exhaust sand, WFES, as a partial substitute of fine aggregates in conventional concrete
  publication-title: Sustain. Cities Soc.
– volume: 40
  start-page: 5427
  year: 2013
  end-page: 5438
  ident: bb0270
  article-title: Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
  publication-title: Expert Syst. Appl.
– volume: vol. (14)
  year: 1994
  ident: bb0125
  article-title: The Data Analysis Handbook
– volume: 56
  start-page: 246
  year: 2016
  end-page: 260
  ident: bb0085
  article-title: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation
  publication-title: Renew. Sust. Energ. Rev.
– volume: 83
  start-page: 216
  year: 2015
  end-page: 222
  ident: bb0365
  article-title: Comparative investigation on the influence of spent foundry sand as partial replacement of fine aggregates on the properties of two grades of concrete
  publication-title: Constr. Build. Mater.
– volume: 54
  start-page: 1027
  year: 2010
  end-page: 1036
  ident: bb0375
  article-title: Waste foundry sand and its leachate characteristics
  publication-title: Resour. Conserv. Recycl.
– volume: 23
  start-page: 225
  year: 2020
  end-page: 244
  ident: bb0025
  article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming
  publication-title: Structures
– volume: 123
  start-page: 184
  year: 2016
  end-page: 190
  ident: bb0180
  article-title: Micro and mechanical behaviour of treated used foundry sand concrete
  publication-title: Constr. Build. Mater.
– volume: 690
  start-page: 209
  year: 2019
  end-page: 216
  ident: bb0250
  article-title: PM2.5 generated during rapid failure of fiber-reinforced concrete induces TNF-alpha response in macrophages. Sci
  publication-title: Total Environ.
– year: 2006
  ident: bb0305
  article-title: Predicting the compressive strength and slump of high strength concrete using neural network
  publication-title: Constr. Build. Mater.
– volume: 25
  start-page: 212
  year: 2020
  end-page: 228
  ident: bb0050
  article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
  publication-title: Structures
– volume: 25
  start-page: 773
  year: 2019
  end-page: 784
  ident: bb0260
  article-title: Predictive model to the bond strength of frp-to-concrete under direct pullout using gene expression programming
  publication-title: J. Civ. Eng. Manag.
– year: 2011
  ident: bb0005
  article-title: Building Code Requirements for Structural Concrete and Commentary, PCA Notes on ACI 318-11; With Design Applications
– volume: 71
  start-page: 454
  year: 2018
  end-page: 460
  ident: bb0230
  article-title: Engineering properties of concrete with partial utilization of used foundry sand
  publication-title: Waste Manag.
– reference: .
– reference: New Zealand Standard, 2006. Concrete Structures Standard, NZS 3101: 2006, The Design of Concrete Structures, 2006, Wellington, New Zealand.
– volume: 27
  start-page: 302
  year: 2008
  end-page: 313
  ident: bb0335
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Comb. Sci.
– volume: 130
  start-page: 122
  year: 2017
  end-page: 145
  ident: bb0155
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
– year: 2001
  ident: bb0040
  article-title: Australian Standard for Concrete Structures
– volume: 198
  start-page: 867
  year: 2018
  end-page: 873
  ident: bb0095
  article-title: Value-added utilization of marine clay as cement replacement for sustainable concrete production
  publication-title: J. Clean. Prod.
– volume: 268
  start-page: 121082
  year: 2021
  ident: bb0220
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: modelling and performance evaluation
  publication-title: Constr. Build. Mater.
– volume: 258
  start-page: 120678
  year: 2020
  ident: bb0400
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
– volume: 48
  start-page: 218
  year: 2013
  end-page: 228
  ident: bb0115
  article-title: A novel use of calcium aluminate cements for recycling waste foundry sand (WFS)
  publication-title: Constr. Build. Mater.
– volume: 746
  start-page: 141182
  year: 2020
  ident: bb0215
  article-title: Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: durability and leachability
  publication-title: Sci. Total Environ.
– reference: Oltean, M., Dumitrescu, D., 2002. Multi expression programming. J. Genet. Program. Evolvable Mach. Kluwer, Second tour Rev.
– volume: 751
  start-page: 141418
  year: 2021
  ident: 10.1016/j.scitotenv.2021.146524_bb0055
  article-title: Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141418
– volume: 25
  start-page: 212
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0050
  article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.02.028
– volume: 40
  start-page: 5427
  year: 2013
  ident: 10.1016/j.scitotenv.2021.146524_bb0270
  article-title: Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.04.014
– volume: 48
  start-page: 218
  year: 2013
  ident: 10.1016/j.scitotenv.2021.146524_bb0115
  article-title: A novel use of calcium aluminate cements for recycling waste foundry sand (WFS)
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.06.071
– volume: 34
  start-page: 316
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0280
  article-title: Deep neural network with high-order neuron for the prediction of foamed concrete strength
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12422
– volume: 2004
  year: 2004
  ident: 10.1016/j.scitotenv.2021.146524_bb0075
  article-title: Eurocode 2: design of concrete structures: part 1-1: general rules and rules for buildings
  publication-title: British Standards Institution
– year: 2003
  ident: 10.1016/j.scitotenv.2021.146524_bb0290
  article-title: Evolving evolutionary algorithms using multi expression programming
  publication-title: Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science).
– volume: 13(1)
  start-page: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb7000
  article-title: Prediction of chloride distribution for offshore concrete based on statistical analysis
  publication-title: Materials
– volume: 56
  start-page: 246
  year: 2016
  ident: 10.1016/j.scitotenv.2021.146524_bb0085
  article-title: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.11.058
– volume: 33
  year: 2021
  ident: 10.1016/j.scitotenv.2021.146524_bb0395
  article-title: AI-based formulation for mechanical and workability properties of eco-friendly concrete made by waste foundry sand
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003645
– year: 2001
  ident: 10.1016/j.scitotenv.2021.146524_bb0040
– ident: 10.1016/j.scitotenv.2021.146524_bb0275
– volume: 26
  start-page: 416
  year: 2012
  ident: 10.1016/j.scitotenv.2021.146524_bb0380
  article-title: Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.06.041
– volume: 198
  start-page: 867
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb0095
  article-title: Value-added utilization of marine clay as cement replacement for sustainable concrete production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.068
– volume: 12
  start-page: 13
  year: 2017
  ident: 10.1016/j.scitotenv.2021.146524_bb0065
  article-title: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2017.07.002
– volume: 15
  start-page: 363
  year: 2011
  ident: 10.1016/j.scitotenv.2021.146524_bb0140
  article-title: Formulation of uplift capacity of suction caissons using multi expression programming
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-011-1117-9
– volume: 26
  start-page: 1639
  year: 2011
  ident: 10.1016/j.scitotenv.2021.146524_bb0190
  article-title: Statistical downscaling of watershed precipitation using Gene Expression Programming (GEP)
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.07.007
– volume: 25
  start-page: 891
  year: 2021
  ident: 10.1016/j.scitotenv.2021.146524_bb9000
  article-title: Prediction of catenary action capacity of RC beam-column substructures under a missing column scenario using evolutionary algorithm
  publication-title: KSCE Journal of Civil Engineering
  doi: 10.1007/s12205-021-0431-0
– volume: vol. (14)
  year: 1994
  ident: 10.1016/j.scitotenv.2021.146524_bb0125
– year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0265
– volume: 741
  start-page: 140162
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0315
  article-title: Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140162
– volume: 21
  start-page: 761
  year: 2015
  ident: 10.1016/j.scitotenv.2021.146524_bb0145
  article-title: New design equations for elastic modulus of concrete using multi expression programming
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2014.893910
– ident: 10.1016/j.scitotenv.2021.146524_bb0105
– volume: 199
  start-page: 696
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0090
  article-title: Properties of ultra-lightweight cement composites with nano-silica
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.11.225
– volume: 36
  start-page: 759
  year: 2010
  ident: 10.1016/j.scitotenv.2021.146524_bb0255
  article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2010.36.6.759
– volume: 26
  start-page: 111
  year: 2010
  ident: 10.1016/j.scitotenv.2021.146524_bb0010
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-009-0140-7
– volume: 172
  start-page: 1111
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb0370
  article-title: Recycle option for metallurgical by-product (Spent Foundry Sand) in green concrete for sustainable construction
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.255
– ident: 10.1016/j.scitotenv.2021.146524_bb0285
– volume: 70
  start-page: 514
  year: 2014
  ident: 10.1016/j.scitotenv.2021.146524_bb0310
  article-title: Effects of foundry sand as a fine aggregate in concrete production
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.07.070
– volume: 737
  start-page: 139729
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0320
  article-title: Water temperature forecasting based on modified artificial neural network methods: two cases of the Yangtze River
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139729
– volume: 86
  start-page: 105842
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0345
  article-title: Consolidation assessment using multi expression programming
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105842
– volume: 384
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0200
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121322
– year: 2007
  ident: 10.1016/j.scitotenv.2021.146524_bb0205
– volume: 1
  start-page: 17
  year: 1992
  ident: 10.1016/j.scitotenv.2021.146524_bb0210
  article-title: Genetic programming: on the programming of computers by means of natural selection
  publication-title: The MIT Press
– volume: 14
  start-page: 285
  year: 2004
  ident: 10.1016/j.scitotenv.2021.146524_bb0300
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst.
  doi: 10.25088/ComplexSystems.14.4.285
– volume: 285
  start-page: 122806
  year: 2021
  ident: 10.1016/j.scitotenv.2021.146524_bb0415
  article-title: Numerical investigation of external sulfate attack and its effect on chloride binding and diffusion in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122806
– volume: 28
  start-page: 343
  year: 2017
  ident: 10.1016/j.scitotenv.2021.146524_bb0030
  article-title: Recycled waste foundry sand as a sustainable subgrade fill and pipe-bedding construction material: engineering and environmental evaluation
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2016.10.009
– volume: 30
  start-page: 1705
  year: 2010
  ident: 10.1016/j.scitotenv.2021.146524_bb0175
  article-title: Re-usage of waste foundry sand in high-strength concrete
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2010.02.018
– year: 2006
  ident: 10.1016/j.scitotenv.2021.146524_bb0120
– volume: 268
  start-page: 121082
  year: 2021
  ident: 10.1016/j.scitotenv.2021.146524_bb0220
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: modelling and performance evaluation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121082
– volume: 27
  start-page: 1231
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0045
  article-title: Semi analytical model for compressive arch action capacity of RC frame structures
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.06.011
– volume: 190
  start-page: 517
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb0150
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.097
– ident: 10.1016/j.scitotenv.2021.146524_bb0410
  doi: 10.1109/ICCIS.2012.207
– volume: 20
  start-page: 544
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb0225
  article-title: Influences of fine waste foundry sand from the automobile engine-part casting process and water-cementitious ratio on the properties of concrete: a new approach to use of a partial cement replacement material
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.09.004
– volume: 690
  start-page: 209
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0250
  article-title: PM2.5 generated during rapid failure of fiber-reinforced concrete induces TNF-alpha response in macrophages. Sci
  publication-title: Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.535
– volume: 74
  start-page: 225
  year: 2016
  ident: 10.1016/j.scitotenv.2021.146524_bb0245
  article-title: Performance and properties of mortar mixed with nano-CuO and rice husk ash
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2016.10.006
– year: 2006
  ident: 10.1016/j.scitotenv.2021.146524_bb0305
  article-title: Predicting the compressive strength and slump of high strength concrete using neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.01.054
– volume: 83
  start-page: 216
  year: 2015
  ident: 10.1016/j.scitotenv.2021.146524_bb0365
  article-title: Comparative investigation on the influence of spent foundry sand as partial replacement of fine aggregates on the properties of two grades of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.011
– volume: 35
  start-page: 508
  year: 2012
  ident: 10.1016/j.scitotenv.2021.146524_bb0060
  article-title: The effect of waste foundry sand (WFS) as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.078
– volume: 88
  start-page: 63
  year: 2015
  ident: 10.1016/j.scitotenv.2021.146524_bb0130
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 23
  start-page: 225
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0025
  article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.09.019
– volume: 243
  start-page: 118152
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0070
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118152
– volume: 23
  start-page: 248
  year: 2011
  ident: 10.1016/j.scitotenv.2021.146524_bb0135
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000154
– volume: 27
  start-page: 302
  issue: 3
  year: 2008
  ident: 10.1016/j.scitotenv.2021.146524_bb0335
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200710043
– volume: 45
  start-page: 187
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0240
  article-title: Study on waste foundry exhaust sand, WFES, as a partial substitute of fine aggregates in conventional concrete
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.11.017
– year: 2012
  ident: 10.1016/j.scitotenv.2021.146524_bb0015
– volume: 5
  start-page: 989
  year: 1994
  ident: 10.1016/j.scitotenv.2021.146524_bb0185
  article-title: Training feedforward networks with the Marquardt algorithm. IEEE Trans
  publication-title: Neural Netw.
  doi: 10.1109/72.329697
– volume: 103402
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0350
  article-title: Numerical study of carbonation and its effect on chloride binding in concrete
  publication-title: Cem. Concr. Compos.
– volume: 244
  year: 1986
  ident: 10.1016/j.scitotenv.2021.146524_bb0385
  article-title: Probability and statistics in civil engineering
  publication-title: Collins Prof. Tech. Books
– volume: 14
  start-page: 285
  year: 2003
  ident: 10.1016/j.scitotenv.2021.146524_bb0295
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst.
  doi: 10.25088/ComplexSystems.14.4.285
– volume: 55
  start-page: 885
  year: 2011
  ident: 10.1016/j.scitotenv.2021.146524_bb0355
  article-title: Utilization of waste foundry sand (WFS) in concrete manufacturing
  publication-title: Resources, Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.05.001
– volume: 20
  start-page: 269
  year: 2002
  ident: 10.1016/j.scitotenv.2021.146524_bb0170
  article-title: Beware of q2!
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/S1093-3263(01)00123-1
– volume: 354
  start-page: 161
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb0195
  article-title: A modified receptor model for source apportionment of heavy metal pollution in soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.05.006
– volume: 71
  start-page: 454
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb0230
  article-title: Engineering properties of concrete with partial utilization of used foundry sand
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.10.022
– start-page: 2004
  year: 2004
  ident: 10.1016/j.scitotenv.2021.146524_bb0080
– volume: 42
  start-page: 205
  year: 2013
  ident: 10.1016/j.scitotenv.2021.146524_bb0340
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.01.016
– volume: 26
  start-page: 189
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0035
  article-title: Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programing and artificial neural network
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/jcem.2020.11931
– volume: 207
  start-page: 176
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0235
  article-title: Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.09.063
– volume: 232
  start-page: 117266
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0160
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– volume: 1–13
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0405
  article-title: Shear loading detection of through bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 130
  start-page: 122
  year: 2017
  ident: 10.1016/j.scitotenv.2021.146524_bb0155
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– ident: 10.1016/j.scitotenv.2021.146524_bb0325
  doi: 10.1016/B978-081551373-5.50011-8
– volume: 258
  start-page: 119578
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0330
  article-title: Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119578
– year: 2011
  ident: 10.1016/j.scitotenv.2021.146524_bb0005
– volume: 27
  start-page: 97
  year: 2012
  ident: 10.1016/j.scitotenv.2021.146524_bb0020
  article-title: Recycling of foundry by-products in the ceramic industry: green and core sand in clay bricks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.08.022
– volume: 25
  start-page: 773
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0260
  article-title: Predictive model to the bond strength of frp-to-concrete under direct pullout using gene expression programming
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/jcem.2019.10798
– volume: 25
  start-page: 1916
  year: 2011
  ident: 10.1016/j.scitotenv.2021.146524_bb0360
  article-title: Strength, durability, and micro-structural properties of concrete made with used-foundry sand (UFS)
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.11.065
– volume: 93
  start-page: 178
  year: 1996
  ident: 10.1016/j.scitotenv.2021.146524_bb0390
  article-title: Strengths of recycled aggregate concrete made using field-demolished concrete as aggregate
  publication-title: Mater. J.
– volume: 258
  start-page: 120678
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0400
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120678
– volume: 123
  start-page: 184
  year: 2016
  ident: 10.1016/j.scitotenv.2021.146524_bb0180
  article-title: Micro and mechanical behaviour of treated used foundry sand concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.143
– volume: 75
  start-page: 22
  year: 2017
  ident: 10.1016/j.scitotenv.2021.146524_bb0100
  article-title: Properties of high volume glass powder concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2016.10.010
– ident: 10.1016/j.scitotenv.2021.146524_bb0165
  doi: 10.1533/9780857093103.339
– volume: 746
  start-page: 141182
  year: 2020
  ident: 10.1016/j.scitotenv.2021.146524_bb0215
  article-title: Recycling drinking water treatment sludge into eco-concrete blocks with CO2 curing: durability and leachability
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141182
– volume: 10
  start-page: 2901
  year: 2019
  ident: 10.1016/j.scitotenv.2021.146524_bb0110
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-00913-2
– volume: 54
  start-page: 1027
  year: 2010
  ident: 10.1016/j.scitotenv.2021.146524_bb0375
  article-title: Waste foundry sand and its leachate characteristics
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2010.04.006
– volume: 183
  start-page: 371
  year: 2018
  ident: 10.1016/j.scitotenv.2021.146524_bb8000
  article-title: Ionic transport features in concrete composites containing various shaped aggregates: a numerical study
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2017.03.088
SSID ssj0000781
Score 2.6602416
Snippet Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 146524
SubjectTerms artificial intelligence
compression strength
concrete
environment
Foundry sand
industry
Landfill disposal
model validation
modulus of elasticity
Multi-expression programming
Parametric analysis
prediction
sand
sand fraction
Solid waste
solid wastes
statistical analysis
Sustainable construction
tensile strength
waste disposal
Title Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming
URI https://dx.doi.org/10.1016/j.scitotenv.2021.146524
https://www.proquest.com/docview/2532244246
https://www.proquest.com/docview/2985414677
Volume 780
WOSCitedRecordID wos000653089300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DiQkhKAwMT4mIyFeqkxp4sTO3ibUiqGtIOikvkVOamvt2rRL09LxH_ht_CWuY-djY7DxwEvUunHc6Jz43lzf64PQW8aiyJaBazEmA4tQ27Y4IwwevIgHHeFwHstcbIL2-2w4DD43Gj-LWpj1lCYJ22yCxX-FGtoAbFU6-w9wlxeFBvgMoMMRYIfjnYD_WiuJgmGmptBSeYVSaSill-1vHLBVsQAlzBnDFxUvmAlVBJxjtlAR-lRttVrvtVQxdmX1VCFcAt5mBgPkoYY8K9ESG5NUW2Z9zQq7OKk4WUwmJjchm6tqzFq5XcnVC61F0D5ZncGV-Kjd4-mEj8qUH77Wcdra7-MlLxNGvvBVvt_kyXxmFMJzXn_X6tFHMhufn_G0HvRwOmXKXTFPMxqABXHMLto3tJnJnWqdKDM9g1nwdMn2b5ZDBzEm--B4wJ3Dbe-rcferHlf36u5_Cnunx8fhoDscvFtcWErGTC33G02XLbTtwJuY3UTbh0fd4cfKOaC5bm75X6-kHN449p8cpmuuQ-4PDR6jR-ZFBh9qAj5BDZG00H0tbXrZQjvdClI4zaC-bKGHOlCMdf3bU_Sjxldc4yueS2yYh3O-HuAaW3HFVlyxtd5HsRXnbMUFW3HOVnydrbjG1mfotNcdvP9gGY0QKwZfM7O4IDJmrkt55AnmBdyD93fhdDgXPontkR1HLo-joCMjbgc0pg4HD5Z7JBp5IyFddwc1k3kiniPMHJd4kjgilh5xbDcKfEY7kSBqLV_6_i7yCyDC2Gygr3RcpmGRKTkJSwRDhWCoEdxFdtlxofeQub3LQYF0aFxh7eKGwNfbO78puBGCsVArgDwR89UydDyw34Q4xP_LOQHziPKf6Is7XOclelA9n69QM0tX4jW6F6-z8TLdQ1t0yPbMM_ALLTr6yw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+utilization+of+foundry+waste%3A+Forecasting+mechanical+properties+of+foundry+sand+based+concrete+using+multi-expression+programming&rft.jtitle=The+Science+of+the+total+environment&rft.au=Iqbal%2C+Muhammad+Farjad&rft.au=Javed%2C+Muhammad+Faisal&rft.au=Rauf%2C+Momina&rft.au=Azim%2C+Iftikhar&rft.date=2021-08-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=780&rft.spage=146524&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.146524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon