DCDG-EA: Dynamic convergence–diversity guided evolutionary algorithm for many-objective optimization

•DCDG-EA algorithm uses reference vector decomposition to solve MaOPs.•CDOS selects an appropriate operator to generate offspring.•CDIS strategy simultaneously considers the convergence and diversity of solutions. Maintaining a good balance between the convergence and the diversity is particularly c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 118; s. 35 - 51
Hlavní autoři: Li, Zhiyong, Lin, Ke, Nouioua, Mourad, Jiang, Shilong, Gu, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 15.03.2019
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •DCDG-EA algorithm uses reference vector decomposition to solve MaOPs.•CDOS selects an appropriate operator to generate offspring.•CDIS strategy simultaneously considers the convergence and diversity of solutions. Maintaining a good balance between the convergence and the diversity is particularly crucial for the performance of the evolutionary algorithms (EAs). However, the traditional multi-objective evolutionary algorithms, which have shown their competitive performance with a variety of practical problems involving two or three objectives, face significant challenges in case of problems with more than three objectives, namely many-objective optimization problems (MaOPs). This paper proposes a dynamic convergence–diversity guided evolutionary algorithm, namely (DCDG-EA) for MaOPs by employing the decomposition technique. Besides, the objective space of MaOPs is divided into K subspaces by a set of uniformly distributed reference vectors. Each subspace has its own subpopulation and evolves in parallel with the other subspaces. In DCDG-EA, the balance between the convergence and the diversity is achieved through the convergence–diversity based operator selection (CDOS) strategy and convergence–diversity based individual selection (CDIS) strategy. In CDOS, for each operator of the set of operators, a selection probability is assigned which is related to its convergence and diversity capabilities. Based on the attributed selection probabilities, an appropriate operator is selected to generate the offsprings. Furthermore, CDIS is used which allows to greatly overcome the inefficiency of the Pareto dominance approaches. It updates each subpopulation by using two independent distance measures that represent the convergence and the control diversity, respectively. The experimental results on DTLZ and WFG benchmark problems with up to 15 objectives show that our algorithm is highly competitive comparing with the four state-of-the-art evolutionary algorithms in terms of convergence and diversity.
AbstractList Maintaining a good balance between the convergence and the diversity is particularly crucial for the performance of the evolutionary algorithms (EAs). However, the traditional multi-objective evolutionary algorithms, which have shown their competitive performance with a variety of practical problems involving two or three objectives, face significant challenges in case of problems with more than three objectives, namely many-objective optimization problems (MaOPs). This paper proposes a dynamic convergence–diversity guided evolutionary algorithm, namely (DCDG-EA) for MaOPs by employing the decomposition technique. Besides, the objective space of MaOPs is divided into K subspaces by a set of uniformly distributed reference vectors. Each subspace has its own subpopulation and evolves in parallel with the other subspaces. In DCDG-EA, the balance between the convergence and the diversity is achieved through the convergence–diversity based operator selection (CDOS) strategy and convergence–diversity based individual selection (CDIS) strategy. In CDOS, for each operator of the set of operators, a selection probability is assigned which is related to its convergence and diversity capabilities. Based on the attributed selection probabilities, an appropriate operator is selected to generate the offsprings. Furthermore, CDIS is used which allows to greatly overcome the inefficiency of the Pareto dominance approaches. It updates each subpopulation by using two independent distance measures that represent the convergence and the control diversity, respectively. The experimental results on DTLZ and WFG benchmark problems with up to 15 objectives show that our algorithm is highly competitive comparing with the four state-of-the-art evolutionary algorithms in terms of convergence and diversity.
•DCDG-EA algorithm uses reference vector decomposition to solve MaOPs.•CDOS selects an appropriate operator to generate offspring.•CDIS strategy simultaneously considers the convergence and diversity of solutions. Maintaining a good balance between the convergence and the diversity is particularly crucial for the performance of the evolutionary algorithms (EAs). However, the traditional multi-objective evolutionary algorithms, which have shown their competitive performance with a variety of practical problems involving two or three objectives, face significant challenges in case of problems with more than three objectives, namely many-objective optimization problems (MaOPs). This paper proposes a dynamic convergence–diversity guided evolutionary algorithm, namely (DCDG-EA) for MaOPs by employing the decomposition technique. Besides, the objective space of MaOPs is divided into K subspaces by a set of uniformly distributed reference vectors. Each subspace has its own subpopulation and evolves in parallel with the other subspaces. In DCDG-EA, the balance between the convergence and the diversity is achieved through the convergence–diversity based operator selection (CDOS) strategy and convergence–diversity based individual selection (CDIS) strategy. In CDOS, for each operator of the set of operators, a selection probability is assigned which is related to its convergence and diversity capabilities. Based on the attributed selection probabilities, an appropriate operator is selected to generate the offsprings. Furthermore, CDIS is used which allows to greatly overcome the inefficiency of the Pareto dominance approaches. It updates each subpopulation by using two independent distance measures that represent the convergence and the control diversity, respectively. The experimental results on DTLZ and WFG benchmark problems with up to 15 objectives show that our algorithm is highly competitive comparing with the four state-of-the-art evolutionary algorithms in terms of convergence and diversity.
Author Jiang, Shilong
Nouioua, Mourad
Gu, Yu
Lin, Ke
Li, Zhiyong
Author_xml – sequence: 1
  givenname: Zhiyong
  orcidid: 0000-0001-9720-5915
  surname: Li
  fullname: Li, Zhiyong
  email: zhiyong.li@hnu.edu.cn
  organization: Key Laboratory for Embedded and Network Computing of Hunan Province 410082, College of Computer Science and Electronic Engineering of Hunan University, Changsha 410082, China
– sequence: 2
  givenname: Ke
  surname: Lin
  fullname: Lin, Ke
  email: kelin_0808@hnu.edu.cn
  organization: Key Laboratory for Embedded and Network Computing of Hunan Province 410082, College of Computer Science and Electronic Engineering of Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Mourad
  surname: Nouioua
  fullname: Nouioua, Mourad
  email: mouradnouioua@hnu.edu.cn
  organization: Key Laboratory for Embedded and Network Computing of Hunan Province 410082, College of Computer Science and Electronic Engineering of Hunan University, Changsha 410082, China
– sequence: 4
  givenname: Shilong
  surname: Jiang
  fullname: Jiang, Shilong
  email: jiangshilong03@126.com
  organization: PKU-HKUST Shenzhen-HongKong Institution, Shenzhen 518057, China
– sequence: 5
  givenname: Yu
  surname: Gu
  fullname: Gu, Yu
  email: guyu@mail.buct.edu.cn
  organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
BookMark eNp9kMtO4zAUhi3UkSjMvACrSKyT8SWNY8QGteUiVZrNzNpy7JPiqImL7RaVFe_AG86T4FBWLFgdHen_zuU7Q5PBDYDQBcEFwaT63RUQnlVBMakLLApMZydoSmrO8ooLNkFTLGY8LwkvT9FZCB3GhGPMp6hdzBd3-fLmKlscBtVbnWk37MGvYdDw__XN2NQEGw_ZemcNmAz2brOL1g3KHzK1WTtv42Oftc5nvRoOuWs60DFRmdtG29sXNYZ_oh-t2gT49VnP0b_b5d_5fb76c_cwv1nlmtUk5nXbqJrzCremLoFqww01hEHFhGkUowQDMIJLU5W60ayhom5US7igomEKMDtHl8e5W--edhCi7NzOD2mlpGTGy6qkgqZUfUxp70Lw0Ept48ed0Su7kQTL0ars5GhVjlYlFjJZTSj9gm697ZOL76HrIwTp9b0FL4O2o2BjfZIljbPf4e_ubpZE
CitedBy_id crossref_primary_10_1007_s12065_021_00698_4
crossref_primary_10_1007_s00500_020_05457_8
crossref_primary_10_7717_peerj_cs_1710
crossref_primary_10_1155_2023_1572996
crossref_primary_10_1016_j_swevo_2022_101145
crossref_primary_10_1016_j_eswa_2021_115654
crossref_primary_10_1007_s10489_022_03883_9
Cites_doi 10.1109/4235.996017
10.1016/j.asoc.2015.06.036
10.1016/j.eswa.2015.07.043
10.1109/TEVC.2012.2185847
10.1029/2009WR008121
10.1162/EVCO_a_00009
10.1109/TSMCA.2004.824873
10.1109/TSMCB.2008.926329
10.1287/opre.26.1.127
10.1016/j.eswa.2013.09.012
10.1109/TEVC.2012.2227145
10.1007/11732242_71
10.1109/TEVC.2007.892759
10.1016/j.ejor.2006.08.008
10.1137/S1052623496307510
10.1109/TEVC.2013.2258025
10.1109/TEVC.2013.2281535
10.1109/4235.797969
10.1109/TEVC.2005.861417
10.1109/TEVC.2013.2281533
10.1109/TEVC.2016.2549267
10.1109/MCI.2017.2742868
10.1109/TEVC.2003.810761
10.1109/TEVC.2010.2077298
10.1109/TCYB.2016.2638902
10.1162/EVCO_a_00075
10.1023/A:1008202821328
10.1162/106365602760234108
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Mar 15, 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 15, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.09.025
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 51
ExternalDocumentID 10_1016_j_eswa_2018_09_025
S095741741830602X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c381t-8fba87760fd84e2cd7d2d13e639dba3210ee3104d64cbc3b298baf17929b3ae03
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451653400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Jul 13 05:35:47 EDT 2025
Sat Nov 29 06:14:29 EST 2025
Tue Nov 18 22:10:05 EST 2025
Fri Feb 23 02:24:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pareto optimality
Decomposition
Many-objective optimization
Evolutionary algorithm
Diversity
Convergence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-8fba87760fd84e2cd7d2d13e639dba3210ee3104d64cbc3b298baf17929b3ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9720-5915
PQID 2157464292
PQPubID 2045477
PageCount 17
ParticipantIDs proquest_journals_2157464292
crossref_citationtrail_10_1016_j_eswa_2018_09_025
crossref_primary_10_1016_j_eswa_2018_09_025
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_09_025
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Basseur, Zitzler (bib0002) 2006; 2
While, Bradstreet, Barone (bib0033) 2012; 16
Dhall, Liu (bib0010) 1978; 26
Kukkonen, Lampinen (bib0017) 2007
Nguyen, Li, Zhang, Truong (bib0025) 2014; 41
Huband, Hingston, Barone, While (bib0014) 2006; 10
Li, Wang, Yan, Li (bib0021) 2015; 42
Li, Tang, Li, Yao (bib0019) 2016; 20
Zou, Chen, Liu, Kang (bib0039) 2008; 38
Das, Dennis (bib0005) 2000; 8
Laumanns, Thiele, Deb, Zitzler (bib0018) 2002; 10
Deb, Agrawal (bib0006) 1994; 9
He, Yen, Zhang (bib0013) 2014; 18
Saxena, Duro, Tiwari, Deb (bib0028) 2013; 17
Zitzler, Knzli (bib0037) 2004
Thierens (bib0031) 2005
Sheskin (bib0029) 2004
Liu, Gong, Jing, Jin (bib0023) 2017; 47
Hadka, Reed (bib0012) 2013; 21
Zitzler, Thiele (bib0038) 1999; 3
Farina, Amato (bib0011) 2004; 34
Bosman, Thierens (bib0004) 2003; 7
Beume, Naujoks, Emmerich (bib0003) 2007; 181
Hughes (bib0015) 2004; Vol. 4
Storn, Price (bib0030) 1997; 114
Bader, Zitzler (bib0001) 2011; 19
Deb, Thiele, Laumanns, Zitzler (bib0009) 2001
Zhang, Li (bib0036) 2007; 11
Xiao, Wang, Bi (bib0034) 2014; 29
Sato, Aguirre, Tanaka (bib0027) 2011
Yang, Li, Liu, Zheng (bib0035) 2013; 17
Deb, Pratap, Agarwal, Meyarivan (bib0008) 2002; 6
Tian, Cheng, Zhang, Jin (bib0032) 2017; 12
Li, Nguyen, Chen, Truong (bib0020) 2015; 35
LOpez, Coello, Oyama, Fujii (bib0024) 2013
Pez Jaimes, Coello Coello, Chakraborty (bib0026) 2008
Kasprzyk, Reed, Kirsch, Characklis (bib0016) 2009; 45
Deb, Jain (bib0007) 2014; 18
Liu, Gu, Zhang (bib0022) 2014; 18
Saxena (10.1016/j.eswa.2018.09.025_bib0028) 2013; 17
Dhall (10.1016/j.eswa.2018.09.025_bib0010) 1978; 26
Bosman (10.1016/j.eswa.2018.09.025_bib0004) 2003; 7
Li (10.1016/j.eswa.2018.09.025_bib0019) 2016; 20
LOpez (10.1016/j.eswa.2018.09.025_bib0024) 2013
Pez Jaimes (10.1016/j.eswa.2018.09.025_bib0026) 2008
Tian (10.1016/j.eswa.2018.09.025_bib0032) 2017; 12
While (10.1016/j.eswa.2018.09.025_bib0033) 2012; 16
Zitzler (10.1016/j.eswa.2018.09.025_bib0038) 1999; 3
Zhang (10.1016/j.eswa.2018.09.025_bib0036) 2007; 11
Nguyen (10.1016/j.eswa.2018.09.025_bib0025) 2014; 41
Zitzler (10.1016/j.eswa.2018.09.025_bib0037) 2004
Beume (10.1016/j.eswa.2018.09.025_bib0003) 2007; 181
Storn (10.1016/j.eswa.2018.09.025_bib0030) 1997; 114
Yang (10.1016/j.eswa.2018.09.025_bib0035) 2013; 17
Hadka (10.1016/j.eswa.2018.09.025_bib0012) 2013; 21
Kasprzyk (10.1016/j.eswa.2018.09.025_bib0016) 2009; 45
Basseur (10.1016/j.eswa.2018.09.025_bib0002) 2006; 2
Li (10.1016/j.eswa.2018.09.025_bib0020) 2015; 35
Das (10.1016/j.eswa.2018.09.025_bib0005) 2000; 8
He (10.1016/j.eswa.2018.09.025_bib0013) 2014; 18
Sato (10.1016/j.eswa.2018.09.025_bib0027) 2011
Deb (10.1016/j.eswa.2018.09.025_bib0009) 2001
Sheskin (10.1016/j.eswa.2018.09.025_bib0029) 2004
Laumanns (10.1016/j.eswa.2018.09.025_bib0018) 2002; 10
Thierens (10.1016/j.eswa.2018.09.025_bib0031) 2005
Li (10.1016/j.eswa.2018.09.025_bib0021) 2015; 42
Xiao (10.1016/j.eswa.2018.09.025_bib0034) 2014; 29
Huband (10.1016/j.eswa.2018.09.025_bib0014) 2006; 10
Bader (10.1016/j.eswa.2018.09.025_bib0001) 2011; 19
Farina (10.1016/j.eswa.2018.09.025_bib0011) 2004; 34
Hughes (10.1016/j.eswa.2018.09.025_bib0015) 2004; Vol. 4
Liu (10.1016/j.eswa.2018.09.025_bib0023) 2017; 47
Zou (10.1016/j.eswa.2018.09.025_bib0039) 2008; 38
Deb (10.1016/j.eswa.2018.09.025_bib0006) 1994; 9
Kukkonen (10.1016/j.eswa.2018.09.025_bib0017) 2007
Deb (10.1016/j.eswa.2018.09.025_bib0008) 2002; 6
Deb (10.1016/j.eswa.2018.09.025_bib0007) 2014; 18
Liu (10.1016/j.eswa.2018.09.025_bib0022) 2014; 18
References_xml – year: 2004
  ident: bib0037
  article-title: Indicator-based selection in multiobjective search
– volume: 45
  year: 2009
  ident: bib0016
  article-title: Managing population and drought risks using many-objective water portfolio planning under uncertainty
  publication-title: Water Resources Research
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: bib0003
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0008
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 2
  start-page: 727
  year: 2006
  end-page: 739
  ident: bib0002
  article-title: A preliminary study on handling uncertainty in indicator-based multiobjective optimization
  publication-title: Lecture Notes in Computer Science
– volume: 18
  start-page: 269
  year: 2014
  end-page: 285
  ident: bib0013
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: bib0023
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Transactions on Cybernetics
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bib0035
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 10
  start-page: 263
  year: 2002
  ident: bib0018
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evolutionary Computation
– volume: 17
  start-page: 77
  year: 2013
  end-page: 99
  ident: bib0028
  article-title: Objective reduction in many-objective optimization: Linear and nonlinear algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0036
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 42
  start-page: 8881
  year: 2015
  end-page: 8895
  ident: bib0021
  article-title: PSABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Systems with Applications
– start-page: 673
  year: 2008
  end-page: 680
  ident: bib0026
  article-title: Objective reduction using a feature selection technique
  publication-title: Proceedings of the 2008 genetic and evolutionary computation conference, GECCO 2008
– volume: 38
  start-page: 1402
  year: 2008
  end-page: 1412
  ident: bib0039
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Transactions on Systems Man & Cybernetics Part B: Cybernetics
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: bib0014
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 9
  start-page: 115
  year: 1994
  end-page: 148
  ident: bib0006
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 41
  start-page: 2134
  year: 2014
  end-page: 2143
  ident: bib0025
  article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization
  publication-title: Expert Systems with Applications
– volume: 35
  start-page: 525
  year: 2015
  end-page: 540
  ident: bib0020
  article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization for multi-object problems
  publication-title: Applied Soft Computing
– volume: 29
  start-page: 182
  year: 2014
  end-page: 197
  ident: bib0034
  article-title: Multi-objective evolutionary algorithm based on improved k-dominated sorting
  publication-title: Control and Decision
– volume: 21
  start-page: 231
  year: 2013
  end-page: 259
  ident: bib0012
  article-title: Borg: An auto-adaptive many-objective evolutionary computing framework
  publication-title: Evolutionary Computation
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0007
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2013
  ident: bib0024
  article-title: An alternative preference relation to deal with many-objective optimization problems
– start-page: 105
  year: 2001
  end-page: 145
  ident: bib0009
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization
– start-page: 3983
  year: 2007
  end-page: 3990
  ident: bib0017
  article-title: Ranking-dominance and many-objective optimization
  publication-title: Proceedings of the IEEE congress on evolutionary computation, CEC 2007
– volume: 34
  start-page: 315
  year: 2004
  end-page: 326
  ident: bib0011
  article-title: A fuzzy definition of optimality for many-criteria optimization problems
  publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A Systems and Humans
– volume: 18
  start-page: 450
  year: 2014
  end-page: 455
  ident: bib0022
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1539
  year: 2005
  end-page: 1546
  ident: bib0031
  article-title: An adaptive pursuit strategy for allocating operator probabilities
  publication-title: Proceedings of the 2005 genetic and evolutionary computation conference, GECCO 2005
– volume: 16
  start-page: 86
  year: 2012
  end-page: 95
  ident: bib0033
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 631
  year: 2000
  end-page: 657
  ident: bib0005
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: Siam Journal on Optimization
– volume: 26
  start-page: 127
  year: 1978
  end-page: 140
  ident: bib0010
  article-title: On a real-time scheduling problem
  publication-title: Operations Research
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: bib0032
  article-title: PlatEMO: A Matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
– start-page: 91
  year: 2011
  end-page: 105
  ident: bib0027
  article-title: Genetic diversity and effective crossover in evolutionary many-objective optimization
  publication-title: Proceedings of the 2011 international conference on learning and intelligent optimization
– volume: 114
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0030
  article-title: De-a simple and efficient heuristic for global optimization over continuous space
  publication-title: Journal of Global Optimization
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib0004
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0038
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: bib0001
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
– volume: Vol. 4
  start-page: 2678
  year: 2004
  end-page: 2684
  ident: bib0015
  article-title: Multiple single objective Pareto sampling
  publication-title: The 2003 Congress on Evolutionary Computation, CEC ’03
– volume: 20
  start-page: 924
  year: 2016
  end-page: 938
  ident: bib0019
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2004
  ident: bib0029
  article-title: Handbook of parametric and nonparametric statistical procedures
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2018.09.025_bib0008
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 35
  start-page: 525
  issue: C
  year: 2015
  ident: 10.1016/j.eswa.2018.09.025_bib0020
  article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization for multi-object problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.06.036
– volume: 42
  start-page: 8881
  issue: 22
  year: 2015
  ident: 10.1016/j.eswa.2018.09.025_bib0021
  article-title: PSABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.07.043
– volume: 17
  start-page: 77
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.09.025_bib0028
  article-title: Objective reduction in many-objective optimization: Linear and nonlinear algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2185847
– volume: Vol. 4
  start-page: 2678
  year: 2004
  ident: 10.1016/j.eswa.2018.09.025_bib0015
  article-title: Multiple single objective Pareto sampling
– volume: 45
  issue: 12
  year: 2009
  ident: 10.1016/j.eswa.2018.09.025_bib0016
  article-title: Managing population and drought risks using many-objective water portfolio planning under uncertainty
  publication-title: Water Resources Research
  doi: 10.1029/2009WR008121
– volume: 19
  start-page: 45
  issue: 19
  year: 2011
  ident: 10.1016/j.eswa.2018.09.025_bib0001
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00009
– volume: 34
  start-page: 315
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2018.09.025_bib0011
  article-title: A fuzzy definition of optimality for many-criteria optimization problems
  publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A Systems and Humans
  doi: 10.1109/TSMCA.2004.824873
– volume: 38
  start-page: 1402
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2018.09.025_bib0039
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Transactions on Systems Man & Cybernetics Part B: Cybernetics
  doi: 10.1109/TSMCB.2008.926329
– volume: 26
  start-page: 127
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2018.09.025_bib0010
  article-title: On a real-time scheduling problem
  publication-title: Operations Research
  doi: 10.1287/opre.26.1.127
– volume: 41
  start-page: 2134
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2018.09.025_bib0025
  article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.012
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2018.09.025_bib0035
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2227145
– start-page: 3983
  year: 2007
  ident: 10.1016/j.eswa.2018.09.025_bib0017
  article-title: Ranking-dominance and many-objective optimization
– volume: 2
  start-page: 727
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2018.09.025_bib0002
  article-title: A preliminary study on handling uncertainty in indicator-based multiobjective optimization
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11732242_71
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2018.09.025_bib0036
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2018.09.025_bib0003
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– volume: 8
  start-page: 631
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2018.09.025_bib0005
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: Siam Journal on Optimization
  doi: 10.1137/S1052623496307510
– volume: 18
  start-page: 269
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2018.09.025_bib0013
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2258025
– volume: 29
  start-page: 182
  issue: 12
  year: 2014
  ident: 10.1016/j.eswa.2018.09.025_bib0034
  article-title: Multi-objective evolutionary algorithm based on improved k-dominated sorting
  publication-title: Control and Decision
– start-page: 91
  year: 2011
  ident: 10.1016/j.eswa.2018.09.025_bib0027
  article-title: Genetic diversity and effective crossover in evolutionary many-objective optimization
– start-page: 1539
  year: 2005
  ident: 10.1016/j.eswa.2018.09.025_bib0031
  article-title: An adaptive pursuit strategy for allocating operator probabilities
– year: 2004
  ident: 10.1016/j.eswa.2018.09.025_bib0037
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2018.09.025_bib0007
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2018.09.025_bib0038
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2018.09.025_bib0014
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– volume: 18
  start-page: 450
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2018.09.025_bib0022
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281533
– volume: 20
  start-page: 924
  issue: 6
  year: 2016
  ident: 10.1016/j.eswa.2018.09.025_bib0019
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2549267
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2018.09.025_bib0032
  article-title: PlatEMO: A Matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– year: 2013
  ident: 10.1016/j.eswa.2018.09.025_bib0024
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2018.09.025_bib0004
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810761
– volume: 16
  start-page: 86
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2018.09.025_bib0033
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2077298
– start-page: 673
  year: 2008
  ident: 10.1016/j.eswa.2018.09.025_bib0026
  article-title: Objective reduction using a feature selection technique
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.eswa.2018.09.025_bib0023
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2638902
– volume: 21
  start-page: 231
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2018.09.025_bib0012
  article-title: Borg: An auto-adaptive many-objective evolutionary computing framework
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00075
– start-page: 105
  year: 2001
  ident: 10.1016/j.eswa.2018.09.025_bib0009
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization
– year: 2004
  ident: 10.1016/j.eswa.2018.09.025_bib0029
– volume: 114
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2018.09.025_bib0030
  article-title: De-a simple and efficient heuristic for global optimization over continuous space
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 9
  start-page: 115
  issue: 3
  year: 1994
  ident: 10.1016/j.eswa.2018.09.025_bib0006
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2018.09.025_bib0018
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602760234108
SSID ssj0017007
Score 2.3266835
Snippet •DCDG-EA algorithm uses reference vector decomposition to solve MaOPs.•CDOS selects an appropriate operator to generate offspring.•CDIS strategy simultaneously...
Maintaining a good balance between the convergence and the diversity is particularly crucial for the performance of the evolutionary algorithms (EAs). However,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Convergence
Decomposition
Distance measurement
Diversity
Evolutionary algorithm
Evolutionary algorithms
Many-objective optimization
Multiple objective analysis
Optimization
Pareto optimality
State of the art
Subspaces
Title DCDG-EA: Dynamic convergence–diversity guided evolutionary algorithm for many-objective optimization
URI https://dx.doi.org/10.1016/j.eswa.2018.09.025
https://www.proquest.com/docview/2157464292
Volume 118
WOSCitedRecordID wos000451653400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCyoELb0ShIB8Ql8rVvhJ7uVVNykOlcEhRxMXy2t52o2Q35EW58R-48-P4JYzXXpMUEcGByyraZL0bz5fxl_F8Mwg9k7FZtWREsk4gSZIkgogwUESITh6oPNCdSNTNJujpKRsO0_et1vdGC7Ma07Jkl5fp9L-aGs6BsY109h_M7QeFE_AajA5HMDsc_8rwvaPeS9Kv4-Y9227eppbXKkvdJDfEyidknC8LBbRTr9xjmTw6MT6vZsXiYlKnIU7AY5AqG1nnuF-Bm5k4_eZGZN-UTV644tCNbG5tg9wn_9QZBB8vii-VWzfrk6XVCfnwdLUsqmXNbd_C9xbKJ_sUTYzbtGFwI7jAhdFKxcRKN200zStqPmxEJSlJQtu450Bbn8xoTLrUNlL0Ttt5bet2bcWT31YDG5gYHej5Z1NiKmR1SVsrtN4svX36jh-fnZzwQX84eD79RExXMrN771q0XEM7Ee2krI12Dl_3h2_8PhUNrCC_eWwny7IZhFdv-yfqc4UE1MxmcBvddH9J8KGF0h3U0uVddKtp94Gd97-HcoesF9jhCq_h6sfXbx5R2CIKryMKe0RhQBTeRBReR9R9dHbcHxy9Iq5NB5FA9xaE5ZlglHaDXLFER1JRFakw1sB9VSaMRkxr8AiJ6iYyk3EWpSwTOSwEUZrFQgfxA9Quq1I_RBgWHwkjSCYimgCZTRMRai2ZpGmguyrdRWEzg1y6GvamlcqYN8mKI25mnZtZ50HKYdZ30b6_ZmoruGz9dKcxDHcc1HJLDqDaet1eY0XunMGcA52mSdc0hHu0_e3H6MavX8geai9mS_0EXZerRTGfPXWg-wnmgLRH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCDG-EA%3A+Dynamic+convergence%E2%80%93diversity+guided+evolutionary+algorithm+for+many-objective+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Zhiyong&rft.au=Lin%2C+Ke&rft.au=Nouioua%2C+Mourad&rft.au=Jiang%2C+Shilong&rft.date=2019-03-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=118&rft.spage=35&rft_id=info:doi/10.1016%2Fj.eswa.2018.09.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon