Cancer stem cells (CSCs): metabolic strategies for their identification and eradication
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor hete...
Saved in:
| Published in: | Biochemical journal Vol. 475; no. 9; p. 1611 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
15.05.2018
|
| Subjects: | |
| ISSN: | 1470-8728, 1470-8728 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer. |
|---|---|
| AbstractList | Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer. Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer. |
| Author | Lisanti, Michael P Sotgia, Federica De Francesco, Ernestina M |
| Author_xml | – sequence: 1 givenname: Ernestina M surname: De Francesco fullname: De Francesco, Ernestina M organization: The Paterson Institute, University of Manchester, Withington, Manchester, U.K – sequence: 2 givenname: Federica surname: Sotgia fullname: Sotgia, Federica organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, U.K – sequence: 3 givenname: Michael P surname: Lisanti fullname: Lisanti, Michael P email: michaelp.lisanti@gmail.com organization: Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, U.K. michaelp.lisanti@gmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29743249$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUEtLxDAYDLLiPvTkXXJcD9W8tk28afHJggcVjyVNvmikTdckPfjvXXEFTzPDDAMzczQJQwCEjik5o0Sw86v6gRFaEVqKPTSjoiKFrJic_ONTNE_pgxAqiCAHaMpUJTgTaoZeax0MRJwy9NhA1yW8rJ_qdHqBe8i6HTpvtmbUGd48JOyGiPM7-Ii9hZC980ZnPwSsg8UQtd3pQ7TvdJfgaIcL9HJz_VzfFevH2_v6cl0YLmkupClXVkhJqGmVcaUpJXdgDQemXcsqTpRqjWsVA8lbB4LS0lnqHBOVU1ayBVr-9m7i8DlCyk3v088OHWAYU8MIr8hKrSTfRk920bHtwTab6Hsdv5q_M9g34slilw |
| CitedBy_id | crossref_primary_10_3390_biology9040079 crossref_primary_10_3390_biomedicines8090371 crossref_primary_10_1016_j_critrevonc_2024_104313 crossref_primary_10_1002_jcp_29150 crossref_primary_10_1186_s40164_024_00482_x crossref_primary_10_1155_2021_6660358 crossref_primary_10_3389_fcell_2020_608412 crossref_primary_10_3389_fonc_2020_01692 crossref_primary_10_1016_j_rceng_2022_05_006 crossref_primary_10_3389_fonc_2020_01334 crossref_primary_10_3389_fonc_2021_698394 crossref_primary_10_3390_cancers13092168 crossref_primary_10_3390_ijms222111669 crossref_primary_10_3390_metabo14040229 crossref_primary_10_1038_s41420_018_0126_6 crossref_primary_10_3389_fonc_2021_756888 crossref_primary_10_1158_0008_5472_CAN_20_3044 crossref_primary_10_2217_nnm_2021_0281 crossref_primary_10_1038_s41419_024_07103_9 crossref_primary_10_32725_jab_2021_019 crossref_primary_10_3390_cancers12102915 crossref_primary_10_1016_j_omto_2021_04_001 crossref_primary_10_1002_jcb_27703 crossref_primary_10_1016_j_jbior_2019_02_001 crossref_primary_10_1007_s00432_022_04303_8 crossref_primary_10_3389_fcell_2024_1487685 crossref_primary_10_3390_cells10071782 crossref_primary_10_1177_1535370220909309 crossref_primary_10_3390_ijms21155276 crossref_primary_10_3390_cancers12092411 crossref_primary_10_1007_s10637_019_00847_8 crossref_primary_10_1016_j_biochi_2020_09_014 crossref_primary_10_1186_s40001_025_02572_w crossref_primary_10_3390_cancers14092238 crossref_primary_10_3390_cells14100717 crossref_primary_10_1002_cam4_5833 crossref_primary_10_1038_s41419_022_04551_z crossref_primary_10_1016_j_semcancer_2020_11_017 crossref_primary_10_3390_cells12242779 crossref_primary_10_1080_14728222_2020_1751819 crossref_primary_10_1186_s12929_019_0593_y crossref_primary_10_1016_j_diff_2019_04_001 crossref_primary_10_15252_embr_202050635 crossref_primary_10_1016_j_jconrel_2023_09_029 crossref_primary_10_1016_j_semcancer_2019_06_019 crossref_primary_10_1080_17435889_2025_2502321 crossref_primary_10_1016_j_rce_2022_05_006 crossref_primary_10_1186_s12964_024_01957_4 crossref_primary_10_2174_0929867328666211005124015 crossref_primary_10_1016_j_stem_2021_02_013 crossref_primary_10_3390_ijms20112649 crossref_primary_10_1080_21655979_2021_1967076 crossref_primary_10_1080_15384101_2018_1515551 crossref_primary_10_1016_j_lfs_2025_123560 crossref_primary_10_1016_j_prp_2024_155227 crossref_primary_10_1186_s12964_023_01129_w crossref_primary_10_1016_j_gene_2020_144381 crossref_primary_10_3390_biomedicines9091245 crossref_primary_10_1007_s10561_019_09780_9 crossref_primary_10_3390_cancers13143596 crossref_primary_10_1016_j_freeradbiomed_2021_09_024 crossref_primary_10_1016_j_bbadis_2024_167164 crossref_primary_10_1142_S0192415X23500593 crossref_primary_10_1155_2019_9618065 crossref_primary_10_1016_j_semcancer_2018_10_002 crossref_primary_10_1016_j_canlet_2025_217966 crossref_primary_10_1016_j_critrevonc_2020_103178 crossref_primary_10_2147_SCCAA_S417842 crossref_primary_10_3390_ijms22179507 crossref_primary_10_1093_stcltm_szab029 crossref_primary_10_1038_s41467_020_15219_7 crossref_primary_10_3390_cancers15235657 crossref_primary_10_1016_j_bbamcr_2021_119076 crossref_primary_10_1038_s41418_021_00788_x crossref_primary_10_15252_embr_202154006 crossref_primary_10_3390_ijms22073315 crossref_primary_10_3389_fcell_2025_1499936 crossref_primary_10_3390_biomedicines10010028 crossref_primary_10_1038_s41467_019_13700_6 crossref_primary_10_1002_cbin_70071 crossref_primary_10_1016_j_critrevonc_2021_103545 crossref_primary_10_3390_cancers14040976 crossref_primary_10_3390_ijms22031355 crossref_primary_10_1016_j_heliyon_2020_e04820 crossref_primary_10_1016_j_gendis_2025_101678 crossref_primary_10_1038_s41416_022_01867_7 crossref_primary_10_1158_2159_8290_CD_20_0844 crossref_primary_10_2174_0115680266275014240110071351 crossref_primary_10_1242_dev_182170 crossref_primary_10_3389_fonc_2022_1118675 crossref_primary_10_3389_fonc_2019_01003 crossref_primary_10_1103_dm8r_hzmk crossref_primary_10_3389_fonc_2020_01010 crossref_primary_10_1016_j_bcp_2023_115531 crossref_primary_10_1016_j_lfs_2021_119667 crossref_primary_10_3390_cancers15041192 crossref_primary_10_1016_j_bbcan_2023_188899 crossref_primary_10_1016_j_gene_2021_145666 crossref_primary_10_1186_s12964_023_01441_5 crossref_primary_10_3389_fonc_2020_01776 crossref_primary_10_3389_fonc_2021_678343 crossref_primary_10_3390_cells14070511 crossref_primary_10_1158_1078_0432_CCR_21_2984 crossref_primary_10_3390_cells9071693 crossref_primary_10_3389_fonc_2019_00315 crossref_primary_10_1158_1541_7786_MCR_21_0098 crossref_primary_10_3389_fonc_2020_01528 crossref_primary_10_1016_j_phrs_2023_106740 crossref_primary_10_1371_journal_pone_0289024 crossref_primary_10_1038_s41598_019_54266_z crossref_primary_10_1186_s12943_023_01877_w crossref_primary_10_3390_pharmaceutics13010103 crossref_primary_10_3390_cancers13164178 crossref_primary_10_1073_pnas_2216310120 crossref_primary_10_1093_glycob_cwad051 crossref_primary_10_3390_cancers12123716 crossref_primary_10_1021_jacs_0c02134 crossref_primary_10_3390_ijms241813928 crossref_primary_10_3390_cancers12061427 crossref_primary_10_3390_ijms221910790 crossref_primary_10_1016_j_ebiom_2024_105078 crossref_primary_10_1016_j_lfs_2023_122065 crossref_primary_10_1016_j_tips_2023_11_006 crossref_primary_10_1155_2019_5189232 crossref_primary_10_3390_cells9061529 crossref_primary_10_1242_jcs_230755 crossref_primary_10_3389_fphar_2019_00203 crossref_primary_10_1038_s41571_025_01059_1 crossref_primary_10_1016_j_semcdb_2019_05_025 crossref_primary_10_1515_med_2025_1247 crossref_primary_10_4081_oncol_2020_452 crossref_primary_10_1016_j_tiv_2022_105417 crossref_primary_10_1016_j_mcp_2023_101913 crossref_primary_10_1186_s12967_023_04498_5 crossref_primary_10_3389_fonc_2021_740720 crossref_primary_10_3390_medicina61091577 crossref_primary_10_1089_ars_2019_7898 crossref_primary_10_3390_ijms222111492 crossref_primary_10_1038_s41416_021_01636_y crossref_primary_10_3390_biomedicines12071576 crossref_primary_10_3390_cancers13194814 crossref_primary_10_3390_ijms24021786 crossref_primary_10_1002_jcp_27425 crossref_primary_10_1186_s12943_025_02265_2 crossref_primary_10_3389_fonc_2020_01511 crossref_primary_10_3389_fonc_2019_00615 crossref_primary_10_1089_ars_2020_8024 crossref_primary_10_1039_C9QM00658C crossref_primary_10_1158_1541_7786_MCR_22_0134 crossref_primary_10_1007_s12015_019_09942_y crossref_primary_10_1007_s11888_018_0420_y crossref_primary_10_1016_j_yexcr_2022_113271 crossref_primary_10_4252_wjsc_v12_i6_448 crossref_primary_10_1186_s12935_022_02824_3 crossref_primary_10_1186_s13046_018_0975_0 crossref_primary_10_3390_cancers12103067 crossref_primary_10_3390_cells12182237 crossref_primary_10_3389_fphar_2022_768556 crossref_primary_10_3390_cancers17132100 crossref_primary_10_1016_j_bbadis_2023_166897 crossref_primary_10_1038_s41418_024_01392_5 crossref_primary_10_3390_cancers13122996 crossref_primary_10_3389_fonc_2018_00452 crossref_primary_10_1016_j_intimp_2020_106535 crossref_primary_10_1002_mog2_66 crossref_primary_10_1016_j_phrs_2018_11_020 crossref_primary_10_1016_j_compbiomed_2021_105177 crossref_primary_10_1186_s13046_020_01667_y crossref_primary_10_1016_j_pdpdt_2021_102585 crossref_primary_10_3390_cancers12102780 crossref_primary_10_1016_j_yexcr_2024_114032 crossref_primary_10_1038_s41598_021_01878_z |
| ContentType | Journal Article |
| Copyright | 2018 The Author(s). |
| Copyright_xml | – notice: 2018 The Author(s). |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1042/BCJ20170164 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1470-8728 |
| ExternalDocumentID | 29743249 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 4.4 53G 5GY 5RE 6J9 79B A8Z AAHRG ABJNI ABPPZ ABRJW ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBD EBS ECM EIF EJD EMOBN F5P H13 HH6 HZ~ K-O L7B ML- MV1 N9A NPM NTEUP O9- OK1 P2P RHI RNS RPM RPO SV3 TR2 TWZ WH7 XSW Y6R YNY ~02 ~KM 7X8 ESTFP |
| ID | FETCH-LOGICAL-c381t-8c65d48801cb9cf6c683fedc3e2afb273099bcfb92e83bfe4116fd1ff247f9d82 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 207 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432444700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8728 |
| IngestDate | Wed Oct 01 14:49:07 EDT 2025 Mon Jul 21 06:05:48 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | mitochondria metabolism cancer stem cells |
| Language | English |
| License | 2018 The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-8c65d48801cb9cf6c683fedc3e2afb273099bcfb92e83bfe4116fd1ff247f9d82 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://portlandpress.com/biochemj/article-pdf/475/9/1611/694671/bcj-2017-0164c.pdf |
| PMID | 29743249 |
| PQID | 2037059583 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2037059583 pubmed_primary_29743249 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-15 |
| PublicationDateYYYYMMDD | 2018-05-15 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical journal |
| PublicationTitleAlternate | Biochem J |
| PublicationYear | 2018 |
| SSID | ssj0014040 |
| Score | 2.635464 |
| SecondaryResourceType | review_article |
| Snippet | Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1611 |
| SubjectTerms | Humans Metabolic Networks and Pathways Neoplasms - metabolism Neoplasms - pathology Neoplasms - therapy Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Oxidative Phosphorylation Tumor Microenvironment |
| Title | Cancer stem cells (CSCs): metabolic strategies for their identification and eradication |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29743249 https://www.proquest.com/docview/2037059583 |
| Volume | 475 |
| WOSCitedRecordID | wos000432444700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UCnpxaV3qxggiegg2k0ky40VqsIhoKajYW5kVCjatTRT8977JQk-C4CWQQyAzb_vejtCZjCIZUE08Yhk4KNII0IOGerEBZ0RqsECyGJn_GPf7bDjkgyrgllVllbVOLBS1nioXIwcnPYgBCoQsuJl9eG5rlMuuVis0llEjACjjuDoeLrIItFM2RNK4A1JPWNWfB3x6dZs8EDc6xnejBn7DloWN6W3-9--20EaFLnG3ZIdttGTSJmp1U_CsJ9_4HBf1nkUgvYnWknrXWwu9JY74c-ymOmMXy8_wRfKcZJfXeGJy4JP3scJZXo-VwIB0cZFiwGNdlRsVFMYi1djMha7ed9Br7-4lufeqlQueAtOde0xFoXYy7SvJlY1UxAJrtAoMEVYC1AFAKZWVnBgWSGuo70dW-9YSGluuGdlFK-k0NfsIi9Ba6nPFRBxQSS3ngqiQxtw19xpB2ui0vsoRnNadTaRm-pmNFpfZRnslPUazcvbGiID_AxiQH_zh60O0DjRmLtfvh0eoYUGgzTFaVV_5OJufFLwCz_7g6Qdbzcm8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+stem+cells+%28CSCs%29%3A+metabolic+strategies+for+their+identification+and+eradication&rft.jtitle=Biochemical+journal&rft.au=De+Francesco%2C+Ernestina+M&rft.au=Sotgia%2C+Federica&rft.au=Lisanti%2C+Michael+P&rft.date=2018-05-15&rft.eissn=1470-8728&rft.volume=475&rft.issue=9&rft.spage=1611&rft_id=info:doi/10.1042%2FBCJ20170164&rft_id=info%3Apmid%2F29743249&rft_id=info%3Apmid%2F29743249&rft.externalDocID=29743249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon |