A fast distributed approximation algorithm for minimum spanning trees
We present a distributed algorithm that constructs an O (log n )-approximate minimum spanning tree (MST) in any arbitrary network. This algorithm runs in time Õ( D ( G ) + L ( G , w )) where L ( G , w ) is a parameter called the local shortest path diameter and D ( G ) is the (unweighted) diameter o...
Uloženo v:
| Vydáno v: | Distributed computing Ročník 20; číslo 6; s. 391 - 402 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.04.2008
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-2770, 1432-0452 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a distributed algorithm that constructs an
O
(log
n
)-approximate minimum spanning tree (MST) in any arbitrary network. This algorithm runs in time Õ(
D
(
G
) +
L
(
G
,
w
)) where
L
(
G
,
w
) is a parameter called the
local shortest path diameter
and
D
(
G
) is the (unweighted) diameter of the graph. Our algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exist graphs which need Ω(
D
(
G
) +
L
(
G
,
w
)) time to compute an
H
-approximation to the MST for any
. Our result also shows that there can be a significant time gap between exact and approximate MST computation: there exists graphs in which the running time of our approximation algorithm is exponentially faster than the
time-optimal
distributed algorithm that computes the MST. Finally, we show that our algorithm can be used to find an approximate MST in wireless networks and in random weighted networks in almost optimal Õ(
D
(
G
)) time. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0178-2770 1432-0452 |
| DOI: | 10.1007/s00446-007-0047-8 |