UIU-Net: U-Net in U-Net for Infrared Small Object Detection

Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 32; S. 1
Hauptverfasser: Wu, Xin, Hong, Danfeng, Chanussot, Jocelyn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE_TIP_UIU-Net.
AbstractList Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE.
Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective “U-Net in U-Net” framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE
Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE.Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE.
Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE_TIP_UIU-Net.
Author Chanussot, Jocelyn
Wu, Xin
Hong, Danfeng
Author_xml – sequence: 1
  givenname: Xin
  surname: Wu
  fullname: Wu, Xin
  organization: School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Danfeng
  orcidid: 0000-0002-3212-9584
  surname: Hong
  fullname: Hong, Danfeng
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Jocelyn
  orcidid: 0000-0003-4817-2875
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015404$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04473605$$DView record in HAL
BookMark eNp9kc1Lw0AQxRdRbP24C4IEvOghdWZ3s5vVk_jVQlHB9rxsthtMSRPdpIL_vRtbe-jB0xuG35th5h2Q3aquHCEnCANEUFeT0euAAqUDRmnKldwhfVQcYwBOd0MNiYwlctUjB00zB0CeoNgnPSYBEw68T26mo2n87Nrr6FeioloXee2jUZV7490seluYsoxesrmzbXTv2iBFXR2RvdyUjTte6yGZPj5M7obx-OVpdHc7ji1LsY3TLDNScAU5ppIZRpmQM8ZlikpmnOfAjWTc5MzYLMmRSiPQWEmZlVlGLbJDcrma-25K_eGLhfHfujaFHt6OddcDziUTkHx17MWK_fD159I1rV4UjXVlaSpXLxtNpRIoEBUN6PkWOq-XvgqXBCoRiQBJVaDO1tQyW7jZZv_fCwMgVoD1ddN4l2tbtKb7T-tNUWoE3WWlQ1a6y0qvswpG2DL-zf7HcrqyFM65Da5Uqjhj7AeYUZiV
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TCYB_2024_3515104
crossref_primary_10_1016_j_eswa_2024_125476
crossref_primary_10_1109_TAP_2025_3577780
crossref_primary_10_1109_TIM_2024_3379412
crossref_primary_10_1007_s11227_025_06987_4
crossref_primary_10_3390_jimaging9100226
crossref_primary_10_1109_JSTARS_2023_3321714
crossref_primary_10_1109_TGRS_2025_3540945
crossref_primary_10_3390_s24123885
crossref_primary_10_1016_j_infrared_2025_105752
crossref_primary_10_1049_ipr2_70053
crossref_primary_10_1109_TCYB_2024_3518975
crossref_primary_10_1016_j_eswa_2023_122917
crossref_primary_10_1016_j_inffus_2025_103042
crossref_primary_10_1109_TGRS_2024_3362895
crossref_primary_10_1109_TGRS_2025_3582578
crossref_primary_10_1109_TGRS_2024_3392188
crossref_primary_10_1109_TIP_2024_3485518
crossref_primary_10_1109_TGRS_2025_3607732
crossref_primary_10_1109_LSP_2025_3549000
crossref_primary_10_1049_ipr2_13158
crossref_primary_10_1088_1361_6501_adf2d0
crossref_primary_10_1016_j_inffus_2025_103035
crossref_primary_10_3390_rs17030452
crossref_primary_10_1109_JSEN_2025_3559093
crossref_primary_10_1109_TGRS_2024_3395478
crossref_primary_10_1016_j_asr_2025_04_012
crossref_primary_10_3390_s24237767
crossref_primary_10_1109_TGRS_2023_3307052
crossref_primary_10_1109_TNNLS_2024_3401589
crossref_primary_10_1109_TGRS_2025_3574962
crossref_primary_10_1109_TGRS_2025_3574963
crossref_primary_10_1109_TGRS_2025_3589097
crossref_primary_10_1016_j_neucom_2025_130725
crossref_primary_10_1109_LGRS_2025_3562096
crossref_primary_10_1109_TGRS_2024_3350573
crossref_primary_10_1080_2150704X_2025_2474167
crossref_primary_10_1109_TGRS_2024_3362680
crossref_primary_10_1109_JSTARS_2023_3284667
crossref_primary_10_1016_j_infrared_2025_105851
crossref_primary_10_3389_fnbot_2023_1285673
crossref_primary_10_3390_rs15184506
crossref_primary_10_1016_j_eswa_2023_121811
crossref_primary_10_1016_j_neucom_2025_129610
crossref_primary_10_1109_JESTIE_2023_3322111
crossref_primary_10_1109_LGRS_2023_3345946
crossref_primary_10_1109_TGRS_2025_3581342
crossref_primary_10_3390_app15084121
crossref_primary_10_1080_2150704X_2024_2391082
crossref_primary_10_1109_TGRS_2025_3562966
crossref_primary_10_1109_JSTARS_2025_3528057
crossref_primary_10_3390_s25185677
crossref_primary_10_1109_TGRS_2024_3365833
crossref_primary_10_3390_rs17132268
crossref_primary_10_1016_j_optlastec_2025_112851
crossref_primary_10_3390_mi16091043
crossref_primary_10_3390_rs17132264
crossref_primary_10_1016_j_patcog_2023_109911
crossref_primary_10_1016_j_neunet_2023_12_036
crossref_primary_10_1016_j_neunet_2023_12_034
crossref_primary_10_1109_TGRS_2023_3328908
crossref_primary_10_3390_rs17030428
crossref_primary_10_1007_s44267_025_00075_0
crossref_primary_10_1016_j_infrared_2024_105314
crossref_primary_10_1109_TGRS_2025_3537331
crossref_primary_10_3390_rs17172963
crossref_primary_10_1109_TGRS_2025_3594008
crossref_primary_10_1109_TIP_2025_3602739
crossref_primary_10_3390_rs16111912
crossref_primary_10_1109_JSEN_2025_3543839
crossref_primary_10_3390_rs15123018
crossref_primary_10_1109_TGRS_2025_3570274
crossref_primary_10_1109_TGRS_2024_3415080
crossref_primary_10_1016_j_optlaseng_2025_109214
crossref_primary_10_1109_JSTARS_2024_3518781
crossref_primary_10_1109_TGRS_2024_3386703
crossref_primary_10_1109_TGRS_2025_3550548
crossref_primary_10_1109_JIOT_2025_3527021
crossref_primary_10_1016_j_jag_2025_104645
crossref_primary_10_1109_TGRS_2024_3477575
crossref_primary_10_1016_j_infrared_2025_105727
crossref_primary_10_1016_j_patcog_2025_111894
crossref_primary_10_1109_JSTARS_2023_3299730
crossref_primary_10_1007_s12204_024_2694_3
crossref_primary_10_1016_j_optlastec_2025_112835
crossref_primary_10_1016_j_jsg_2025_105426
crossref_primary_10_3390_min14101012
crossref_primary_10_1109_ACCESS_2024_3365356
crossref_primary_10_1109_ACCESS_2025_3548128
crossref_primary_10_1109_LGRS_2024_3474688
crossref_primary_10_1109_TGRS_2023_3323479
crossref_primary_10_1016_j_neucom_2024_129289
crossref_primary_10_1109_TASE_2025_3532674
crossref_primary_10_1007_s44443_025_00023_4
crossref_primary_10_3390_s23073574
crossref_primary_10_1109_JSTARS_2024_3376070
crossref_primary_10_1109_JSTARS_2024_3468456
crossref_primary_10_1109_JSEN_2025_3569602
crossref_primary_10_1016_j_knosys_2023_110710
crossref_primary_10_1016_j_ijthermalsci_2025_110147
crossref_primary_10_1016_j_neunet_2025_107162
crossref_primary_10_1016_j_eswa_2023_120519
crossref_primary_10_1109_TGRS_2023_3345159
crossref_primary_10_1016_j_infrared_2025_105926
crossref_primary_10_3390_rs17122016
crossref_primary_10_1007_s10489_025_06689_7
crossref_primary_10_1007_s10845_025_02588_3
crossref_primary_10_3390_app13031692
crossref_primary_10_1016_j_sigpro_2024_109805
crossref_primary_10_1007_s10278_025_01460_3
crossref_primary_10_1016_j_infrared_2025_105825
crossref_primary_10_1109_TGRS_2023_3279834
crossref_primary_10_1109_JSTARS_2024_3381779
crossref_primary_10_1109_TAP_2025_3533739
crossref_primary_10_1109_TGRS_2025_3605402
crossref_primary_10_1109_LGRS_2023_3342981
crossref_primary_10_1109_TGRS_2023_3289878
crossref_primary_10_1016_j_infrared_2024_105631
crossref_primary_10_1080_01431161_2023_2221800
crossref_primary_10_1109_JSTARS_2023_3335288
crossref_primary_10_1109_TGRS_2025_3596902
crossref_primary_10_1016_j_isprsjprs_2023_05_026
crossref_primary_10_1109_TIP_2025_3587576
crossref_primary_10_1109_JSEN_2023_3347584
crossref_primary_10_1016_j_engappai_2025_110100
crossref_primary_10_1109_JSTARS_2023_3325365
crossref_primary_10_1109_TGRS_2025_3554025
crossref_primary_10_1016_j_infrared_2023_104935
crossref_primary_10_1109_TGRS_2025_3605399
crossref_primary_10_1109_TNNLS_2023_3279931
crossref_primary_10_1109_TGRS_2025_3604069
crossref_primary_10_1016_j_srs_2024_100190
crossref_primary_10_1109_TGRS_2023_3330490
crossref_primary_10_1109_TGRS_2025_3594718
crossref_primary_10_1109_TGRS_2024_3519195
crossref_primary_10_1016_j_knosys_2025_113003
crossref_primary_10_1038_s41598_024_61136_w
crossref_primary_10_1016_j_dsp_2025_105151
crossref_primary_10_1109_TGRS_2024_3502401
crossref_primary_10_1007_s00371_024_03727_2
crossref_primary_10_1109_TNNLS_2025_3548984
crossref_primary_10_1007_s10043_025_00977_w
crossref_primary_10_1109_JSEN_2025_3561200
crossref_primary_10_3390_s25030814
crossref_primary_10_1109_ACCESS_2024_3395499
crossref_primary_10_1109_JSEN_2024_3407132
crossref_primary_10_1016_j_inffus_2025_103105
crossref_primary_10_1016_j_cja_2025_103781
crossref_primary_10_1109_LGRS_2025_3563588
crossref_primary_10_3390_rs15051259
crossref_primary_10_3389_fpls_2023_1224884
crossref_primary_10_1016_j_engappai_2025_110244
crossref_primary_10_3389_fpls_2024_1458978
crossref_primary_10_1109_JSTARS_2024_3472041
crossref_primary_10_1109_JSTARS_2023_3280905
crossref_primary_10_1038_s41598_025_16878_6
crossref_primary_10_1109_JSEN_2023_3343080
crossref_primary_10_1109_TGRS_2025_3588392
crossref_primary_10_1109_ACCESS_2023_3267435
crossref_primary_10_1109_JSTARS_2023_3324492
crossref_primary_10_1016_j_knosys_2025_114122
crossref_primary_10_1109_JSEN_2025_3567354
crossref_primary_10_1109_JSTARS_2024_3524551
crossref_primary_10_3934_acse_2025018
crossref_primary_10_1016_j_inffus_2025_103338
crossref_primary_10_1109_TGRS_2023_3295386
crossref_primary_10_1109_TGRS_2025_3568425
crossref_primary_10_1016_j_dsp_2025_105045
crossref_primary_10_1016_j_aiia_2025_03_001
crossref_primary_10_1016_j_infrared_2023_104975
crossref_primary_10_1016_j_media_2025_103610
crossref_primary_10_1109_JSEN_2024_3394956
crossref_primary_10_1109_JSTARS_2024_3394887
crossref_primary_10_1109_TGRS_2024_3502663
crossref_primary_10_1109_TGRS_2023_3324821
crossref_primary_10_3390_s25061793
crossref_primary_10_1016_j_eswa_2025_128776
crossref_primary_10_1016_j_ibmed_2025_100216
crossref_primary_10_1109_TGRS_2024_3472455
crossref_primary_10_1109_TGRS_2023_3304836
crossref_primary_10_1109_TGRS_2023_3324947
crossref_primary_10_1109_TGRS_2024_3383649
crossref_primary_10_3390_s23198118
crossref_primary_10_1016_j_inffus_2025_103007
crossref_primary_10_1016_j_patcog_2024_110330
crossref_primary_10_1016_j_knosys_2023_111306
crossref_primary_10_1016_j_patcog_2025_111706
crossref_primary_10_1007_s12517_024_11857_z
crossref_primary_10_1016_j_infrared_2023_104983
crossref_primary_10_1007_s00138_024_01554_y
crossref_primary_10_1109_TGRS_2024_3486559
crossref_primary_10_1007_s11517_024_03025_y
crossref_primary_10_1016_j_infrared_2025_106082
crossref_primary_10_1109_LGRS_2025_3609487
crossref_primary_10_1016_j_measurement_2025_116971
crossref_primary_10_1109_JSTARS_2025_3550581
crossref_primary_10_1109_LSP_2025_3582672
crossref_primary_10_1109_TGRS_2024_3381774
crossref_primary_10_1109_TGRS_2024_3520161
crossref_primary_10_1016_j_eswa_2023_120143
crossref_primary_10_3390_rs16224160
crossref_primary_10_1109_TGRS_2024_3415002
crossref_primary_10_1109_LGRS_2025_3597969
crossref_primary_10_1109_TGRS_2023_3258061
crossref_primary_10_1080_22797254_2023_2277213
crossref_primary_10_1109_TGRS_2025_3561850
crossref_primary_10_1016_j_displa_2024_102681
crossref_primary_10_1016_j_jag_2024_104262
crossref_primary_10_3390_s23198101
crossref_primary_10_1109_LGRS_2024_3374431
crossref_primary_10_1016_j_imavis_2024_105101
crossref_primary_10_1109_TGRS_2023_3323519
crossref_primary_10_1109_JSTARS_2025_3564847
crossref_primary_10_1109_JSTARS_2023_3244616
crossref_primary_10_3390_drones8110643
crossref_primary_10_3390_rs16111894
crossref_primary_10_1016_j_neunet_2023_09_044
crossref_primary_10_26599_BDMA_2023_9020036
crossref_primary_10_1016_j_knosys_2025_113282
crossref_primary_10_1109_JSTARS_2024_3349541
crossref_primary_10_1109_TIV_2024_3393015
crossref_primary_10_3390_rs16214018
crossref_primary_10_1109_TGRS_2025_3603167
crossref_primary_10_1016_j_patcog_2024_110312
crossref_primary_10_1016_j_patcog_2024_110675
crossref_primary_10_1109_JSEN_2025_3549519
crossref_primary_10_1109_TGRS_2024_3409612
crossref_primary_10_1109_TMM_2023_3325743
crossref_primary_10_3390_rs15225380
crossref_primary_10_1016_j_knosys_2023_110799
crossref_primary_10_1109_JSTARS_2024_3429491
crossref_primary_10_1016_j_neunet_2023_08_008
crossref_primary_10_1109_TGRS_2025_3578263
crossref_primary_10_1109_TGRS_2025_3525648
crossref_primary_10_1109_TGRS_2024_3416470
crossref_primary_10_1016_j_infrared_2025_106061
crossref_primary_10_1016_j_heliyon_2024_e33892
crossref_primary_10_1016_j_imavis_2025_105651
crossref_primary_10_1109_TGRS_2025_3569550
crossref_primary_10_1016_j_autcon_2025_106368
crossref_primary_10_3390_rs16061001
crossref_primary_10_1109_TGRS_2024_3452550
crossref_primary_10_1016_j_bspc_2025_108440
crossref_primary_10_1109_TAES_2025_3544613
crossref_primary_10_1016_j_dsp_2025_105121
crossref_primary_10_1088_1361_6501_adbe96
crossref_primary_10_1016_j_inffus_2025_103374
crossref_primary_10_1016_j_patcog_2025_111958
crossref_primary_10_1080_10095020_2024_2378920
crossref_primary_10_1155_2023_2520933
crossref_primary_10_1109_JSTARS_2024_3393238
crossref_primary_10_1109_TGRS_2025_3605480
crossref_primary_10_1109_TGRS_2024_3379355
crossref_primary_10_1109_TGRS_2024_3392794
crossref_primary_10_1109_TGRS_2024_3521483
crossref_primary_10_1109_TCYB_2024_3410844
crossref_primary_10_1016_j_inffus_2025_103600
crossref_primary_10_1109_JSTARS_2024_3386899
crossref_primary_10_1109_TIP_2024_3374225
crossref_primary_10_1109_TAES_2024_3480890
crossref_primary_10_1016_j_inffus_2023_102192
crossref_primary_10_1109_JSTARS_2024_3508255
crossref_primary_10_1109_JSTARS_2025_3585640
crossref_primary_10_1109_TGRS_2025_3555637
crossref_primary_10_1016_j_imavis_2025_105435
crossref_primary_10_1016_j_sigpro_2023_109151
crossref_primary_10_1016_j_sigpro_2023_109272
crossref_primary_10_1109_TGRS_2025_3578632
crossref_primary_10_1109_TGRS_2024_3503588
crossref_primary_10_1109_TGRS_2025_3567751
crossref_primary_10_1016_j_eswa_2025_127029
crossref_primary_10_1109_TAES_2025_3558181
crossref_primary_10_1088_1361_6501_ad86da
crossref_primary_10_1088_1361_6501_ad86db
crossref_primary_10_1016_j_infrared_2025_106058
crossref_primary_10_1016_j_patcog_2024_110546
crossref_primary_10_1109_LGRS_2023_3292890
crossref_primary_10_1109_TGRS_2025_3603918
crossref_primary_10_1016_j_neucom_2024_128949
crossref_primary_10_1109_TGRS_2023_3286826
crossref_primary_10_1109_JSTARS_2025_3560200
crossref_primary_10_1117_1_JRS_18_014525
crossref_primary_10_1109_TGRS_2024_3516879
crossref_primary_10_1016_j_eswa_2025_128110
crossref_primary_10_1109_TGRS_2024_3376382
crossref_primary_10_1109_TGRS_2023_3328222
crossref_primary_10_1109_TGRS_2024_3379436
crossref_primary_10_1016_j_compbiomed_2025_110680
crossref_primary_10_1080_10095020_2023_2288179
crossref_primary_10_1109_TGRS_2025_3575591
crossref_primary_10_1016_j_infrared_2025_106144
crossref_primary_10_1109_TGRS_2025_3544645
crossref_primary_10_1109_TGRS_2024_3408045
crossref_primary_10_1109_JSTARS_2024_3509684
crossref_primary_10_1109_TGRS_2025_3580937
crossref_primary_10_1016_j_aei_2024_102611
crossref_primary_10_1109_TGRS_2024_3425658
crossref_primary_10_1109_TGRS_2025_3534838
crossref_primary_10_1155_2023_1341193
crossref_primary_10_3390_app13021165
crossref_primary_10_1109_TGRS_2023_3284671
crossref_primary_10_1016_j_eswa_2023_121376
crossref_primary_10_3390_s25072030
crossref_primary_10_1109_TGRS_2025_3601517
crossref_primary_10_1109_TCE_2025_3527678
crossref_primary_10_1109_LGRS_2024_3521119
crossref_primary_10_1109_TGRS_2024_3423492
crossref_primary_10_1016_j_optlastec_2024_111867
crossref_primary_10_1109_TGRS_2024_3388261
crossref_primary_10_3390_bioengineering10060722
crossref_primary_10_1016_j_isprsjprs_2025_03_002
crossref_primary_10_1109_LGRS_2023_3303896
crossref_primary_10_3390_rs17050818
crossref_primary_10_1016_j_eswa_2025_128373
crossref_primary_10_1109_TGRS_2024_3357706
crossref_primary_10_1109_TGRS_2024_3481268
crossref_primary_10_1109_TGRS_2025_3542368
crossref_primary_10_1109_TGRS_2023_3304311
crossref_primary_10_3390_rs15174281
crossref_primary_10_1109_JSTARS_2024_3521036
crossref_primary_10_1109_TIP_2024_3501853
crossref_primary_10_1016_j_patcog_2024_110976
crossref_primary_10_1109_LSP_2025_3577121
crossref_primary_10_3390_rs16183532
crossref_primary_10_1109_TGRS_2024_3492277
crossref_primary_10_1016_j_anucene_2025_111443
crossref_primary_10_1007_s11227_025_07695_9
crossref_primary_10_1109_LGRS_2024_3432629
crossref_primary_10_3390_s23167205
crossref_primary_10_1016_j_engappai_2024_108355
crossref_primary_10_1109_JSTARS_2022_3230835
crossref_primary_10_3390_app132111898
crossref_primary_10_3390_rs17142502
crossref_primary_10_1109_JSEN_2025_3569157
crossref_primary_10_1016_j_patcog_2024_110983
crossref_primary_10_1109_TGRS_2025_3588117
crossref_primary_10_1109_TIM_2024_3485456
crossref_primary_10_1016_j_eswa_2024_124731
crossref_primary_10_1016_j_neunet_2023_08_057
crossref_primary_10_1109_LGRS_2025_3528947
crossref_primary_10_1109_LGRS_2024_3398581
crossref_primary_10_3390_app13010317
crossref_primary_10_1109_LGRS_2024_3398106
crossref_primary_10_1016_j_optlastec_2025_113001
crossref_primary_10_32604_cmc_2025_060363
crossref_primary_10_1016_j_srs_2025_100201
crossref_primary_10_3390_app15094966
crossref_primary_10_1016_j_knosys_2024_112535
crossref_primary_10_1016_j_neunet_2024_106224
crossref_primary_10_1109_TGRS_2023_3321614
crossref_primary_10_1016_j_eswa_2024_125732
crossref_primary_10_1007_s11227_024_06067_z
crossref_primary_10_1109_TIM_2024_3522435
crossref_primary_10_1007_s40747_024_01410_6
crossref_primary_10_21595_jme_2025_24682
crossref_primary_10_1007_s41060_025_00881_1
crossref_primary_10_1109_TGRS_2024_3492256
crossref_primary_10_1109_ACCESS_2023_3344644
crossref_primary_10_1109_LGRS_2025_3557021
crossref_primary_10_1007_s00371_024_03615_9
crossref_primary_10_1080_01431161_2023_2275322
crossref_primary_10_3390_rs17081341
crossref_primary_10_1109_JSTARS_2025_3545014
crossref_primary_10_1109_JSTARS_2025_3599617
crossref_primary_10_1109_JSEN_2024_3437474
crossref_primary_10_1109_TNNLS_2023_3331004
crossref_primary_10_3390_rs16061080
crossref_primary_10_1109_TGRS_2023_3236471
crossref_primary_10_1109_TGRS_2024_3387125
crossref_primary_10_1016_j_sigpro_2023_109183
crossref_primary_10_1109_JSTARS_2023_3268312
crossref_primary_10_1016_j_neucom_2024_127685
crossref_primary_10_1109_TGRS_2024_3515648
crossref_primary_10_1016_j_measurement_2025_117890
crossref_primary_10_3390_electronics14050858
crossref_primary_10_1016_j_engappai_2025_110734
crossref_primary_10_1109_TGRS_2025_3564634
crossref_primary_10_1007_s40747_024_01726_3
crossref_primary_10_3390_electronics14173547
crossref_primary_10_1109_TGRS_2023_3326545
crossref_primary_10_1016_j_imavis_2023_104736
crossref_primary_10_3390_s24248030
crossref_primary_10_1186_s13634_023_01028_9
crossref_primary_10_1109_TGRS_2023_3291356
crossref_primary_10_2478_amns_2025_0325
crossref_primary_10_1109_TGRS_2025_3529749
crossref_primary_10_1016_j_optlastec_2025_113691
crossref_primary_10_1016_j_knosys_2025_112963
crossref_primary_10_1109_TGRS_2024_3422404
crossref_primary_10_1016_j_imavis_2023_104744
crossref_primary_10_1109_JSTARS_2024_3465831
crossref_primary_10_1080_01431161_2023_2295831
crossref_primary_10_1109_TGRS_2024_3374237
crossref_primary_10_1109_TGRS_2024_3452175
crossref_primary_10_1109_TGRS_2023_3324497
crossref_primary_10_1016_j_engappai_2025_110917
crossref_primary_10_1109_TGRS_2024_3446608
crossref_primary_10_3390_rs17091548
crossref_primary_10_1109_JSTARS_2025_3532039
crossref_primary_10_1109_JSTARS_2023_3278295
crossref_primary_10_1109_JSTARS_2024_3509993
crossref_primary_10_1371_journal_pone_0322705
crossref_primary_10_1109_LSP_2024_3356411
crossref_primary_10_1016_j_compag_2024_109880
crossref_primary_10_3390_rs17020250
crossref_primary_10_1109_TGRS_2025_3578927
crossref_primary_10_3390_app15063373
crossref_primary_10_1016_j_eswa_2025_129046
crossref_primary_10_1016_j_dsp_2025_104988
crossref_primary_10_1016_j_imavis_2023_104718
crossref_primary_10_1109_ACCESS_2023_3322371
crossref_primary_10_1016_j_imavis_2023_104717
crossref_primary_10_1109_LGRS_2024_3358953
crossref_primary_10_1109_LGRS_2025_3547899
crossref_primary_10_1109_ACCESS_2024_3485499
crossref_primary_10_1109_JSEN_2025_3546966
crossref_primary_10_3390_electronics13071400
crossref_primary_10_1016_j_optlastec_2025_113557
crossref_primary_10_1109_TAES_2025_3564932
crossref_primary_10_1016_j_jag_2024_103662
crossref_primary_10_1109_TGRS_2025_3535096
crossref_primary_10_3390_electronics12234820
crossref_primary_10_1109_TGRS_2024_3521947
crossref_primary_10_1109_JSTARS_2024_3399310
crossref_primary_10_1109_TGRS_2025_3597777
crossref_primary_10_3390_rs16060979
crossref_primary_10_1007_s11227_025_07149_2
crossref_primary_10_1109_TGRS_2023_3279253
crossref_primary_10_1016_j_imavis_2023_104721
crossref_primary_10_1109_TGRS_2023_3346041
crossref_primary_10_1016_j_ecoinf_2025_103078
crossref_primary_10_3390_rs15235539
crossref_primary_10_3390_app14104132
crossref_primary_10_1049_ipr2_12919
crossref_primary_10_3390_s24134227
crossref_primary_10_1007_s00371_024_03284_8
crossref_primary_10_1109_TGRS_2023_3261964
crossref_primary_10_1016_j_optlastec_2024_111221
crossref_primary_10_1016_j_neucom_2025_130428
crossref_primary_10_32604_cmc_2024_056075
crossref_primary_10_1109_TGRS_2025_3603784
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1109_TGRS_2025_3588885
crossref_primary_10_3390_rs15041076
crossref_primary_10_3390_s23146477
crossref_primary_10_1109_ACCESS_2024_3486567
crossref_primary_10_1109_TMM_2024_3413529
crossref_primary_10_1007_s11042_023_17355_w
crossref_primary_10_1109_TGRS_2023_3282951
crossref_primary_10_1109_TGRS_2024_3504598
crossref_primary_10_3390_rs17122072
crossref_primary_10_1109_TCSVT_2025_3535939
crossref_primary_10_1016_j_optlastec_2025_113894
crossref_primary_10_1109_JSTARS_2023_3310612
crossref_primary_10_1109_TGRS_2024_3504594
crossref_primary_10_1109_TGRS_2025_3589983
crossref_primary_10_1016_j_jag_2025_104801
crossref_primary_10_1109_TGRS_2025_3589602
crossref_primary_10_1109_TGRS_2025_3588753
crossref_primary_10_1109_TGRS_2025_3585489
crossref_primary_10_1016_j_foohum_2024_100365
crossref_primary_10_1016_j_inffus_2023_102148
crossref_primary_10_1109_JSTARS_2024_3354455
crossref_primary_10_1109_JSTARS_2023_3293593
crossref_primary_10_1109_TGRS_2024_3362471
crossref_primary_10_3233_JIFS_230721
crossref_primary_10_1007_s00500_025_10641_9
crossref_primary_10_1016_j_eswa_2023_120829
crossref_primary_10_1109_LGRS_2024_3431955
crossref_primary_10_1109_TGRS_2023_3314012
crossref_primary_10_1109_TAES_2024_3512525
crossref_primary_10_1016_j_knosys_2025_113840
crossref_primary_10_3390_agriculture15151598
crossref_primary_10_1109_ACCESS_2023_3332121
crossref_primary_10_1109_TGRS_2024_3434430
crossref_primary_10_1109_TGRS_2024_3471865
crossref_primary_10_1109_JSTARS_2024_3462514
crossref_primary_10_1109_JSTARS_2025_3599566
crossref_primary_10_1109_LGRS_2023_3312734
crossref_primary_10_1109_TGRS_2024_3355947
crossref_primary_10_1109_TCSVT_2025_3528262
crossref_primary_10_3390_electronics12224611
crossref_primary_10_3390_app13169180
crossref_primary_10_1016_j_engappai_2023_107241
crossref_primary_10_3390_rs15235619
crossref_primary_10_1109_JSEN_2024_3466397
crossref_primary_10_1080_01431161_2023_2255352
crossref_primary_10_3389_fpls_2023_1105601
crossref_primary_10_1038_s41598_025_86830_1
crossref_primary_10_1109_TGRS_2025_3603991
crossref_primary_10_1016_j_neunet_2023_05_037
crossref_primary_10_1109_TGRS_2024_3458896
crossref_primary_10_1016_j_patcog_2025_112127
crossref_primary_10_1109_TGRS_2024_3350024
crossref_primary_10_1080_13682199_2023_2183621
crossref_primary_10_1016_j_inffus_2024_102787
crossref_primary_10_1109_TGRS_2025_3541441
crossref_primary_10_1016_j_optlastec_2025_113867
crossref_primary_10_3390_electronics14091776
crossref_primary_10_1109_TIP_2024_3391011
crossref_primary_10_1016_j_jag_2023_103331
crossref_primary_10_1109_TGRS_2024_3468441
crossref_primary_10_1109_TGRS_2024_3443280
crossref_primary_10_1109_TGRS_2023_3307508
crossref_primary_10_1109_TGRS_2024_3470514
crossref_primary_10_1109_TIM_2025_3545998
crossref_primary_10_1016_j_neunet_2023_05_047
Cites_doi 10.1109/TIP.2013.2281420
10.1109/CVPR.2012.6247743
10.1109/TGRS.2020.3012981
10.1109/TIP.2017.2705426
10.1109/TIP.2020.3028457
10.1109/ACCESS.2019.2944661
10.1109/CVPR.2010.5539929
10.1109/MGRS.2021.3115137
10.1109/TGRS.2020.3020823
10.1109/TIP.2020.2975984
10.1109/TIP.2019.2924171
10.1109/ICCV.2019.00860
10.1016/j.patcog.2020.107404
10.1109/ICCV.2019.00615
10.1016/j.infrared.2014.10.022
10.1109/JSTARS.2017.2700023
10.1016/j.neucom.2017.07.017
10.1109/TGRS.2020.3015157
10.1109/LGRS.2017.2729512
10.1016/j.patcog.2020.107762
10.1007/978-3-030-01234-2_1
10.1109/TIP.2020.3037472
10.1109/TIP.2021.3122102
10.1109/TAES.2015.140878
10.21629/JSEE.2018.05.07
10.1016/j.patcog.2016.04.002
10.1109/TAES.2020.3024391
10.1109/CVPR.2018.00745
10.1109/ICCV48922.2021.00717
10.1109/TGRS.2013.2242477
10.1109/TGRS.2019.2911513
10.1109/CVPR.2018.00377
10.1016/j.infrared.2011.10.006
10.1109/TGRS.2020.3044958
10.1109/ACCESS.2021.3089376
10.1109/TIP.2015.2496289
10.3390/rs11040382
10.1109/TGRS.2020.3016820
10.1109/WACV45572.2020.9093464
10.1109/TIP.2021.3092578
10.1109/CVPR.2007.383267
10.1109/TAES.2019.2894050
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2015.7298965
10.1109/LGRS.2021.3050828
10.1109/WACV48630.2021.00099
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
DOI 10.1109/TIP.2022.3228497
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1941-0042
EndPage 1
ExternalDocumentID oai:HAL:hal-04473605v1
37015404
10_1109_TIP_2022_3228497
9989433
Genre orig-research
Journal Article
GrantInformation_xml – fundername: AXA Research Fund
  funderid: 10.13039/501100001961
– fundername: MIAI@Grenoble Alpes
  grantid: ANR-19-P3IA-0003
– fundername: National Natural Science Foundation of China
  grantid: 42271350; 62101045
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
ID FETCH-LOGICAL-c381t-8bba76490f1873a32367d3478197b44f04a734af3acb5f127a61ac723c7bb2c13
IEDL.DBID RIE
ISICitedReferencesCount 610
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902111900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Tue Oct 14 20:53:00 EDT 2025
Thu Oct 02 10:25:47 EDT 2025
Mon Jun 30 10:22:33 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Sat Nov 29 03:21:16 EST 2025
Tue Nov 18 20:59:37 EST 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Infrared small object
deep learning
feature interaction
attention mechanism
deep multi-scale feature
local and global context information
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-8bba76490f1873a32367d3478197b44f04a734af3acb5f127a61ac723c7bb2c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3212-9584
0000-0003-4817-2875
PMID 37015404
PQID 2756560729
PQPubID 85429
PageCount 1
ParticipantIDs pubmed_primary_37015404
crossref_citationtrail_10_1109_TIP_2022_3228497
hal_primary_oai_HAL_hal_04473605v1
proquest_miscellaneous_2796161192
proquest_journals_2756560729
crossref_primary_10_1109_TIP_2022_3228497
ieee_primary_9989433
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref53
Bingwei (ref46) 2020; 5
ref52
ref11
ref10
ref54
ref17
ref16
ref19
Wu (ref36) 2019
ref51
Park (ref43) 2018
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Li (ref32) 2021
ref5
ref35
ref34
ref37
ref31
ref30
ref33
ref2
ref1
ref38
Guo (ref40) 2021
Zhao (ref27) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
Vaswani (ref39)
Wang (ref18); 10462
References_xml – ident: ref7
  doi: 10.1109/TIP.2013.2281420
– ident: ref47
  doi: 10.1109/CVPR.2012.6247743
– ident: ref25
  doi: 10.1109/TGRS.2020.3012981
– ident: ref3
  doi: 10.1109/TIP.2017.2705426
– ident: ref5
  doi: 10.1109/TIP.2020.3028457
– year: 2021
  ident: ref40
  article-title: Beyond self-attention: External attention using two linear layers for visual tasks
  publication-title: arXiv:2105.02358
– ident: ref22
  doi: 10.1109/ACCESS.2019.2944661
– ident: ref48
  doi: 10.1109/CVPR.2010.5539929
– ident: ref2
  doi: 10.1109/MGRS.2021.3115137
– ident: ref33
  doi: 10.1109/TGRS.2020.3020823
– ident: ref53
  doi: 10.1109/TIP.2020.2975984
– ident: ref4
  doi: 10.1109/TIP.2019.2924171
– ident: ref45
  doi: 10.1109/ICCV.2019.00860
– ident: ref44
  doi: 10.1016/j.patcog.2020.107404
– ident: ref37
  doi: 10.1109/ICCV.2019.00615
– ident: ref10
  doi: 10.1016/j.infrared.2014.10.022
– ident: ref14
  doi: 10.1109/JSTARS.2017.2700023
– ident: ref20
  doi: 10.1016/j.neucom.2017.07.017
– year: 2018
  ident: ref43
  article-title: BAM: Bottleneck attention module
  publication-title: arXiv:1807.06514
– ident: ref16
  doi: 10.1109/TGRS.2020.3015157
– ident: ref15
  doi: 10.1109/LGRS.2017.2729512
– ident: ref29
  doi: 10.1016/j.patcog.2020.107762
– ident: ref42
  doi: 10.1007/978-3-030-01234-2_1
– year: 2019
  ident: ref27
  article-title: TBC-Net: A real-time detector for infrared small target detection using semantic constraint
  publication-title: arXiv:2001.05852
– ident: ref51
  doi: 10.1109/TIP.2020.3037472
– ident: ref52
  doi: 10.1109/TIP.2021.3122102
– ident: ref11
  doi: 10.1109/TAES.2015.140878
– ident: ref21
  doi: 10.21629/JSEE.2018.05.07
– ident: ref9
  doi: 10.1016/j.patcog.2016.04.002
– ident: ref23
  doi: 10.1109/TAES.2020.3024391
– ident: ref41
  doi: 10.1109/CVPR.2018.00745
– ident: ref28
  doi: 10.1109/ICCV48922.2021.00717
– ident: ref8
  doi: 10.1109/TGRS.2013.2242477
– ident: ref12
  doi: 10.1109/TGRS.2019.2911513
– year: 2019
  ident: ref36
  article-title: FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation
  publication-title: arXiv:1903.11816
– ident: ref38
  doi: 10.1109/CVPR.2018.00377
– ident: ref6
  doi: 10.1016/j.infrared.2011.10.006
– ident: ref31
  doi: 10.1109/TGRS.2020.3044958
– volume: 5
  start-page: 12
  issue: 3
  year: 2020
  ident: ref46
  article-title: A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background
  publication-title: China Sci. Data, Online Version English Chinese
– ident: ref26
  doi: 10.1109/ACCESS.2021.3089376
– ident: ref1
  doi: 10.1109/TIP.2015.2496289
– ident: ref13
  doi: 10.3390/rs11040382
– ident: ref17
  doi: 10.1109/TGRS.2020.3016820
– year: 2021
  ident: ref32
  article-title: Dense nested attention network for infrared small target detection
  publication-title: arXiv:2106.00487
– ident: ref50
  doi: 10.1109/WACV45572.2020.9093464
– ident: ref54
  doi: 10.1109/TIP.2021.3092578
– ident: ref49
  doi: 10.1109/CVPR.2007.383267
– ident: ref19
  doi: 10.1109/TAES.2019.2894050
– ident: ref35
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref34
  doi: 10.1109/CVPR.2015.7298965
– ident: ref24
  doi: 10.1109/LGRS.2021.3050828
– ident: ref30
  doi: 10.1109/WACV48630.2021.00099
– volume: 10462
  volume-title: Proc. SPIE
  ident: ref18
  article-title: Small target detection in infrared image using convolutional neural networks
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Attention is all you need
SSID ssj0014516
Score 2.7690465
Snippet Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
attention mechanism
Computer networks
Computer Science
Context
Datasets
Decoding
deep learning
deep multi-scale feature
Feature extraction
feature interaction
Image resolution
Infrared imagery
Infrared small object
Integrated circuits
Learning
local and global context information
Maintenance
Modules
Object detection
Object recognition
Semantics
Visualization
Title UIU-Net: U-Net in U-Net for Infrared Small Object Detection
URI https://ieeexplore.ieee.org/document/9989433
https://www.ncbi.nlm.nih.gov/pubmed/37015404
https://www.proquest.com/docview/2756560729
https://www.proquest.com/docview/2796161192
https://hal.science/hal-04473605
Volume 32
WOSCitedRecordID wos000902111900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6tEw_wsMEGLLBNBvGCRFYndusYniZgWiVUJrFKfYtsxxaTunRq0_393DlptAdA2lOs5PJDvnP8ne_8HcAHy8dGUNWASoZRKhUf4X8wL9JCyNyKqtIhtMUm1HRazOf6agc-9XthvPcx-cyfUTPG8qul29BS2VBHtnAxgIFSqt2r1UcMqOBsjGyOVKoQ9m9DklwPrydX6Ajm-RkabyGJ3unBFDT4TQmQsbLKv0FmnGwu9h_3mc9hrwOV7Ly1ghew4-sD2O8AJuuG7_oAnj1gHzyEL7PJLJ365jOLB3ZTdw3EsWxShxXlprNft2axYD8trdewb76JqVv1S5hdfL_-epl2tRRSh3NykxbWGjWWmoesUMIIIm6rBO0z1cpKGbg0SkgThHF2FLJcmXFmnMqFU9bmLhOvYLde1v4IWIGgztncIzAIstKIKWQw2L1BOfRPPE9guO3e0nVE41TvYlFGh4PrEhVSkkLKTiEJfOzvuGtJNv4j-x411osRO_bl-Y-SznEplUD37D5L4JDU0kt1GkngeKvgshuq65L47xH2oZORwLv-Mg4yipyY2i83JKPHCI0RDSfwujWM_tlCEQzl8s3f3_kWnlKF-nbV5hh2m9XGn8ATd9_crFenaMnz4jRa8h--d-iN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tAwl4YLDBCAwwiBekZU1ip07gaQKmVpQyiVbam2U7tpjUpahN9_dz56TRHgCJp1jJ5Yd85_g73_k7gHcmGWpOVQMq4fNYyCTH_2BWxAUXmeFVVXrfFpuQ02lxeVle7MBJvxfGOReSz9wpNUMsv1raDS2VDcrAFs534U4uRJa2u7X6mAGVnA2xzVzGEoH_NiiZlIPZ-AJdwSw7RfMtBBE83ZqEdn9SCmSorfJ3mBmmm_P9__vQR_Cwg5XsrLWDx7Dj6gPY7yAm6wbw-gAe3OIfPISP8_E8nrrmAwsHdlV3DUSybFz7FWWnsx_XerFg3w2t2LDPrgnJW_UTmJ9_mX0axV01hdjirNzEhTFaDkWZ-LSQXHOibqs47TQtpRHCJ0JLLrTn2prcp5nUw1RbmXErjclsyp_CXr2s3TNgBcI6azKH0MCLqkRUIbzG7vXSoofikggG2-5VtqMap4oXCxVcjqRUqBBFClGdQiJ439_xq6XZ-IfsW9RYL0b82KOziaJziRCSo4N2k0ZwSGrppTqNRHC8VbDqButaEQM-Aj90MyJ401_GYUaxE1275YZkyiGCY8TDERy1htE_m0sCool4_ud3voZ7o9m3iZqMp19fwH2qV9-u4RzDXrPauJdw1940V-vVq2DPvwGFlers
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UIU-Net%3A+U-Net+in+U-Net+for+Infrared+Small+Object+Detection&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Xin&rft.au=Hong%2C+Danfeng&rft.au=Chanussot%2C+Jocelyn&rft.date=2023-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=32&rft.spage=364&rft_id=info:doi/10.1109%2FTIP.2022.3228497&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon