Cancer stem cells (CSCs): metabolic strategies for their identification and eradication

Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor hete...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal Vol. 475; no. 9; p. 1611
Main Authors: De Francesco, Ernestina M, Sotgia, Federica, Lisanti, Michael P
Format: Journal Article
Language:English
Published: England 15.05.2018
Subjects:
ISSN:1470-8728, 1470-8728
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
AbstractList Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Author Lisanti, Michael P
Sotgia, Federica
De Francesco, Ernestina M
Author_xml – sequence: 1
  givenname: Ernestina M
  surname: De Francesco
  fullname: De Francesco, Ernestina M
  organization: The Paterson Institute, University of Manchester, Withington, Manchester, U.K
– sequence: 2
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, U.K
– sequence: 3
  givenname: Michael P
  surname: Lisanti
  fullname: Lisanti, Michael P
  email: michaelp.lisanti@gmail.com
  organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, U.K. michaelp.lisanti@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29743249$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLxDAYDLLiPvTkXXJcD9W8tk28afHJggcVjyVNvmikTdckPfjvXXEFTzPDDAMzczQJQwCEjik5o0Sw86v6gRFaEVqKPTSjoiKFrJic_ONTNE_pgxAqiCAHaMpUJTgTaoZeax0MRJwy9NhA1yW8rJ_qdHqBe8i6HTpvtmbUGd48JOyGiPM7-Ii9hZC980ZnPwSsg8UQtd3pQ7TvdJfgaIcL9HJz_VzfFevH2_v6cl0YLmkupClXVkhJqGmVcaUpJXdgDQemXcsqTpRqjWsVA8lbB4LS0lnqHBOVU1ayBVr-9m7i8DlCyk3v088OHWAYU8MIr8hKrSTfRk920bHtwTab6Hsdv5q_M9g34slilw
CitedBy_id crossref_primary_10_3390_biology9040079
crossref_primary_10_3390_biomedicines8090371
crossref_primary_10_1016_j_critrevonc_2024_104313
crossref_primary_10_1002_jcp_29150
crossref_primary_10_1186_s40164_024_00482_x
crossref_primary_10_1155_2021_6660358
crossref_primary_10_3389_fcell_2020_608412
crossref_primary_10_3389_fonc_2020_01692
crossref_primary_10_1016_j_rceng_2022_05_006
crossref_primary_10_3389_fonc_2020_01334
crossref_primary_10_3389_fonc_2021_698394
crossref_primary_10_3390_cancers13092168
crossref_primary_10_3390_ijms222111669
crossref_primary_10_3390_metabo14040229
crossref_primary_10_1038_s41420_018_0126_6
crossref_primary_10_3389_fonc_2021_756888
crossref_primary_10_1158_0008_5472_CAN_20_3044
crossref_primary_10_2217_nnm_2021_0281
crossref_primary_10_1038_s41419_024_07103_9
crossref_primary_10_32725_jab_2021_019
crossref_primary_10_3390_cancers12102915
crossref_primary_10_1016_j_omto_2021_04_001
crossref_primary_10_1002_jcb_27703
crossref_primary_10_1016_j_jbior_2019_02_001
crossref_primary_10_1007_s00432_022_04303_8
crossref_primary_10_3389_fcell_2024_1487685
crossref_primary_10_3390_cells10071782
crossref_primary_10_1177_1535370220909309
crossref_primary_10_3390_ijms21155276
crossref_primary_10_3390_cancers12092411
crossref_primary_10_1007_s10637_019_00847_8
crossref_primary_10_1016_j_biochi_2020_09_014
crossref_primary_10_1186_s40001_025_02572_w
crossref_primary_10_3390_cancers14092238
crossref_primary_10_3390_cells14100717
crossref_primary_10_1002_cam4_5833
crossref_primary_10_1038_s41419_022_04551_z
crossref_primary_10_1016_j_semcancer_2020_11_017
crossref_primary_10_3390_cells12242779
crossref_primary_10_1080_14728222_2020_1751819
crossref_primary_10_1186_s12929_019_0593_y
crossref_primary_10_1016_j_diff_2019_04_001
crossref_primary_10_15252_embr_202050635
crossref_primary_10_1016_j_jconrel_2023_09_029
crossref_primary_10_1016_j_semcancer_2019_06_019
crossref_primary_10_1080_17435889_2025_2502321
crossref_primary_10_1016_j_rce_2022_05_006
crossref_primary_10_1186_s12964_024_01957_4
crossref_primary_10_2174_0929867328666211005124015
crossref_primary_10_1016_j_stem_2021_02_013
crossref_primary_10_3390_ijms20112649
crossref_primary_10_1080_21655979_2021_1967076
crossref_primary_10_1080_15384101_2018_1515551
crossref_primary_10_1016_j_lfs_2025_123560
crossref_primary_10_1016_j_prp_2024_155227
crossref_primary_10_1186_s12964_023_01129_w
crossref_primary_10_1016_j_gene_2020_144381
crossref_primary_10_3390_biomedicines9091245
crossref_primary_10_1007_s10561_019_09780_9
crossref_primary_10_3390_cancers13143596
crossref_primary_10_1016_j_freeradbiomed_2021_09_024
crossref_primary_10_1016_j_bbadis_2024_167164
crossref_primary_10_1142_S0192415X23500593
crossref_primary_10_1155_2019_9618065
crossref_primary_10_1016_j_semcancer_2018_10_002
crossref_primary_10_1016_j_canlet_2025_217966
crossref_primary_10_1016_j_critrevonc_2020_103178
crossref_primary_10_2147_SCCAA_S417842
crossref_primary_10_3390_ijms22179507
crossref_primary_10_1093_stcltm_szab029
crossref_primary_10_1038_s41467_020_15219_7
crossref_primary_10_3390_cancers15235657
crossref_primary_10_1016_j_bbamcr_2021_119076
crossref_primary_10_1038_s41418_021_00788_x
crossref_primary_10_15252_embr_202154006
crossref_primary_10_3390_ijms22073315
crossref_primary_10_3389_fcell_2025_1499936
crossref_primary_10_3390_biomedicines10010028
crossref_primary_10_1038_s41467_019_13700_6
crossref_primary_10_1002_cbin_70071
crossref_primary_10_1016_j_critrevonc_2021_103545
crossref_primary_10_3390_cancers14040976
crossref_primary_10_3390_ijms22031355
crossref_primary_10_1016_j_heliyon_2020_e04820
crossref_primary_10_1016_j_gendis_2025_101678
crossref_primary_10_1038_s41416_022_01867_7
crossref_primary_10_1158_2159_8290_CD_20_0844
crossref_primary_10_2174_0115680266275014240110071351
crossref_primary_10_1242_dev_182170
crossref_primary_10_3389_fonc_2022_1118675
crossref_primary_10_3389_fonc_2019_01003
crossref_primary_10_1103_dm8r_hzmk
crossref_primary_10_3389_fonc_2020_01010
crossref_primary_10_1016_j_bcp_2023_115531
crossref_primary_10_1016_j_lfs_2021_119667
crossref_primary_10_3390_cancers15041192
crossref_primary_10_1016_j_bbcan_2023_188899
crossref_primary_10_1016_j_gene_2021_145666
crossref_primary_10_1186_s12964_023_01441_5
crossref_primary_10_3389_fonc_2020_01776
crossref_primary_10_3389_fonc_2021_678343
crossref_primary_10_3390_cells14070511
crossref_primary_10_1158_1078_0432_CCR_21_2984
crossref_primary_10_3390_cells9071693
crossref_primary_10_3389_fonc_2019_00315
crossref_primary_10_1158_1541_7786_MCR_21_0098
crossref_primary_10_3389_fonc_2020_01528
crossref_primary_10_1016_j_phrs_2023_106740
crossref_primary_10_1371_journal_pone_0289024
crossref_primary_10_1038_s41598_019_54266_z
crossref_primary_10_1186_s12943_023_01877_w
crossref_primary_10_3390_pharmaceutics13010103
crossref_primary_10_3390_cancers13164178
crossref_primary_10_1073_pnas_2216310120
crossref_primary_10_1093_glycob_cwad051
crossref_primary_10_3390_cancers12123716
crossref_primary_10_1021_jacs_0c02134
crossref_primary_10_3390_ijms241813928
crossref_primary_10_3390_cancers12061427
crossref_primary_10_3390_ijms221910790
crossref_primary_10_1016_j_ebiom_2024_105078
crossref_primary_10_1016_j_lfs_2023_122065
crossref_primary_10_1016_j_tips_2023_11_006
crossref_primary_10_1155_2019_5189232
crossref_primary_10_3390_cells9061529
crossref_primary_10_1242_jcs_230755
crossref_primary_10_3389_fphar_2019_00203
crossref_primary_10_1038_s41571_025_01059_1
crossref_primary_10_1016_j_semcdb_2019_05_025
crossref_primary_10_1515_med_2025_1247
crossref_primary_10_4081_oncol_2020_452
crossref_primary_10_1016_j_tiv_2022_105417
crossref_primary_10_1016_j_mcp_2023_101913
crossref_primary_10_1186_s12967_023_04498_5
crossref_primary_10_3389_fonc_2021_740720
crossref_primary_10_3390_medicina61091577
crossref_primary_10_1089_ars_2019_7898
crossref_primary_10_3390_ijms222111492
crossref_primary_10_1038_s41416_021_01636_y
crossref_primary_10_3390_biomedicines12071576
crossref_primary_10_3390_cancers13194814
crossref_primary_10_3390_ijms24021786
crossref_primary_10_1002_jcp_27425
crossref_primary_10_1186_s12943_025_02265_2
crossref_primary_10_3389_fonc_2020_01511
crossref_primary_10_3389_fonc_2019_00615
crossref_primary_10_1089_ars_2020_8024
crossref_primary_10_1039_C9QM00658C
crossref_primary_10_1158_1541_7786_MCR_22_0134
crossref_primary_10_1007_s12015_019_09942_y
crossref_primary_10_1007_s11888_018_0420_y
crossref_primary_10_1016_j_yexcr_2022_113271
crossref_primary_10_4252_wjsc_v12_i6_448
crossref_primary_10_1186_s12935_022_02824_3
crossref_primary_10_1186_s13046_018_0975_0
crossref_primary_10_3390_cancers12103067
crossref_primary_10_3390_cells12182237
crossref_primary_10_3389_fphar_2022_768556
crossref_primary_10_3390_cancers17132100
crossref_primary_10_1016_j_bbadis_2023_166897
crossref_primary_10_1038_s41418_024_01392_5
crossref_primary_10_3390_cancers13122996
crossref_primary_10_3389_fonc_2018_00452
crossref_primary_10_1016_j_intimp_2020_106535
crossref_primary_10_1002_mog2_66
crossref_primary_10_1016_j_phrs_2018_11_020
crossref_primary_10_1016_j_compbiomed_2021_105177
crossref_primary_10_1186_s13046_020_01667_y
crossref_primary_10_1016_j_pdpdt_2021_102585
crossref_primary_10_3390_cancers12102780
crossref_primary_10_1016_j_yexcr_2024_114032
crossref_primary_10_1038_s41598_021_01878_z
ContentType Journal Article
Copyright 2018 The Author(s).
Copyright_xml – notice: 2018 The Author(s).
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BCJ20170164
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 29743249
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
53G
5GY
5RE
6J9
79B
A8Z
AAHRG
ABJNI
ABPPZ
ABRJW
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
HH6
HZ~
K-O
L7B
ML-
MV1
N9A
NPM
NTEUP
O9-
OK1
P2P
RHI
RNS
RPM
RPO
SV3
TR2
TWZ
WH7
XSW
Y6R
YNY
~02
~KM
7X8
ESTFP
ID FETCH-LOGICAL-c381t-8c65d48801cb9cf6c683fedc3e2afb273099bcfb92e83bfe4116fd1ff247f9d82
IEDL.DBID 7X8
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432444700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Wed Oct 01 14:49:07 EDT 2025
Mon Jul 21 06:05:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords mitochondria
metabolism
cancer stem cells
Language English
License 2018 The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-8c65d48801cb9cf6c683fedc3e2afb273099bcfb92e83bfe4116fd1ff247f9d82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://portlandpress.com/biochemj/article-pdf/475/9/1611/694671/bcj-2017-0164c.pdf
PMID 29743249
PQID 2037059583
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2037059583
pubmed_primary_29743249
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2018
SSID ssj0014040
Score 2.635464
SecondaryResourceType review_article
Snippet Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1611
SubjectTerms Humans
Metabolic Networks and Pathways
Neoplasms - metabolism
Neoplasms - pathology
Neoplasms - therapy
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Oxidative Phosphorylation
Tumor Microenvironment
Title Cancer stem cells (CSCs): metabolic strategies for their identification and eradication
URI https://www.ncbi.nlm.nih.gov/pubmed/29743249
https://www.proquest.com/docview/2037059583
Volume 475
WOSCitedRecordID wos000432444700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UCnpxaV3qxggiegg2k0ky40VqsIhoKajYW5kVCjatTRT8977JQk-C4CWQQyAzb_vejtCZjCIZUE08Yhk4KNII0IOGerEBZ0RqsECyGJn_GPf7bDjkgyrgllVllbVOLBS1nioXIwcnPYgBCoQsuJl9eG5rlMuuVis0llEjACjjuDoeLrIItFM2RNK4A1JPWNWfB3x6dZs8EDc6xnejBn7DloWN6W3-9--20EaFLnG3ZIdttGTSJmp1U_CsJ9_4HBf1nkUgvYnWknrXWwu9JY74c-ymOmMXy8_wRfKcZJfXeGJy4JP3scJZXo-VwIB0cZFiwGNdlRsVFMYi1djMha7ed9Br7-4lufeqlQueAtOde0xFoXYy7SvJlY1UxAJrtAoMEVYC1AFAKZWVnBgWSGuo70dW-9YSGluuGdlFK-k0NfsIi9Ba6nPFRBxQSS3ngqiQxtw19xpB2ui0vsoRnNadTaRm-pmNFpfZRnslPUazcvbGiID_AxiQH_zh60O0DjRmLtfvh0eoYUGgzTFaVV_5OJufFLwCz_7g6Qdbzcm8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+stem+cells+%28CSCs%29%3A+metabolic+strategies+for+their+identification+and+eradication&rft.jtitle=Biochemical+journal&rft.au=De+Francesco%2C+Ernestina+M&rft.au=Sotgia%2C+Federica&rft.au=Lisanti%2C+Michael+P&rft.date=2018-05-15&rft.eissn=1470-8728&rft.volume=475&rft.issue=9&rft.spage=1611&rft_id=info:doi/10.1042%2FBCJ20170164&rft_id=info%3Apmid%2F29743249&rft_id=info%3Apmid%2F29743249&rft.externalDocID=29743249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon