Relaxivity of manganese ferrite nanoparticles

[Display omitted] •Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high magnetization.•Zn0.4Mn0.6Fe2O4 and Mn0.4Fe2.6O4 have maximal r2.•Preparation procedures determine thickness of the magnetic dead layer.•r1 is strongly dependent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Progress in nuclear magnetic resonance spectroscopy Ročník 120-121; s. 72 - 94
Hlavný autor: Peters, Joop A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2020
Predmet:
ISSN:0079-6565, 1873-3301, 1873-3301
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high magnetization.•Zn0.4Mn0.6Fe2O4 and Mn0.4Fe2.6O4 have maximal r2.•Preparation procedures determine thickness of the magnetic dead layer.•r1 is strongly dependent on magnetic field strength, while r2 is not. Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.
AbstractList Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.
[Display omitted] •Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high magnetization.•Zn0.4Mn0.6Fe2O4 and Mn0.4Fe2.6O4 have maximal r2.•Preparation procedures determine thickness of the magnetic dead layer.•r1 is strongly dependent on magnetic field strength, while r2 is not. Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.
Author Peters, Joop A.
Author_xml – sequence: 1
  givenname: Joop A.
  surname: Peters
  fullname: Peters, Joop A.
  email: J.A.Peters@tudelft.nl
  organization: Biocatalysis, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
BookMark eNqFkD1PwzAURS1UJNrCL2DJyJLwHCdxMjCgii-pEhKC2Xp1n5GrxAm2W9F_T0qZGGC6yz1XV2fGJq53xNglh4wDr6432eA6H7IccshAZgD5CZvyWopUCOATNgWQTVqVVXnGZiFsAKCscjll6Qu1-Gl3Nu6T3iQdund0FCgx5L2NlDh0_YA-Wt1SOGenBttAFz85Z2_3d6-Lx3T5_PC0uF2mWtQ8pnVj6oqMaVblGpscV3WxKgtdFgIJjSwRiZMkIcuq4RrJ5LpZaRJQGDSFWIs5uzruDr7_2FKIqrNBU9uO3_ptUHlRcdEIkNVYbY5V7fsQPBmlbcRoexc92lZxUAdFaqO-FamDIgVSjYpGVvxiB2879Pt_qJsjRaOBnSWvgrbkNK2tJx3Vurd_8l8M6oTa
CitedBy_id crossref_primary_10_1134_S106378262460222X
crossref_primary_10_3390_cells11244029
crossref_primary_10_3390_molecules29235591
crossref_primary_10_1016_j_jwpe_2025_107329
crossref_primary_10_1016_j_mseb_2025_118058
crossref_primary_10_1021_acsanm_5c00309
crossref_primary_10_3390_nano15171382
crossref_primary_10_1515_ract_2024_0368
crossref_primary_10_3390_ma15217645
crossref_primary_10_3390_nano12193304
crossref_primary_10_3390_nano13050804
crossref_primary_10_1016_j_jallcom_2021_162715
crossref_primary_10_1016_j_rsurfi_2025_100545
crossref_primary_10_3390_nano13081373
crossref_primary_10_1016_j_jallcom_2025_181992
crossref_primary_10_1016_j_jddst_2024_106224
crossref_primary_10_3390_magnetochemistry9070170
crossref_primary_10_1002_wnan_1858
crossref_primary_10_1007_s42250_025_01466_y
crossref_primary_10_1016_j_ccr_2021_214069
crossref_primary_10_1016_j_jmmm_2022_170219
crossref_primary_10_1021_acs_jpcc_4c07127
crossref_primary_10_1111_jace_20145
crossref_primary_10_1016_j_ceramint_2024_10_084
crossref_primary_10_1016_j_heliyon_2024_e31428
crossref_primary_10_1016_j_jallcom_2024_175932
crossref_primary_10_3390_molecules27238297
crossref_primary_10_3390_ph16020249
crossref_primary_10_1016_j_jiec_2021_07_043
crossref_primary_10_1007_s10876_024_02598_w
Cites_doi 10.1039/C5DT00212E
10.1002/adhm.201200078
10.1021/cm300301c
10.1016/j.jmmm.2012.12.005
10.1007/BF01587300
10.1109/TMAG.1975.1058861
10.1021/ja104503g
10.1103/PhysRevB.77.092416
10.1016/j.jmr.2011.06.024
10.1016/j.jmmm.2005.01.070
10.1016/j.ssc.2014.10.001
10.1039/C5RA07632C
10.1063/1.4966253
10.1016/j.ceramint.2016.05.041
10.1088/2053-1591/ab66a4
10.1039/C5RA20474G
10.1002/9781118503652
10.1007/s11051-016-3402-5
10.1002/mrm.22944
10.1103/PhysRev.121.1379
10.1021/nl070363y
10.1002/adfm.201200275
10.1103/PhysRevB.51.12009
10.1016/j.jmmm.2011.10.017
10.1016/j.jmmm.2008.02.022
10.1143/JPSJ.22.174
10.1016/j.biomaterials.2014.07.019
10.1002/mrm.10059
10.1016/j.biomaterials.2009.02.001
10.1021/nl071099b
10.1016/j.jmmm.2018.11.097
10.1109/TMAG.2018.2844253
10.1016/0022-3697(67)90130-8
10.1039/C4DT00162A
10.1016/j.biomaterials.2010.01.055
10.1021/ja973085l
10.1002/mrm.1910320610
10.1016/j.pep.2016.01.008
10.1016/j.jmmm.2006.09.011
10.1063/1.125792
10.1039/C4CP05122J
10.1016/j.ejpb.2007.08.001
10.1021/jp404199f
10.1002/anie.200701674
10.1039/C5DT00372E
10.1177/0885328215601926
10.1007/s00062-018-0678-0
10.1039/C7RA05495E
10.1021/acsnano.6b07684
10.1088/1361-6528/ab3f17
10.1002/pssa.2210400258
10.1039/b804544e
10.1021/jp510937r
10.1016/j.bcp.2006.11.008
10.1021/nn101129r
10.1186/s40580-014-0032-4
10.1007/s00775-013-1074-5
10.1007/BF00307535
10.1016/j.reactfunctpolym.2019.104352
10.1016/j.materresbull.2012.11.097
10.1039/C4NR05781C
10.1021/ja0380852
10.1088/0022-3727/41/13/134021
10.1016/j.matlet.2015.03.120
10.1109/TNB.2009.2021521
10.1021/ic50059a031
10.1088/0957-4484/20/18/185704
10.1021/acsami.7b05912
10.1016/S0304-8853(98)00555-1
10.4155/fmc-2018-0608
10.1063/1.4751442
10.1002/mrm.1135
10.1063/1.1746464
10.1148/radiol.2015150805
10.1103/PhysRevB.54.9288
10.1179/1753555713Y.0000000066
10.2214/AJR.07.3951
10.1016/j.jcis.2014.06.003
10.1039/b912149h
10.1039/C4DT02425G
10.1007/s11547-017-0816-9
10.1021/cr980440x
10.1097/RLI.0000000000000241
10.1109/TMAG.2008.2005329
10.1073/pnas.0902365106
10.1002/anie.200461875
10.1002/adma.200701952
10.1088/0957-4484/19/48/485101
10.1021/cr300068p
10.1039/c3ra43985b
10.1007/s11051-013-1743-x
10.1021/acs.jpcc.6b09274
10.3938/jkps.62.1696
10.1148/radiol.2015142690
10.1002/anie.200805149
10.1016/j.jmmm.2004.09.138
10.1016/j.mri.2008.01.039
10.1016/S0304-8853(02)00706-0
10.1016/0304-8853(94)90320-4
10.1021/ja035474n
10.1038/nm1467
10.1021/acs.chemmater.9b04848
10.1002/9780470386323.ch6
10.7150/thno.31233
10.1016/j.cej.2019.122848
10.1021/ar700121f
10.1021/acs.nanolett.9b00630
10.1021/acsami.6b13161
10.1002/chem.201405967
10.1103/PhysRevLett.67.3602
10.1021/nn202912b
10.1103/PhysRevLett.68.3112
10.1016/j.jmmm.2009.07.057
10.1063/1.1432474
10.1039/C9DT01620A
10.1063/1.5027898
10.1016/j.chemosphere.2015.08.008
10.1039/C2CE25957E
10.1063/1.4776771
10.1016/j.jmmm.2007.08.010
10.1038/nnano.2011.95
10.1088/1748-6041/4/2/025018
10.4028/www.scientific.net/SSP.241.139
10.1002/mabi.201400122
10.1016/0025-5416(69)90042-1
10.1007/s11051-014-2848-6
10.1021/cr068445e
10.1039/c4tb00342j
10.1002/adfm.200700482
10.1021/acs.chemrev.8b00363
10.1088/0957-4484/27/15/155706
10.1021/acsami.6b01377
10.1002/anie.200602866
10.5772/67513
10.3390/ma3074051
10.1002/anie.201100101
10.1002/mrm.22966
10.1063/1.3211307
10.1021/acs.chemmater.7b00035
10.1021/acs.chemmater.6b01256
10.1180/mgm.2018.109
10.1097/RLI.0000000000000252
10.1016/j.jcis.2017.10.001
10.1016/j.colsurfb.2015.11.010
10.1103/PhysRev.106.865
10.1016/j.jmmm.2016.10.095
10.1038/242190a0
10.1039/b922646j
10.1002/adhm.201200340
10.1002/smll.201201427
10.1007/s12325-015-0275-4
10.1063/1.478435
10.1103/PhysRev.104.328
10.1039/C7TB02954C
10.1002/mrm.25196
10.1039/C6RA14265F
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.pnmrs.2020.07.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1873-3301
EndPage 94
ExternalDocumentID 10_1016_j_pnmrs_2020_07_002
S0079656520300236
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJQLL
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSZ
T5K
WH7
WUQ
XOL
XPP
YK3
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
ID FETCH-LOGICAL-c381t-89f86eff9b5da92ab84b54c543aeaf75aae1e7e375691caef2c9bce304faf43d3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590593200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0079-6565
1873-3301
IngestDate Sun Sep 28 09:01:40 EDT 2025
Sat Nov 29 07:20:34 EST 2025
Tue Nov 18 22:11:28 EST 2025
Fri Feb 23 02:45:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MRI contrast agents
Transverse relaxivity
Zn-doping
Longitudinal relaxivity
Magnetization
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-89f86eff9b5da92ab84b54c543aeaf75aae1e7e375691caef2c9bce304faf43d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.pnmrs.2020.07.002
PQID 2461393076
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_2461393076
crossref_citationtrail_10_1016_j_pnmrs_2020_07_002
crossref_primary_10_1016_j_pnmrs_2020_07_002
elsevier_sciencedirect_doi_10_1016_j_pnmrs_2020_07_002
PublicationCentury 2000
PublicationDate October-December 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October-December 2020
PublicationDecade 2020
PublicationTitle Progress in nuclear magnetic resonance spectroscopy
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Nikles, Brazel (b0745) 2010; 3
Botta, Carniato, Esteban-Gómez, Platas-Iglesias, Tei (b0080) 2019; 11
Roch, Gossuin, Muller, Gillis (b0185) 2005; 293
Peng, Choo, Chandrasekharan, Yang, Ding, Chuang, Xue (b0790) 2012; 8
J. Smit, H.P.J. Wijn, Ferrites, Philips' Technical Library, 1959.
Chen, Sun, Gu (b0200) 2009; 106
Yang, He, Lv, Gai, Cheng, Dai, Yang (b0585) 2015; 44
Leng, Li, Ren, Deng, Lin (b0785) 2015; 152
The reported plots were digitized with: WebPlotDigitizer
Veverka, Kaman, Kačenka, Herynek, Veverka, Šantavá, Lukeš, Jirák (b0505) 2015; 17
Davies, Kirschenbaum, Kustin (b0500) 1968; 7
Bulte, Brooks, Moskowitz, Bryant, Frank (b0295) 1999; 194
Vuong, Gossuin, Gillis, Delangre (b0155) 2012; 137
Hastings, Corliss (b0255) 1956; 104
Giri, Pradhan, Somani, Chelawat, Chhatre, Banerjee, Bahadur (b0605) 2008; 320
Caravan, Ellison, McMurry, Lauffer (b0020) 1999; 99
Stokes, Bromiley, Gatta, Rotiroti, Potts, Saunders (b0515) 2018; 82
Pardo, Pelaz, Gallo, Bañobre-López, Parak, Barbosa, del Pino, Taboada (b0640) 2020; 32
Laurent, Forge, Port, Roch, Robic, Vander Elst, Muller (b0090) 2008; 108
Rotter, Sedlák, Šimša, Brabers (b0520) 1977; 40
Gossuin, Orlando, Basini, Henrard, Lascialfari, Mattea, Stapf, Vuong (b0160) 2016; 27
Pullicino, Radon, Biswas, Bhojak, Das (b0060) 2018; 28
Kim, Zeng, Ng, Brazel (b0575) 2009; 321
Jang, Nah, Lee, Moon, Kim, Cheon (b0435) 2009; 48
.
Rosensweig (b0220) 2002; 252
Verwey, Heilmann (b0240) 1947; 15
Lee, Yoon, Figueiredo, Swirski, Weissleder (b0450) 2009; 106
Menelaou, Iatridi, Tsougos, Vasiou, Dendrinou-Samara, Bokias (b0385) 2015; 44
Lauterbur (b0005) 1973; 242
Tóth, Helm, Merbach (b0130) 2013
Levy, Pastero, Hoser, Viscovo (b0480) 2015; 201
O.F. Odio, E. Reguera, Nanostructured spinel ferrites: synthesis, functionalization, nanomagnetism and environmental applications, in: M.S. Seehra (Ed.) Magnetic spinels, IntechOpen, London, 2017, 10.5772/67513.
Bannwarth, Ebert, Lauck, Ziener, Tomcin, Jakob, Muennemann, Mailaender, Musyanovych, Landfester (b0225) 2014; 14
Matsumoto, Jasanoff (b0760) 2008; 26
Broese van Groenou, Bongers, Stuyts (b0275) 1969; 3
Leung, Wang, Wang, Xuan, Chak, Cheng (b0720) 2009; 8
Vamvakidis, Sakellari, Angelakeris, Dendrinou-Samara (b0645) 2013; 15
Ereath Beeran, Nazeer, Boniface Fernandez, Surendra Muvvala, Wunderlich, Anil, Vellappally, Rao, John, Jayasree, Varma (b0630) 2015; 17
Kim, Thai, Nikles, Brazel (b0360) 2009; 45
Ding, Xue, Li, Li, Tang, Qi, Wu, Ge (b0670) 2016; 6
Kanal, Tweedle (b0040) 2015; 275
Carta, Casula, Floris, Falqui, Mountjoy, Boni, Sangregorio, Corrias (b0495) 2010; 12
Faraji, Dini, Zahraei (b0600) 2019; 475
Arulmurugan, Jeyadevan, Vaidyanathan, Sendhilnathan (b0680) 2005; 288
Brooks, Moiny, Gillis (b0165) 2001; 45
Nandwana, Ryoo, Kanthala, De, Chou, Prasad, Dravid (b0395) 2016; 8
Augustine, Lee, Kim, Zhang, Kim (b0340) 2019; 144
Vamvakidis, Mourdikoudis, Makridis, Paulidou, Angelakeris, Dendrinou-Samara (b0420) 2018; 511
Jun, Lee, Cheon (b0285) 2008; 47
Yang, Ma, Xin, Li, Sun, Wei, Ren, Chen, Lin, Gao (b0610) 2017; 29
Seo, Yang, Lee, Jung, Kim, Lee, Kim, Suh, Huh, Haam (b0800) 2008; 18
Miao, Zhang, Liu, Ghosal, Fan, Xie, Cai, Jiao, Hu, Yang (b0595) 2019; 9
Cullity B.D., Graham C.D., Ferrimagnetism, Introduction to magnetic materials, Wiley-IEEE Press, 2009, pp. 175–195
Pierre, Allen, Caravan (b0025) 2014; 19
Tang, Sorensen, Klabunde, Hadjipanayis (b0325) 1991; 67
Pernia Leal, Rivera-Fernández, Franco, Pozo, de la Fuente, Garcia-Martin (b0405) 2015; 7
Brücher, Tircsó, Baranyai, Kovács, Sherry (b0050) 2013
Yang, Chinnasamy, Greneche, Chen, Yoon, Chen, Hsu, Cai, Ziemer, Vittoria, Harris (b0475) 2009; 20
Amighian, Karimzadeh, Mozaffari (b0650) 2013; 332
Martins, Silva, Paula, Gomes, Aquino, Mestnik-Filho, Bonville, Porcher, Perzynski, Depeyrot (b0730) 2017; 121
Robert, Violas, Grand, Lehericy, Idee, Ballet, Corot (b0065) 2016; 51
Batlle (b0310) 2002; 35
Galvão, Neto, Freire, Fechine (b0250) 2016; 241
Kandasamy (b0455) 2019; 30
Mirahmadi-Zare, Allafchian, Aboutalebi, Shojaei, Khazaie, Dormiani, Lachinani, Nasr-Esfahani (b0120) 2016; 121
Upadhyay, Davies, Wells, Charles (b0615) 1994; 132
Ahmad, Yao, Zhou, Liu (b0115) 2015; 139
Yablonskiy, Haacke (b0175) 1994; 32
Lasheras, Insausti, de la Fuente, Gil de Muro, Castellanos-Rubio, Marcano, Fernández-Gubieda, Serrano, Martín-Rodríguez, Garaio, García, Lezama (b0560) 2019; 48
Vuong, Gillis, Gossuin (b0700) 2011; 212
Kaman, Kuličková, Herynek, Koktan, Maryško, Dědourková, Knížek, Jirák (b0655) 2017; 427
Lévy, Gazeau, Wilhelm, Neveu, Devaud, Levitz (b0140) 2013; 117
Huh, Lee, Lee, Jun, Kim, Yun, Kim, Suh, Cheon (b0280) 2007; 19
Wang, Bremner, Wu, Gong, Fan, Xie, Zhang, Wu, Zhu (b0825) 2020; 382
Sun, Zeng, Robinson, Raoux, Rice, Wang, Li (b0465) 2004; 126
Kaman, Herynek, Veverka, Kubíčková, Pashchenko, Kuličková, Jirák (b0775) 2018; 54
Yang, Shi, Wang, Shi, Guo, Yang, Wu, Wu (b0795) 2016; 30
Zhao, Chi, Yang, Yang, Ren, Zhu, Zhang, Gao (b0710) 2016; 28
Harrison, Osmond, Teale (b0555) 1957; 106
Štěpánková, Sedlák, Chlan, Novák, Šimša (b0525) 2008; 77
Li, Wang, Sun, Zhao, Lei, Lan, Cheng, Wang, Dou, Lu (b0815) 2013; 2
Bleicher, Kanal (b0035) 2008; 191
Vuong, Gillis, Roch, Gossuin (b0125) 2017; 9
Yoon, Lee, Shao, Weissleder (b0755) 2011; 50
Kurz, Kampf, Heiland, Bendszus, Schlemmer, Ziener (b0190) 2014; 71
Kim, Lee, Hong, Cho, Sung, Poo, Lim (b0780) 2011; 5
Šimša, Brabers (b0530) 1975; 11
Mohapatra, Mitra, Bahadur, Aslam (b0390) 2013; 15
Lu, Salabas, Schüth (b0470) 2007; 46
Karovic, Tonazzini, Rebola, Edström, Lövdahl, Fredholm, Daré (b0105) 2007; 73
Vamvakidis, Katsikini, Sakellari, Paloura, Kalogirou, Dendrinou-Samara (b0210) 2014; 43
Rath, Mishra, Anand, Das, Sahu, Upadhyaya, Verma (b0665) 2000; 76
Li, Zhao, Liu, Cheng, Han, Zhang, Min, Liu, Xu, Shi, Qin, Fan, Ren, Nie (b0590) 2019
Venkatesha, Pudakalakatti, Qurishi, Atreya, Srivastava (b0415) 2015; 5
Pinho, Pereira, Voisin, Kassem, Bouchaud, Etienne, Peters, Carlos, Mornet, Geraldes, Rocha, Delville (b0195) 2010; 4
Zhang, Li, Liu, Jiao, Ng, Yi, Luo, Bay, Zhao, Peng, Gu, Fan (b0430) 2017; 11
Sharifi, Shokrollahi, Amiri (b0685) 2012; 324
Wahsner, Gale, Rodríguez-Rodríguez, Caravan (b0030) 2019; 119
Vuong, Berret, Fresnais, Gossuin, Sandre (b0150) 2012; 1
Tromsdorf, Bigall, Kaul, Bruns, Nikolic, Mollwitz, Sperling, Reimer, Hohenberg, Parak, Foerster, Beisiegel, Adam, Weller (b0565) 2007; 7
Pereira, Pereira, Fernandes, Rocha, Mendes, Fernández-Garcíá, Guedes, Tavares, Grenèche, Araújo, Freire (b0300) 2012; 24
Yang, Zhang, Shi, Hu, Du, Fang, Ma, Wu, Yang (b0425) 2010; 31
Lohrke, Frenzel, Endrikat, Alves, Grist, Law, Lee, Leiner, Li, Nikolaou, Prince, Prince, Schild, Weinreb, Yoshikawa, Pietsch (b0010) 2016; 33
van der Zaag, Noordermeer, Johnson, Bongers (b0270) 1992; 68
Zhang, Wang, Chakoumakos, Yin (b0490) 1998; 120
Ahmad, Bae, Rhee (b0810) 2018; 8
Hamed, Fitzgerald, Wang, Gueorguieva, Malik, Melzer (b0690) 2013; 28
Vamvakidis, Katsikini, Vourlias, Angelakeris, Paloura, Dendrinou-Samara (b0550) 2015; 44
Huang, Cheng (b0535) 2013; 113
Murata, Gonzalez-Cuyar, Murata, Fligner, Dills, Hippe, Maravilla (b0070) 2016; 51
Lee, Yang, Ko, Oh, Kang, Son, Lee, Lee, Yoon, Suh, Huh, Haam (b0770) 2008; 18
Aslibeiki, Kameli, Ehsani (b0320) 2016; 42
Chlan, Procházka, Štěpánková, Sedlák, Novák, Šimša, Brabers (b0260) 2008; 320
Reddy, Arias, Nicolas, Couvreur (b0830) 2012; 112
Zhao, Sun, Bao, Yang, Wei, Cheng, Lin, Gao (b0715) 2018; 6
Yasuoka, Hirai, Shinjo, Kiyama, Bando, Takada (b0540) 1967; 22
Kanda, Fukusato, Matsuda, Toyoda, Oba, Kotoku, Haruyama, Kitajima, Furui (b0055) 2015; 276
Gillis, Moiny, Brooks (b0180) 2002; 47
Lu, Ma, Sun, Xia, Liu, Wang, Zhao, Gao, Gong, Song, Shuai, Ai, Gu (b0375) 2009; 30
Lee, Yang, Seo, Ko, Suh, Huh, Haam (b0570) 2008; 19
Du, Liu, Liang, Liang, Tian (b0345) 2019; 19
Wang, Wu, Tang, Zeng, Qiao, Zhao, Zhang, Hu, Gao (b0620) 2013; 3
v.d. Giessen (b0215) 1967; 28
Hill, Craig, Gibbs (b0245) 1979; 4
Chithrani, Chan (b0445) 2007; 7
Wang, Liu, Li, Liu, Wang (b0705) 2014; 2
Lim, Yang, Suh, Huh, Haam (b0370) 2009; 19
Sahoo, Devi, Dutta, Maiti, Pramanik, Dhara (b0740) 2014; 431
Lee, Huh, Jun, Seo, Jang, Song, Kim, Cho, Yoon, Suh, Cheon (b0265) 2007; 13
Park, Kang, Kim, Suh, Huh, Haam (b0400) 2015; 2
de Haan (b0145) 2011; 66
Mazarío, Sánchez-Marcos, Menéndez, Cañete, Mayoral, Rivera-Fernández, de la Fuente, Herrasti (b0380) 2015; 119
Rinck (b0095) 2019; 30
Ahmad, Iqbal, Bae, Rhee, Hong, Chang, Lee (b0580) 2013; 62
(last accessed: 30-06-2020).
Iatridi, Vamvakidis, Tsougos, Vassiou, Dendrinou-Samara, Bokias (b0355) 2016; 8
Chen, Sorensen, Klabunde, Hadjipanayis, Devlin, Kostikas (b0315) 1996; 54
Livramento, Tóth, Sour, Borel, Merbach, Ruloff (b0765) 2005; 44
Boni, Marinone, Innocenti, Sangregorio, Corti, Lascialfari, Mariani, Orsini, Poletti, Casula (b0625) 2008; 41
Ravichandran, Velumani (b0410) 2020; 7
Rath, Anand, Das, Sahu, Kulkarni, Date, Mishra (b0660) 2002; 91
Choo, Peng, Rajendran, Chandrasekharan, Yang, Ding, Chuang, Xue (b0805) 2013; 23
Baranyai, Brücher, Uggeri, Maiocchi, Tóth, Andrási, Gáspár, Zékány, Aime (b0045) 2015; 21
Gaumet, Vargas, Gurny, Delie (b0440) 2008; 69
Jun, Seo, Cheon (b0290) 2008; 41
Günay, Erdemi, Baykal, Sözeri, Toprak (b0350) 2013; 48
Kumar, Daverey, Khalilzad-Sharghi, Sahu, Kidambi, Othman, Bahadur (b0365) 2015; 5
Cardona, Urquiza, Presa, Tobón, Pal, Fraijo, Yacaman, Lozada Ramirez, Ivkov, Angulo-Molina, Mendez-Rojas (b0695) 2016; 6
Vestal, Zhang (b0725) 2003; 125
de Haan, Paquet (b0205) 2011; 66
Millan, Urtizberea, Silva, Palacio, Amaral, Snoeck, Serin (b0305) 2007; 312
Banerjee, Blasiak, Pasquier, Tomanek, Trudel (b0330) 2017; 7
Jirák, Vratislav (b0485) 1974; 24
Splendiani, Perri, Marsecano, Vellucci, Michelini, Barile, Di Cesare (b0075) 2018; 123
Kaman, Dědourková, Koktan, Kuličková, Maryško, Veverka, Havelek, Královec, Turnovcová, Jendelová, Schröfel, Svoboda (b0510) 2016; 18
Merbach A.E., Helm L., Tóth É., The chemistry of contrast agents in medical magnetic resonance imaging, second ed., John Wiley & Sons, Ltd, Chichester (UK, 2013
Ereath Beeran, Boniface Fernandez, John, Nazeer, Jayasree, Anil, Vellappally, Al Kheraif, Varma (b0635) 2015; 136
Kwon, Xia, Glyn-Jones, Beard, G
Vuong (10.1016/j.pnmrs.2020.07.002_b0125) 2017; 9
Lohrke (10.1016/j.pnmrs.2020.07.002_b0010) 2016; 33
Pierre (10.1016/j.pnmrs.2020.07.002_b0025) 2014; 19
Pinho (10.1016/j.pnmrs.2020.07.002_b0195) 2010; 4
Chlan (10.1016/j.pnmrs.2020.07.002_b0260) 2008; 320
Augustine (10.1016/j.pnmrs.2020.07.002_b0340) 2019; 144
Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0210) 2014; 43
Cardona (10.1016/j.pnmrs.2020.07.002_b0695) 2016; 6
Seo (10.1016/j.pnmrs.2020.07.002_b0800) 2008; 18
Mohapatra (10.1016/j.pnmrs.2020.07.002_b0390) 2013; 15
Yang (10.1016/j.pnmrs.2020.07.002_b0475) 2009; 20
Murata (10.1016/j.pnmrs.2020.07.002_b0070) 2016; 51
Sun (10.1016/j.pnmrs.2020.07.002_b0465) 2004; 126
Ahmad (10.1016/j.pnmrs.2020.07.002_b0810) 2018; 8
Yang (10.1016/j.pnmrs.2020.07.002_b0795) 2016; 30
Gossuin (10.1016/j.pnmrs.2020.07.002_b0160) 2016; 27
Roch (10.1016/j.pnmrs.2020.07.002_b0135) 1999; 110
Kanda (10.1016/j.pnmrs.2020.07.002_b0055) 2015; 276
Faraji (10.1016/j.pnmrs.2020.07.002_b0600) 2019; 475
Yang (10.1016/j.pnmrs.2020.07.002_b0585) 2015; 44
Brooks (10.1016/j.pnmrs.2020.07.002_b0165) 2001; 45
Vuong (10.1016/j.pnmrs.2020.07.002_b0700) 2011; 212
Laurent (10.1016/j.pnmrs.2020.07.002_b0090) 2008; 108
Kumar (10.1016/j.pnmrs.2020.07.002_b0365) 2015; 5
Caravan (10.1016/j.pnmrs.2020.07.002_b0020) 1999; 99
Matsumoto (10.1016/j.pnmrs.2020.07.002_b0760) 2008; 26
Bleicher (10.1016/j.pnmrs.2020.07.002_b0035) 2008; 191
Zhao (10.1016/j.pnmrs.2020.07.002_b0715) 2018; 6
Bannwarth (10.1016/j.pnmrs.2020.07.002_b0225) 2014; 14
Hastings (10.1016/j.pnmrs.2020.07.002_b0255) 1956; 104
Boni (10.1016/j.pnmrs.2020.07.002_b0625) 2008; 41
Zhang (10.1016/j.pnmrs.2020.07.002_b0735) 2017; 9
Kaman (10.1016/j.pnmrs.2020.07.002_b0775) 2018; 54
Robert (10.1016/j.pnmrs.2020.07.002_b0065) 2016; 51
Aslibeiki (10.1016/j.pnmrs.2020.07.002_b0320) 2016; 42
Vuong (10.1016/j.pnmrs.2020.07.002_b0155) 2012; 137
Zhang (10.1016/j.pnmrs.2020.07.002_b0430) 2017; 11
Leung (10.1016/j.pnmrs.2020.07.002_b0720) 2009; 8
Mazarío (10.1016/j.pnmrs.2020.07.002_b0380) 2015; 119
Pernia Leal (10.1016/j.pnmrs.2020.07.002_b0405) 2015; 7
Jun (10.1016/j.pnmrs.2020.07.002_b0290) 2008; 41
Kim (10.1016/j.pnmrs.2020.07.002_b0780) 2011; 5
Gaumet (10.1016/j.pnmrs.2020.07.002_b0440) 2008; 69
Pullicino (10.1016/j.pnmrs.2020.07.002_b0060) 2018; 28
Lévy (10.1016/j.pnmrs.2020.07.002_b0140) 2013; 117
Lee (10.1016/j.pnmrs.2020.07.002_b0265) 2007; 13
10.1016/j.pnmrs.2020.07.002_b0015
Leng (10.1016/j.pnmrs.2020.07.002_b0785) 2015; 152
Banerjee (10.1016/j.pnmrs.2020.07.002_b0330) 2017; 7
Rotter (10.1016/j.pnmrs.2020.07.002_b0520) 1977; 40
Kandasamy (10.1016/j.pnmrs.2020.07.002_b0455) 2019; 30
Peng (10.1016/j.pnmrs.2020.07.002_b0790) 2012; 8
Wahsner (10.1016/j.pnmrs.2020.07.002_b0030) 2019; 119
Stokes (10.1016/j.pnmrs.2020.07.002_b0515) 2018; 82
Harrison (10.1016/j.pnmrs.2020.07.002_b0555) 1957; 106
Yang (10.1016/j.pnmrs.2020.07.002_b0610) 2017; 29
Sharifi (10.1016/j.pnmrs.2020.07.002_b0685) 2012; 324
Choo (10.1016/j.pnmrs.2020.07.002_b0805) 2013; 23
Mirahmadi-Zare (10.1016/j.pnmrs.2020.07.002_b0120) 2016; 121
Galvão (10.1016/j.pnmrs.2020.07.002_b0250) 2016; 241
Šimša (10.1016/j.pnmrs.2020.07.002_b0530) 1975; 11
Bulte (10.1016/j.pnmrs.2020.07.002_b0295) 1999; 194
Vestal (10.1016/j.pnmrs.2020.07.002_b0725) 2003; 125
Zhang (10.1016/j.pnmrs.2020.07.002_b0490) 1998; 120
10.1016/j.pnmrs.2020.07.002_b0100
Chen (10.1016/j.pnmrs.2020.07.002_b0200) 2009; 106
van der Zaag (10.1016/j.pnmrs.2020.07.002_b0270) 1992; 68
Günay (10.1016/j.pnmrs.2020.07.002_b0350) 2013; 48
Pereira (10.1016/j.pnmrs.2020.07.002_b0300) 2012; 24
10.1016/j.pnmrs.2020.07.002_b0460
de Haan (10.1016/j.pnmrs.2020.07.002_b0205) 2011; 66
Tóth (10.1016/j.pnmrs.2020.07.002_b0130) 2013
10.1016/j.pnmrs.2020.07.002_b0085
Gillis (10.1016/j.pnmrs.2020.07.002_b0180) 2002; 47
Zhao (10.1016/j.pnmrs.2020.07.002_b0710) 2016; 28
Huang (10.1016/j.pnmrs.2020.07.002_b0535) 2013; 113
Batlle (10.1016/j.pnmrs.2020.07.002_b0310) 2002; 35
Chen (10.1016/j.pnmrs.2020.07.002_b0315) 1996; 54
Lee (10.1016/j.pnmrs.2020.07.002_b0450) 2009; 106
Park (10.1016/j.pnmrs.2020.07.002_b0400) 2015; 2
Ereath Beeran (10.1016/j.pnmrs.2020.07.002_b0630) 2015; 17
Brown (10.1016/j.pnmrs.2020.07.002_b0170) 1961; 121
Wang (10.1016/j.pnmrs.2020.07.002_b0825) 2020; 382
Yablonskiy (10.1016/j.pnmrs.2020.07.002_b0175) 1994; 32
Iatridi (10.1016/j.pnmrs.2020.07.002_b0355) 2016; 8
Ding (10.1016/j.pnmrs.2020.07.002_b0670) 2016; 6
10.1016/j.pnmrs.2020.07.002_b0230
Livramento (10.1016/j.pnmrs.2020.07.002_b0765) 2005; 44
10.1016/j.pnmrs.2020.07.002_b0235
Jirák (10.1016/j.pnmrs.2020.07.002_b0485) 1974; 24
Tromsdorf (10.1016/j.pnmrs.2020.07.002_b0565) 2007; 7
Tang (10.1016/j.pnmrs.2020.07.002_b0325) 1991; 67
Ahmad (10.1016/j.pnmrs.2020.07.002_b0580) 2013; 62
Lee (10.1016/j.pnmrs.2020.07.002_b0750) 2011; 6
Veverka (10.1016/j.pnmrs.2020.07.002_b0505) 2015; 17
Miao (10.1016/j.pnmrs.2020.07.002_b0595) 2019; 9
Menelaou (10.1016/j.pnmrs.2020.07.002_b0385) 2015; 44
Vuong (10.1016/j.pnmrs.2020.07.002_b0150) 2012; 1
v.d. Giessen (10.1016/j.pnmrs.2020.07.002_b0215) 1967; 28
Li (10.1016/j.pnmrs.2020.07.002_b0590) 2019
Rath (10.1016/j.pnmrs.2020.07.002_b0665) 2000; 76
Kurz (10.1016/j.pnmrs.2020.07.002_b0190) 2014; 71
Lauterbur (10.1016/j.pnmrs.2020.07.002_b0005) 1973; 242
Baranyai (10.1016/j.pnmrs.2020.07.002_b0045) 2015; 21
Xie (10.1016/j.pnmrs.2020.07.002_b0675) 2014; 35
Broese van Groenou (10.1016/j.pnmrs.2020.07.002_b0275) 1969; 3
Lim (10.1016/j.pnmrs.2020.07.002_b0370) 2009; 19
Ereath Beeran (10.1016/j.pnmrs.2020.07.002_b0635) 2015; 136
Kaman (10.1016/j.pnmrs.2020.07.002_b0655) 2017; 427
Arulmurugan (10.1016/j.pnmrs.2020.07.002_b0680) 2005; 288
Choi (10.1016/j.pnmrs.2020.07.002_b0820) 2010; 132
Lu (10.1016/j.pnmrs.2020.07.002_b0470) 2007; 46
Chithrani (10.1016/j.pnmrs.2020.07.002_b0445) 2007; 7
Amighian (10.1016/j.pnmrs.2020.07.002_b0650) 2013; 332
de Haan (10.1016/j.pnmrs.2020.07.002_b0145) 2011; 66
Jang (10.1016/j.pnmrs.2020.07.002_b0435) 2009; 48
Reddy (10.1016/j.pnmrs.2020.07.002_b0830) 2012; 112
Sahoo (10.1016/j.pnmrs.2020.07.002_b0740) 2014; 431
Rinck (10.1016/j.pnmrs.2020.07.002_b0095) 2019; 30
Carta (10.1016/j.pnmrs.2020.07.002_b0495) 2010; 12
Yoon (10.1016/j.pnmrs.2020.07.002_b0755) 2011; 50
Lee (10.1016/j.pnmrs.2020.07.002_b0770) 2008; 18
Hamed (10.1016/j.pnmrs.2020.07.002_b0690) 2013; 28
Rath (10.1016/j.pnmrs.2020.07.002_b0660) 2002; 91
Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0645) 2013; 15
Karovic (10.1016/j.pnmrs.2020.07.002_b0105) 2007; 73
Kwon (10.1016/j.pnmrs.2020.07.002_b0110) 2009; 4
Hill (10.1016/j.pnmrs.2020.07.002_b0245) 1979; 4
10.1016/j.pnmrs.2020.07.002_b0335
Ravichandran (10.1016/j.pnmrs.2020.07.002_b0410) 2020; 7
Venkatesha (10.1016/j.pnmrs.2020.07.002_b0415) 2015; 5
Li (10.1016/j.pnmrs.2020.07.002_b0815) 2013; 2
Martins (10.1016/j.pnmrs.2020.07.002_b0730) 2017; 121
Ahmad (10.1016/j.pnmrs.2020.07.002_b0115) 2015; 139
Yasuoka (10.1016/j.pnmrs.2020.07.002_b0540) 1967; 22
Kim (10.1016/j.pnmrs.2020.07.002_b0745) 2010; 3
Roch (10.1016/j.pnmrs.2020.07.002_b0185) 2005; 293
Lee (10.1016/j.pnmrs.2020.07.002_b0570) 2008; 19
Upadhyay (10.1016/j.pnmrs.2020.07.002_b0615) 1994; 132
Kaman (10.1016/j.pnmrs.2020.07.002_b0510) 2016; 18
Rosensweig (10.1016/j.pnmrs.2020.07.002_b0220) 2002; 252
Brücher (10.1016/j.pnmrs.2020.07.002_b0050) 2013
Wang (10.1016/j.pnmrs.2020.07.002_b0620) 2013; 3
Kanal (10.1016/j.pnmrs.2020.07.002_b0040) 2015; 275
Du (10.1016/j.pnmrs.2020.07.002_b0345) 2019; 19
Yang (10.1016/j.pnmrs.2020.07.002_b0425) 2010; 31
Levy (10.1016/j.pnmrs.2020.07.002_b0480) 2015; 201
Štěpánková (10.1016/j.pnmrs.2020.07.002_b0525) 2008; 77
Nandwana (10.1016/j.pnmrs.2020.07.002_b0395) 2016; 8
Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0420) 2018; 511
Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0550) 2015; 44
Wang (10.1016/j.pnmrs.2020.07.002_b0705) 2014; 2
Splendiani (10.1016/j.pnmrs.2020.07.002_b0075) 2018; 123
Lasheras (10.1016/j.pnmrs.2020.07.002_b0560) 2019; 48
Lu (10.1016/j.pnmrs.2020.07.002_b0375) 2009; 30
Millan (10.1016/j.pnmrs.2020.07.002_b0305) 2007; 312
Giri (10.1016/j.pnmrs.2020.07.002_b0605) 2008; 320
Verwey (10.1016/j.pnmrs.2020.07.002_b0240) 1947; 15
Pardo (10.1016/j.pnmrs.2020.07.002_b0640) 2020; 32
Kim (10.1016/j.pnmrs.2020.07.002_b0575) 2009; 321
Huh (10.1016/j.pnmrs.2020.07.002_b0280) 2007; 19
Jun (10.1016/j.pnmrs.2020.07.002_b0285) 2008; 47
Davies (10.1016/j.pnmrs.2020.07.002_b0500) 1968; 7
van der Zaag (10.1016/j.pnmrs.2020.07.002_b0545) 1995; 51
Kim (10.1016/j.pnmrs.2020.07.002_b0360) 2009; 45
Botta (10.1016/j.pnmrs.2020.07.002_b0080) 2019; 11
References_xml – volume: 275
  start-page: 630
  year: 2015
  end-page: 634
  ident: b0040
  article-title: Residual or retained gadolinium: practical implications for radiologists and our patients
  publication-title: Radiology
– volume: 41
  start-page: 179
  year: 2008
  end-page: 189
  ident: b0290
  article-title: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences
  publication-title: Acc. Chem. Res.
– volume: 191
  start-page: W307
  year: 2008
  end-page: W311
  ident: b0035
  article-title: Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine
  publication-title: Am. J. Roentgenol.
– volume: 320
  start-page: e96
  year: 2008
  end-page: e99
  ident: b0260
  article-title: Fe NMR study of manganese ferrites
  publication-title: J. Magn. Magn. Mater.
– volume: 76
  start-page: 475
  year: 2000
  end-page: 477
  ident: b0665
  article-title: Appearance of superparamagnetism on heating nanosize Mn0.65Zn0.35Fe2O4
  publication-title: Appl. Phys. Lett.
– volume: 121
  start-page: 8982
  year: 2017
  end-page: 8991
  ident: b0730
  article-title: Local structure of core-shell MnFe
  publication-title: J. Phys. Chem. C
– reference: The reported plots were digitized with: WebPlotDigitizer,
– volume: 332
  start-page: 157
  year: 2013
  end-page: 162
  ident: b0650
  article-title: The effect of Mn
  publication-title: J. Magn. Magn. Mater.
– volume: 194
  start-page: 217
  year: 1999
  end-page: 223
  ident: b0295
  article-title: Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L
  publication-title: J. Magn. Magn. Mater.
– volume: 22
  start-page: 174
  year: 1967
  end-page: 180
  ident: b0540
  article-title: NMR determination of metal Ion distribution in manganese ferrite prepared from aqueous solution
  publication-title: J. Phys. Soc. Jpn.
– volume: 3
  start-page: 23454
  year: 2013
  end-page: 23460
  ident: b0620
  article-title: Ultrasmall PEGylated Mn
  publication-title: RSC Adv.
– volume: 19
  start-page: 127
  year: 2014
  end-page: 131
  ident: b0025
  article-title: Contrast agents for MRI: 30+ years and where are we going?
  publication-title: J. Biol. Inorg. Chem.
– volume: 43
  start-page: 12754
  year: 2014
  end-page: 12765
  ident: b0210
  article-title: Reducing the inversion degree of MnFe
  publication-title: Dalton Trans.
– volume: 511
  start-page: 101
  year: 2018
  end-page: 109
  ident: b0420
  article-title: Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 4051
  year: 2010
  end-page: 4065
  ident: b0745
  article-title: Synthesis and characterization of multifunctional chitosan-MnFe
  publication-title: Materials
– volume: 48
  start-page: 1234
  year: 2009
  end-page: 1238
  ident: b0435
  article-title: Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 9288
  year: 1996
  end-page: 9296
  ident: b0315
  article-title: Size-dependent magnetic properties of MnFe
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 1764
  year: 2019
  end-page: 1776
  ident: b0595
  article-title: Composition-tunable ultrasmall manganese ferrite nanoparticles: insights into their In vivo T
  publication-title: Theranostics
– volume: 15
  start-page: 174
  year: 1947
  end-page: 180
  ident: b0240
  article-title: Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 95
  year: 2007
  end-page: 99
  ident: b0265
  article-title: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging
  publication-title: Nat. Med.
– volume: 71
  start-page: 1888
  year: 2014
  end-page: 1895
  ident: b0190
  article-title: Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers
  publication-title: Magn. Reson. Med.
– volume: 30
  start-page: 502001
  year: 2019
  ident: b0455
  article-title: Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications
  publication-title: Nanotechnology
– volume: 30
  start-page: 5
  year: 2019
  end-page: 8
  ident: b0095
  article-title: MR imaging: quo vadis?
  publication-title: Rinckside
– volume: 30
  start-page: 2919
  year: 2009
  end-page: 2928
  ident: b0375
  article-title: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging
  publication-title: Biomaterials
– volume: 51
  start-page: 12009
  year: 1995
  end-page: 12011
  ident: b0545
  article-title: Comment on “Particle-size effects on the value of T
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 12789
  year: 2016
  end-page: 12795
  ident: b0320
  article-title: MnFe
  publication-title: Ceram. Int.
– volume: 7
  start-page: 2422
  year: 2007
  end-page: 2427
  ident: b0565
  article-title: Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents
  publication-title: Nano Lett.
– volume: 431
  start-page: 31
  year: 2014
  end-page: 41
  ident: b0740
  article-title: Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications
  publication-title: J. Colloid Interface Sci.
– start-page: 1906799
  year: 2019
  ident: b0590
  article-title: A bioinspired nanoprobe with multilevel responsive T
  publication-title: Adv. Mater.
– volume: 126
  start-page: 273
  year: 2004
  end-page: 279
  ident: b0465
  article-title: Monodisperse MFe
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 258
  year: 2008
  end-page: 264
  ident: b0770
  article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 958
  year: 2013
  end-page: 964
  ident: b0815
  article-title: Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging
  publication-title: Adv. Healthcare Mater.
– volume: 324
  start-page: 903
  year: 2012
  end-page: 915
  ident: b0685
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater.
– volume: 23
  start-page: 496
  year: 2013
  end-page: 505
  ident: b0805
  article-title: Superparamagnetic nanostructures for off-resonance magnetic resonance spectroscopic imaging
  publication-title: Adv. Funct. Mater.
– reference: (last accessed: 30-06-2020).
– volume: 51
  start-page: 73
  year: 2016
  end-page: 82
  ident: b0065
  article-title: Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats
  publication-title: Invest. Radiol.
– volume: 11
  start-page: 1303
  year: 1975
  end-page: 1305
  ident: b0530
  article-title: Influence of the degree of inversion on magnetic properties of MnFe
  publication-title: IEEE Trans. Magn.
– volume: 8
  start-page: 3620
  year: 2012
  end-page: 3630
  ident: b0790
  article-title: Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications
  publication-title: Small
– volume: 35
  start-page: 9126
  year: 2014
  end-page: 9136
  ident: b0675
  article-title: High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics
  publication-title: Biomaterials
– volume: 19
  start-page: 485101
  year: 2008
  ident: b0570
  article-title: Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging
  publication-title: Nanotechnology
– volume: 288
  start-page: 470
  year: 2005
  end-page: 477
  ident: b0680
  article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation
  publication-title: J. Magn. Magn. Mater.
– volume: 32
  start-page: 749
  year: 1994
  end-page: 763
  ident: b0175
  article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: 6953
  year: 2016
  end-page: 6961
  ident: b0395
  article-title: Engineered theranostic magnetic nanostructures: role of composition and surface coating on magnetic resonance imaging contrast and thermal activation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  year: 2009
  ident: b0475
  article-title: Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion
  publication-title: Nanotechnology
– volume: 24
  start-page: 1496
  year: 2012
  end-page: 1504
  ident: b0300
  article-title: Superparamagnetic MFe
  publication-title: Chem. Mater.
– volume: 17
  start-page: 4609
  year: 2015
  end-page: 4619
  ident: b0630
  article-title: An aqueous method for the controlled manganese (Mn
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45
  start-page: 64
  year: 2009
  end-page: 70
  ident: b0360
  article-title: Heating of aqueous dispersions containing MnFe
  publication-title: IEEE Trans. Magn.
– volume: 242
  start-page: 190
  year: 1973
  end-page: 191
  ident: b0005
  article-title: Image Formation by Induced local interactions: examples employing nuclear magnetic resonance
  publication-title: Nature
– volume: 144
  start-page: 104352
  year: 2019
  ident: b0340
  article-title: Hyperbranched lipopolymer-folate-stabilized manganese ferrite nanoparticles for the water-soluble targeted MRI contrast agent
  publication-title: React. Funct. Polym.
– volume: 62
  start-page: 1696
  year: 2013
  end-page: 1701
  ident: b0580
  article-title: Relaxivities of hydrogen protons in aqueous solutions of gold-coated manganese ferrite nanoparticles
  publication-title: J. Korean Phys. Soc.
– volume: 7
  start-page: 146
  year: 1968
  end-page: 154
  ident: b0500
  article-title: Kinetics and stoichiometry of the reaction between manganese(III) and hydrogen peroxide in acid perchlorate solution
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 3614
  year: 2017
  end-page: 3631
  ident: b0430
  article-title: Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T
  publication-title: ACS Nano
– volume: 132
  start-page: 11015
  year: 2010
  end-page: 11017
  ident: b0820
  article-title: Self-confirming “AND” logic nanoparticles for fault-free MRI
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 5339
  year: 2010
  end-page: 5349
  ident: b0195
  article-title: Fine tuning of the relaxometry of γ-Fe
  publication-title: ACS Nano
– volume: 30
  start-page: 810
  year: 2016
  end-page: 822
  ident: b0795
  article-title: Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery
  publication-title: J. Biomater. Appl.
– volume: 24
  start-page: 642
  year: 1974
  end-page: 647
  ident: b0485
  article-title: Temperature dependence of distribution of cations in MnFe
  publication-title: Czech. J. Phys. B
– volume: 48
  start-page: 11480
  year: 2019
  end-page: 11491
  ident: b0560
  article-title: Mn-doping level dependence on the magnetic response of Mn
  publication-title: Dalton Trans.
– volume: 108
  start-page: 2064
  year: 2008
  end-page: 2110
  ident: b0090
  article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
  publication-title: Chem. Rev.
– volume: 8
  start-page: 192
  year: 2009
  end-page: 198
  ident: b0720
  article-title: Biological and magnetic contrast evaluation of shape-selective Mn-Fe nanowires
  publication-title: IEEE Trans. Nanobiosci.
– volume: 69
  start-page: 1
  year: 2008
  end-page: 9
  ident: b0440
  article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 241
  start-page: 139
  year: 2016
  end-page: 176
  ident: b0250
  article-title: Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications
  publication-title: Solid State Phenom.
– volume: 27
  year: 2016
  ident: b0160
  article-title: NMR relaxation induced by iron oxide particles: testing theoretical models
  publication-title: Nanotechnology
– reference: P.A. Rinck, Magnetic resonance in medicine; a critical introduction, BoD, Hamburg, Germany, 2020.
– volume: 32
  start-page: 2220
  year: 2020
  end-page: 2231
  ident: b0640
  article-title: Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools
  publication-title: Chem. Mater.
– volume: 125
  start-page: 9828
  year: 2003
  end-page: 9833
  ident: b0725
  article-title: Effects of surface coordination chemistry on the magnetic properties of MnFe
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 5403
  year: 1999
  end-page: 5411
  ident: b0135
  article-title: Theory of proton relaxation induced by superparamagnetic particles
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 2293
  year: 1999
  end-page: 2352
  ident: b0020
  article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications
  publication-title: Chem. Rev.
– start-page: 157
  year: 2013
  end-page: 208
  ident: b0050
  article-title: Stability and toxicity of contrast agents
  publication-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
– volume: 293
  start-page: 532
  year: 2005
  end-page: 539
  ident: b0185
  article-title: Superparamagnetic colloid suspensions: water magnetic relaxation and clustering
  publication-title: J. Magn. Magn. Mater.
– volume: 3
  start-page: 317
  year: 1969
  end-page: 392
  ident: b0275
  article-title: Magnetism, microstructure and crystal chemistry of spinel ferrites
  publication-title: Mater. Sci. Eng.
– volume: 312
  start-page: L5
  year: 2007
  end-page: L9
  ident: b0305
  article-title: Surface effects in maghemite nanoparticles
  publication-title: J. Magn. Magn. Mater.
– volume: 17
  start-page: 33
  year: 2015
  ident: b0505
  article-title: Magnetic La
  publication-title: J. Nanopart. Res.
– volume: 41
  year: 2008
  ident: b0625
  article-title: Magnetic and relaxometric properties of Mn ferrites
  publication-title: J. Phys. D: Appl. Phys.
– volume: 21
  start-page: 4789
  year: 2015
  end-page: 4799
  ident: b0045
  article-title: The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions
  publication-title: Chem. Eur. J.
– volume: 51
  start-page: 447
  year: 2016
  end-page: 453
  ident: b0070
  article-title: Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function
  publication-title: Invest. Radiol.
– reference: CRC Handbook of Chemistry and Physics, 2016–2017.
– volume: 18
  start-page: 4402
  year: 2008
  end-page: 4407
  ident: b0800
  article-title: Nanohybrids via a polycation-based nanoemulsion method for dual-mode detection of human mesenchymal stem cells
  publication-title: J. Mater. Chem.
– volume: 54
  year: 2018
  ident: b0775
  article-title: Transverse relaxivity of nanoparticle contrast agents for MRI: different magnetic cores and coatings
  publication-title: IEEE Trans. Magn.
– volume: 15
  start-page: 1743
  year: 2013
  ident: b0645
  article-title: Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization
  publication-title: J. Nanopart. Res.
– volume: 12
  start-page: 5074
  year: 2010
  end-page: 5083
  ident: b0495
  article-title: Synthesis and microstructure of manganese ferrite colloidal nanocrystals
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  start-page: 033912
  year: 2013
  ident: b0535
  article-title: Cation and magnetic orders in MnFe
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 16107
  year: 2020
  ident: b0410
  article-title: Manganese ferrite nanocubes as an MRI contrast agent
  publication-title: Mater. Res. Express
– volume: 6
  start-page: 418
  year: 2011
  end-page: 422
  ident: b0750
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: Nat. Nanotechnol.
– volume: 382
  start-page: 122848
  year: 2020
  ident: b0825
  article-title: Platelet membrane biomimetic bufalin-loaded hollow MnO
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 479
  year: 2015
  end-page: 485
  ident: b0115
  article-title: Toxicity of cobalt ferrite (CoFe
  publication-title: Chemosphere
– volume: 46
  start-page: 1222
  year: 2007
  end-page: 1244
  ident: b0470
  article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 5122
  year: 2008
  end-page: 5135
  ident: b0285
  article-title: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging
  publication-title: Angew. Chem., Int. Ed.
– volume: 106
  start-page: 063906
  year: 2009
  ident: b0200
  article-title: Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 401
  year: 2018
  end-page: 413
  ident: b0715
  article-title: Surface manganese substitution in magnetite nanocrystals enhances T
  publication-title: J. Mater. Chem. B
– volume: 28
  start-page: 343
  year: 1967
  end-page: 346
  ident: b0215
  article-title: Magnetic properties of ultra-fine iron (III) oxide-hydrate particles prepared from iron (III) oxide-hydrate gels
  publication-title: J. Phys. Chem. Solids
– volume: 112
  start-page: 5818
  year: 2012
  end-page: 5878
  ident: b0830
  article-title: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
  publication-title: Chem. Rev.
– volume: 28
  start-page: 339
  year: 2013
  end-page: 346
  ident: b0690
  article-title: Characterisation of Mn
  publication-title: Mater. Technol.
– volume: 67
  start-page: 3602
  year: 1991
  end-page: 3605
  ident: b0325
  article-title: Size-dependent Curie temperature in nanoscale MnFe
  publication-title: Phys. Rev. Lett.
– volume: 106
  start-page: 865
  year: 1957
  end-page: 866
  ident: b0555
  article-title: Cation distribution and magnetic moment of manganese ferrite
  publication-title: Phys. Rev.
– volume: 6
  start-page: 77558
  year: 2016
  end-page: 77568
  ident: b0695
  article-title: Enhanced magnetic properties and MRI performance of bi-magnetic core-shell nanoparticles
  publication-title: RSC Adv.
– volume: 132
  start-page: 249
  year: 1994
  end-page: 257
  ident: b0615
  article-title: Preparation and characterization of ultra-fine MnFe
  publication-title: J. Magn. Magn. Mater.
– volume: 4
  start-page: 317
  year: 1979
  end-page: 339
  ident: b0245
  article-title: Systematics of the spinel structure type
  publication-title: Phys. Chem. Miner.
– volume: 14
  start-page: 1205
  year: 2014
  end-page: 1214
  ident: b0225
  article-title: Tailor-made nanocontainers for combined magnetic-field-induced release and MRI
  publication-title: Macromol. Biosci.
– volume: 68
  start-page: 3112
  year: 1992
  ident: b0270
  article-title: Comment on “Size-dependent Curie temperature in nanoscale MnFe
  publication-title: Phys. Rev. Lett.
– volume: 40
  start-page: K169
  year: 1977
  end-page: K171
  ident: b0520
  article-title: NMR study of valency states in MnFe
  publication-title: Phys. Stat. Sol. A
– reference: Merbach A.E., Helm L., Tóth É., The chemistry of contrast agents in medical magnetic resonance imaging, second ed., John Wiley & Sons, Ltd, Chichester (UK, 2013,
– volume: 201
  start-page: 15
  year: 2015
  end-page: 19
  ident: b0480
  article-title: Thermal expansion and cation partitioning of MnFe
  publication-title: Solid State Commun.
– volume: 5
  start-page: 53180
  year: 2015
  end-page: 53188
  ident: b0365
  article-title: Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia
  publication-title: RSC Adv.
– volume: 15
  start-page: 524
  year: 2013
  end-page: 532
  ident: b0390
  article-title: Surface controlled synthesis of MFe
  publication-title: CrystEngComm
– volume: 44
  start-page: 10980
  year: 2015
  end-page: 10990
  ident: b0385
  article-title: Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes, NMR and MRI relaxometry
  publication-title: Dalton Trans.
– volume: 31
  start-page: 3667
  year: 2010
  end-page: 3673
  ident: b0425
  article-title: Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging
  publication-title: Biomaterials
– volume: 44
  start-page: 247
  year: 2015
  end-page: 253
  ident: b0585
  article-title: A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents
  publication-title: Dalton Trans.
– volume: 4
  start-page: 025018
  year: 2009
  ident: b0110
  article-title: Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro
  publication-title: Biomed. Mater.
– volume: 11
  start-page: 1461
  year: 2019
  end-page: 1483
  ident: b0080
  article-title: Mn(II) compounds as an alternative to Gd-based MRI probes
  publication-title: Future Med. Chem.
– volume: 121
  start-page: 1379
  year: 1961
  end-page: 1382
  ident: b0170
  article-title: Distribution of fields from randomly placed dipoles: free-precession signal decay as result of magnetic grains
  publication-title: Phys. Rev.
– volume: 66
  start-page: 1759
  year: 2011
  end-page: 1766
  ident: b0205
  article-title: Enhancement and degradation of the R
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 38125
  year: 2017
  end-page: 38134
  ident: b0330
  article-title: Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T
  publication-title: RSC Adv.
– volume: 9
  start-page: 23458
  year: 2017
  end-page: 23465
  ident: b0735
  article-title: Surface PEG grafting density determines magnetic relaxation properties of Gd-loaded porous nanoparticles for MR imaging applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  start-page: 15369
  year: 2013
  end-page: 15374
  ident: b0140
  article-title: Revisiting MRI contrast properties of nanoparticles: beyond the superparamagnetic regime
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 100
  year: 2016
  ident: b0510
  article-title: Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity
  publication-title: J. Nanopart. Res.
– volume: 29
  start-page: 3038
  year: 2017
  end-page: 3047
  ident: b0610
  article-title: Composition tunable manganese ferrite nanoparticles for optimized T
  publication-title: Chem. Mater.
– volume: 19
  start-page: 8958
  year: 2009
  end-page: 8963
  ident: b0370
  article-title: Self-labeled magneto nanoprobes using tri-aminated polysorbate 80 for detection of human mesenchymal stem cells
  publication-title: J. Mater. Chem.
– volume: 212
  start-page: 139
  year: 2011
  end-page: 148
  ident: b0700
  article-title: Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents
  publication-title: J. Magn. Reson.
– volume: 106
  start-page: 12459
  year: 2009
  end-page: 12464
  ident: b0450
  article-title: Rapid detection and profiling of cancer cells in fine-needle aspirates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 475
  start-page: 137
  year: 2019
  end-page: 145
  ident: b0600
  article-title: Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging
  publication-title: J. Magn. Magn. Mater.
– volume: 119
  start-page: 957
  year: 2019
  end-page: 1057
  ident: b0030
  article-title: Chemistry of MRI contrast agents: current challenges and new frontiers
  publication-title: Chem. Rev.
– volume: 7
  start-page: 2050
  year: 2015
  end-page: 2059
  ident: b0405
  article-title: Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging
  publication-title: Nanoscale
– volume: 152
  start-page: 185
  year: 2015
  end-page: 188
  ident: b0785
  article-title: Star-block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging
  publication-title: Mater. Lett.
– volume: 9
  start-page: e1468
  year: 2017
  ident: b0125
  article-title: Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 66
  start-page: 1748
  year: 2011
  end-page: 1758
  ident: b0145
  article-title: Mechanisms of proton spin dephasing in a system of magnetic particles
  publication-title: Magn. Reson. Med.
– volume: 35
  start-page: 15
  year: 2002
  ident: b0310
  article-title: Finite-size effects in fine particles: magnetic and transport properties
  publication-title: J. Phys. D: Appl. Phys.
– volume: 123
  start-page: 125
  year: 2018
  end-page: 134
  ident: b0075
  article-title: Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T
  publication-title: Radiol. Med.
– reference: Cullity B.D., Graham C.D., Ferrimagnetism, Introduction to magnetic materials, Wiley-IEEE Press, 2009, pp. 175–195,
– reference: O.F. Odio, E. Reguera, Nanostructured spinel ferrites: synthesis, functionalization, nanomagnetism and environmental applications, in: M.S. Seehra (Ed.) Magnetic spinels, IntechOpen, London, 2017, 10.5772/67513.
– volume: 26
  start-page: 994
  year: 2008
  end-page: 998
  ident: b0760
  article-title: T
  publication-title: Magn. Reson. Imaging
– volume: 44
  start-page: 1480
  year: 2005
  end-page: 1484
  ident: b0765
  article-title: High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent
  publication-title: Angew. Chem., Int. Ed.
– volume: 104
  start-page: 328
  year: 1956
  end-page: 331
  ident: b0255
  article-title: Neutron diffraction study of manganese ferrite
  publication-title: Phys. Rev.
– volume: 8
  start-page: 055019
  year: 2018
  ident: b0810
  article-title: Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T
  publication-title: AIP Adv.
– volume: 320
  start-page: 724
  year: 2008
  end-page: 730
  ident: b0605
  article-title: Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe
  publication-title: J. Magn. Magn. Mater.
– volume: 427
  start-page: 251
  year: 2017
  end-page: 257
  ident: b0655
  article-title: Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity
  publication-title: J. Magn. Magn. Mater.
– volume: 1
  start-page: 502
  year: 2012
  end-page: 512
  ident: b0150
  article-title: A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T
  publication-title: Adv. Healthcare Mater.
– volume: 82
  start-page: 975
  year: 2018
  end-page: 992
  ident: b0515
  article-title: Cation distribution and valence in synthetic Al-Mn-O and Fe-Mn-O spinels under varying f
  publication-title: Mineral. Mag.
– volume: 136
  start-page: 1089
  year: 2015
  end-page: 1097
  ident: b0635
  article-title: Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application
  publication-title: Colloids Surf. B Biointerfaces
– volume: 5
  start-page: 97807
  year: 2015
  end-page: 97815
  ident: b0415
  article-title: MnFe
  publication-title: RSC Adv.
– volume: 48
  start-page: 1057
  year: 2013
  end-page: 1064
  ident: b0350
  article-title: Triethylene glycol stabilized MnFe
  publication-title: Mater. Res. Bull.
– volume: 2
  start-page: 4748
  year: 2014
  end-page: 4753
  ident: b0705
  article-title: Controlled synthesis of MnFe
  publication-title: J. Mater. Chem. B
– volume: 33
  start-page: 1
  year: 2016
  end-page: 28
  ident: b0010
  article-title: 25 Years of contrast-enhanced MRI: Developments, current challenges and future perspectives
  publication-title: Adv. Ther.
– volume: 77
  start-page: 092416
  year: 2008
  ident: b0525
  article-title: Fe NMR and spin structure of manganese ferrite
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 159
  year: 2018
  end-page: 169
  ident: b0060
  article-title: A review of the current evidence on gadolinium deposition in the brain
  publication-title: Clin. Neuroradiol.
– reference: J. Smit, H.P.J. Wijn, Ferrites, Philips' Technical Library, 1959.
– volume: 50
  start-page: 4663
  year: 2011
  end-page: 4666
  ident: b0755
  article-title: Highly magnetic core–shell nanoparticles with a unique magnetization mechanism
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 35059
  year: 2016
  end-page: 35070
  ident: b0355
  article-title: Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 3109
  year: 2007
  end-page: 3112
  ident: b0280
  article-title: Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery
  publication-title: Adv. Mater.
– volume: 120
  start-page: 1800
  year: 1998
  end-page: 1804
  ident: b0490
  article-title: Temperature dependence of cation distribution and oxidation state in magnetic Mn−Fe ferrite nanocrystals
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 6828
  year: 2015
  end-page: 6834
  ident: b0380
  article-title: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 5396
  year: 2015
  end-page: 5406
  ident: b0550
  article-title: Composition and hydrophilicity control of Mn-doped ferrite (Mn
  publication-title: Dalton Trans.
– volume: 276
  start-page: 228
  year: 2015
  end-page: 232
  ident: b0055
  article-title: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy
  publication-title: Radiology
– volume: 47
  start-page: 257
  year: 2002
  end-page: 263
  ident: b0180
  article-title: On T
  publication-title: Magn. Reson. Med.
– volume: 137
  year: 2012
  ident: b0155
  article-title: New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 3618
  year: 2019
  end-page: 3626
  ident: b0345
  article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI Performance and improved magnetic hyperthermia therapy
  publication-title: Nano Lett.
– volume: 121
  start-page: 52
  year: 2016
  end-page: 60
  ident: b0120
  article-title: Super magnetic nanoparticles NiFe
  publication-title: Protein Expression Purif.
– volume: 252
  start-page: 370
  year: 2002
  end-page: 374
  ident: b0220
  article-title: Heating magnetic fluid with alternating magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 91
  start-page: 2211
  year: 2002
  end-page: 2215
  ident: b0660
  article-title: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite
  publication-title: J. Appl. Phys.
– volume: 6
  year: 2016
  ident: b0670
  article-title: Study of cation distributions in spinel ferrites M
  publication-title: AIP Adv.
– volume: 28
  start-page: 3497
  year: 2016
  end-page: 3506
  ident: b0710
  article-title: Cation exchange of anisotropic-shaped magnetite nanoparticles generates high-relaxivity contrast agents for liver tumor imaging
  publication-title: Chem. Mater.
– reference: .
– volume: 7
  start-page: 1542
  year: 2007
  end-page: 1550
  ident: b0445
  article-title: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes
  publication-title: Nano Lett.
– volume: 2
  start-page: 3/1-3/8
  year: 2015
  ident: b0400
  article-title: A systematic study of core size and coating thickness on manganese-doped nanocrystals for high T
  publication-title: Nano Converg.
– volume: 5
  start-page: 8230
  year: 2011
  end-page: 8240
  ident: b0780
  article-title: Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as MR/near-infrared multimodal cellular imaging nanoprobes
  publication-title: ACS Nano
– volume: 45
  start-page: 1014
  year: 2001
  end-page: 1020
  ident: b0165
  article-title: On T
  publication-title: Magn. Reson. Med.
– volume: 321
  start-page: 3899
  year: 2009
  end-page: 3904
  ident: b0575
  article-title: T
  publication-title: J. Magn. Magn. Mater.
– volume: 73
  start-page: 694
  year: 2007
  end-page: 708
  ident: b0105
  article-title: Toxic effects of cobalt in primary cultures of mouse astrocytes: Similarities with hypoxia and role of HIF-1α
  publication-title: Biochem. Pharmacol.
– start-page: 25
  year: 2013
  end-page: 81
  ident: b0130
  article-title: Relaxivity of gadolinium(III) complexes: theory and mechanism
  publication-title: Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
– volume: 44
  start-page: 5396
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0550
  article-title: Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3-xO4) nanoparticles induced by polyol differentiation
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT00212E
– volume: 1
  start-page: 502
  year: 2012
  ident: 10.1016/j.pnmrs.2020.07.002_b0150
  article-title: A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201200078
– volume: 24
  start-page: 1496
  year: 2012
  ident: 10.1016/j.pnmrs.2020.07.002_b0300
  article-title: Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route
  publication-title: Chem. Mater.
  doi: 10.1021/cm300301c
– volume: 332
  start-page: 157
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0650
  article-title: The effect of Mn2+ substitution on magnetic properties of MnxFe3-xO4 nanoparticles prepared by coprecipitation method
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2012.12.005
– volume: 24
  start-page: 642
  year: 1974
  ident: 10.1016/j.pnmrs.2020.07.002_b0485
  article-title: Temperature dependence of distribution of cations in MnFe2O4
  publication-title: Czech. J. Phys. B
  doi: 10.1007/BF01587300
– volume: 11
  start-page: 1303
  year: 1975
  ident: 10.1016/j.pnmrs.2020.07.002_b0530
  article-title: Influence of the degree of inversion on magnetic properties of MnFe2O4
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1975.1058861
– volume: 132
  start-page: 11015
  year: 2010
  ident: 10.1016/j.pnmrs.2020.07.002_b0820
  article-title: Self-confirming “AND” logic nanoparticles for fault-free MRI
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104503g
– volume: 77
  start-page: 092416
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0525
  article-title: 57Fe NMR and spin structure of manganese ferrite
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.092416
– volume: 212
  start-page: 139
  year: 2011
  ident: 10.1016/j.pnmrs.2020.07.002_b0700
  article-title: Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.06.024
– volume: 293
  start-page: 532
  year: 2005
  ident: 10.1016/j.pnmrs.2020.07.002_b0185
  article-title: Superparamagnetic colloid suspensions: water magnetic relaxation and clustering
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.01.070
– volume: 201
  start-page: 15
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0480
  article-title: Thermal expansion and cation partitioning of MnFe2O4 (Jacobsite) from 1.6 to 1276 K studied by using neutron powder diffraction
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2014.10.001
– volume: 5
  start-page: 53180
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0365
  article-title: Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07632C
– volume: 6
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0670
  article-title: Study of cation distributions in spinel ferrites MxMn1-xFe2O4 (M=Zn, Mg, Al)
  publication-title: AIP Adv.
  doi: 10.1063/1.4966253
– volume: 42
  start-page: 12789
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0320
  article-title: MnFe2O4 bulk, nanoparticles and film: A comparative study of structural and magnetic properties
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.041
– volume: 7
  start-page: 16107
  year: 2020
  ident: 10.1016/j.pnmrs.2020.07.002_b0410
  article-title: Manganese ferrite nanocubes as an MRI contrast agent
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab66a4
– volume: 5
  start-page: 97807
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0415
  article-title: MnFe2O4-Fe3O4 core-shell nanoparticles as a potential contrast agent for magnetic resonance imaging
  publication-title: RSC Adv.
  doi: 10.1039/C5RA20474G
– ident: 10.1016/j.pnmrs.2020.07.002_b0015
  doi: 10.1002/9781118503652
– volume: 18
  start-page: 100
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0510
  article-title: Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-016-3402-5
– volume: 66
  start-page: 1759
  year: 2011
  ident: 10.1016/j.pnmrs.2020.07.002_b0205
  article-title: Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22944
– volume: 121
  start-page: 1379
  year: 1961
  ident: 10.1016/j.pnmrs.2020.07.002_b0170
  article-title: Distribution of fields from randomly placed dipoles: free-precession signal decay as result of magnetic grains
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.121.1379
– volume: 35
  start-page: 15
  year: 2002
  ident: 10.1016/j.pnmrs.2020.07.002_b0310
  article-title: Finite-size effects in fine particles: magnetic and transport properties
  publication-title: J. Phys. D: Appl. Phys.
– volume: 7
  start-page: 1542
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0445
  article-title: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes
  publication-title: Nano Lett.
  doi: 10.1021/nl070363y
– volume: 23
  start-page: 496
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0805
  article-title: Superparamagnetic nanostructures for off-resonance magnetic resonance spectroscopic imaging
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200275
– volume: 51
  start-page: 12009
  year: 1995
  ident: 10.1016/j.pnmrs.2020.07.002_b0545
  article-title: Comment on “Particle-size effects on the value of TC of MnFe204: Evidence for finite-size scaling”
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.12009
– volume: 324
  start-page: 903
  year: 2012
  ident: 10.1016/j.pnmrs.2020.07.002_b0685
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.10.017
– volume: 320
  start-page: e96
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0260
  article-title: 57Fe NMR study of manganese ferrites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2008.02.022
– volume: 22
  start-page: 174
  year: 1967
  ident: 10.1016/j.pnmrs.2020.07.002_b0540
  article-title: NMR determination of metal Ion distribution in manganese ferrite prepared from aqueous solution
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.22.174
– volume: 35
  start-page: 9126
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0675
  article-title: High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.019
– volume: 9
  start-page: e1468
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0125
  article-title: Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 47
  start-page: 257
  year: 2002
  ident: 10.1016/j.pnmrs.2020.07.002_b0180
  article-title: On T2-shortening by strongly magnetized spheres: a partial refocusing model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10059
– volume: 30
  start-page: 2919
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0375
  article-title: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.02.001
– volume: 7
  start-page: 2422
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0565
  article-title: Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents
  publication-title: Nano Lett.
  doi: 10.1021/nl071099b
– volume: 475
  start-page: 137
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0600
  article-title: Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.11.097
– volume: 54
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0775
  article-title: Transverse relaxivity of nanoparticle contrast agents for MRI: different magnetic cores and coatings
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2018.2844253
– volume: 28
  start-page: 343
  year: 1967
  ident: 10.1016/j.pnmrs.2020.07.002_b0215
  article-title: Magnetic properties of ultra-fine iron (III) oxide-hydrate particles prepared from iron (III) oxide-hydrate gels
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(67)90130-8
– volume: 43
  start-page: 12754
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0210
  article-title: Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their 1H NMR relaxation and heating efficiency
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT00162A
– volume: 31
  start-page: 3667
  year: 2010
  ident: 10.1016/j.pnmrs.2020.07.002_b0425
  article-title: Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.055
– volume: 120
  start-page: 1800
  year: 1998
  ident: 10.1016/j.pnmrs.2020.07.002_b0490
  article-title: Temperature dependence of cation distribution and oxidation state in magnetic Mn−Fe ferrite nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja973085l
– volume: 32
  start-page: 749
  year: 1994
  ident: 10.1016/j.pnmrs.2020.07.002_b0175
  article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910320610
– volume: 30
  start-page: 5
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0095
  article-title: MR imaging: quo vadis?
  publication-title: Rinckside
– start-page: 1906799
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0590
  article-title: A bioinspired nanoprobe with multilevel responsive T1-Weighted MR signal-amplification illuminates ultrasmall metastases
  publication-title: Adv. Mater.
– volume: 121
  start-page: 52
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0120
  article-title: Super magnetic nanoparticles NiFe2O4, coated with aluminum–nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins
  publication-title: Protein Expression Purif.
  doi: 10.1016/j.pep.2016.01.008
– volume: 312
  start-page: L5
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0305
  article-title: Surface effects in maghemite nanoparticles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.09.011
– volume: 76
  start-page: 475
  year: 2000
  ident: 10.1016/j.pnmrs.2020.07.002_b0665
  article-title: Appearance of superparamagnetism on heating nanosize Mn0.65Zn0.35Fe2O4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125792
– volume: 17
  start-page: 4609
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0630
  article-title: An aqueous method for the controlled manganese (Mn2+) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05122J
– volume: 69
  start-page: 1
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0440
  article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2007.08.001
– volume: 117
  start-page: 15369
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0140
  article-title: Revisiting MRI contrast properties of nanoparticles: beyond the superparamagnetic regime
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp404199f
– volume: 47
  start-page: 5122
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0285
  article-title: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701674
– volume: 44
  start-page: 10980
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0385
  article-title: Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes, NMR and MRI relaxometry
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT00372E
– volume: 30
  start-page: 810
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0795
  article-title: Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery
  publication-title: J. Biomater. Appl.
  doi: 10.1177/0885328215601926
– volume: 28
  start-page: 159
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0060
  article-title: A review of the current evidence on gadolinium deposition in the brain
  publication-title: Clin. Neuroradiol.
  doi: 10.1007/s00062-018-0678-0
– volume: 7
  start-page: 38125
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0330
  article-title: Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T2 contrast agents for high-field MRI
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05495E
– volume: 11
  start-page: 3614
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0430
  article-title: Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07684
– volume: 30
  start-page: 502001
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0455
  article-title: Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab3f17
– volume: 40
  start-page: K169
  year: 1977
  ident: 10.1016/j.pnmrs.2020.07.002_b0520
  article-title: NMR study of valency states in MnFe2O4
  publication-title: Phys. Stat. Sol. A
  doi: 10.1002/pssa.2210400258
– volume: 18
  start-page: 4402
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0800
  article-title: Nanohybrids via a polycation-based nanoemulsion method for dual-mode detection of human mesenchymal stem cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/b804544e
– volume: 119
  start-page: 6828
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0380
  article-title: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510937r
– volume: 73
  start-page: 694
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0105
  article-title: Toxic effects of cobalt in primary cultures of mouse astrocytes: Similarities with hypoxia and role of HIF-1α
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.11.008
– volume: 4
  start-page: 5339
  year: 2010
  ident: 10.1016/j.pnmrs.2020.07.002_b0195
  article-title: Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness
  publication-title: ACS Nano
  doi: 10.1021/nn101129r
– volume: 2
  start-page: 3/1-3/8
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0400
  article-title: A systematic study of core size and coating thickness on manganese-doped nanocrystals for high T2 relaxivity as magnetic resonance contrast agent
  publication-title: Nano Converg.
  doi: 10.1186/s40580-014-0032-4
– volume: 19
  start-page: 127
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0025
  article-title: Contrast agents for MRI: 30+ years and where are we going?
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-013-1074-5
– volume: 4
  start-page: 317
  year: 1979
  ident: 10.1016/j.pnmrs.2020.07.002_b0245
  article-title: Systematics of the spinel structure type
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00307535
– volume: 144
  start-page: 104352
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0340
  article-title: Hyperbranched lipopolymer-folate-stabilized manganese ferrite nanoparticles for the water-soluble targeted MRI contrast agent
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2019.104352
– volume: 48
  start-page: 1057
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0350
  article-title: Triethylene glycol stabilized MnFe2O4 nanoparticle: synthesis, magnetic and electrical characterization
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2012.11.097
– volume: 7
  start-page: 2050
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0405
  article-title: Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging
  publication-title: Nanoscale
  doi: 10.1039/C4NR05781C
– volume: 126
  start-page: 273
  year: 2004
  ident: 10.1016/j.pnmrs.2020.07.002_b0465
  article-title: Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0380852
– volume: 41
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0625
  article-title: Magnetic and relaxometric properties of Mn ferrites
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/13/134021
– volume: 152
  start-page: 185
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0785
  article-title: Star-block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.03.120
– ident: 10.1016/j.pnmrs.2020.07.002_b0235
– volume: 8
  start-page: 192
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0720
  article-title: Biological and magnetic contrast evaluation of shape-selective Mn-Fe nanowires
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2009.2021521
– volume: 7
  start-page: 146
  year: 1968
  ident: 10.1016/j.pnmrs.2020.07.002_b0500
  article-title: Kinetics and stoichiometry of the reaction between manganese(III) and hydrogen peroxide in acid perchlorate solution
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50059a031
– volume: 20
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0475
  article-title: Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/18/185704
– volume: 9
  start-page: 23458
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0735
  article-title: Surface PEG grafting density determines magnetic relaxation properties of Gd-loaded porous nanoparticles for MR imaging applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05912
– volume: 194
  start-page: 217
  year: 1999
  ident: 10.1016/j.pnmrs.2020.07.002_b0295
  article-title: Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00555-1
– volume: 11
  start-page: 1461
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0080
  article-title: Mn(II) compounds as an alternative to Gd-based MRI probes
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2018-0608
– volume: 137
  year: 2012
  ident: 10.1016/j.pnmrs.2020.07.002_b0155
  article-title: New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4751442
– volume: 45
  start-page: 1014
  year: 2001
  ident: 10.1016/j.pnmrs.2020.07.002_b0165
  article-title: On T2-shortening by weakly magnetized particles: the chemical exchange model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1135
– volume: 15
  start-page: 174
  year: 1947
  ident: 10.1016/j.pnmrs.2020.07.002_b0240
  article-title: Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1746464
– volume: 275
  start-page: 630
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0040
  article-title: Residual or retained gadolinium: practical implications for radiologists and our patients
  publication-title: Radiology
  doi: 10.1148/radiol.2015150805
– volume: 54
  start-page: 9288
  year: 1996
  ident: 10.1016/j.pnmrs.2020.07.002_b0315
  article-title: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.9288
– volume: 28
  start-page: 339
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0690
  article-title: Characterisation of Mn0·7Zn0·3Fe2O4 nanoparticles prepared by two stage annealing
  publication-title: Mater. Technol.
  doi: 10.1179/1753555713Y.0000000066
– volume: 191
  start-page: W307
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0035
  article-title: Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.07.3951
– volume: 431
  start-page: 31
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0740
  article-title: Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.06.003
– volume: 19
  start-page: 8958
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0370
  article-title: Self-labeled magneto nanoprobes using tri-aminated polysorbate 80 for detection of human mesenchymal stem cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/b912149h
– ident: 10.1016/j.pnmrs.2020.07.002_b0085
– volume: 44
  start-page: 247
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0585
  article-title: A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT02425G
– ident: 10.1016/j.pnmrs.2020.07.002_b0100
– volume: 123
  start-page: 125
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0075
  article-title: Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients
  publication-title: Radiol. Med.
  doi: 10.1007/s11547-017-0816-9
– volume: 99
  start-page: 2293
  year: 1999
  ident: 10.1016/j.pnmrs.2020.07.002_b0020
  article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr980440x
– volume: 51
  start-page: 73
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0065
  article-title: Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000241
– volume: 45
  start-page: 64
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0360
  article-title: Heating of aqueous dispersions containing MnFe2O4 nanoparticles by radio-frequency magnetic field induction
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2008.2005329
– volume: 106
  start-page: 12459
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0450
  article-title: Rapid detection and profiling of cancer cells in fine-needle aspirates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0902365106
– volume: 44
  start-page: 1480
  year: 2005
  ident: 10.1016/j.pnmrs.2020.07.002_b0765
  article-title: High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461875
– volume: 19
  start-page: 3109
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0280
  article-title: Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701952
– volume: 19
  start-page: 485101
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0570
  article-title: Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/48/485101
– volume: 112
  start-page: 5818
  year: 2012
  ident: 10.1016/j.pnmrs.2020.07.002_b0830
  article-title: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr300068p
– volume: 3
  start-page: 23454
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0620
  article-title: Ultrasmall PEGylated MnxFe3-xO4 (x = 0–0.34) nanoparticles: effects of Mn(II) doping on T1- and T2-weighted magnetic resonance imaging
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43985b
– volume: 15
  start-page: 1743
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0645
  article-title: Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-013-1743-x
– volume: 121
  start-page: 8982
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0730
  article-title: Local structure of core-shell MnFe2O4+δ-based nanocrystals: cation distribution and valence states of manganese ions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09274
– volume: 62
  start-page: 1696
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0580
  article-title: Relaxivities of hydrogen protons in aqueous solutions of gold-coated manganese ferrite nanoparticles
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.62.1696
– volume: 276
  start-page: 228
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0055
  article-title: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy
  publication-title: Radiology
  doi: 10.1148/radiol.2015142690
– volume: 48
  start-page: 1234
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0435
  article-title: Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805149
– volume: 288
  start-page: 470
  year: 2005
  ident: 10.1016/j.pnmrs.2020.07.002_b0680
  article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.09.138
– volume: 26
  start-page: 994
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0760
  article-title: T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.01.039
– volume: 252
  start-page: 370
  year: 2002
  ident: 10.1016/j.pnmrs.2020.07.002_b0220
  article-title: Heating magnetic fluid with alternating magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(02)00706-0
– volume: 132
  start-page: 249
  year: 1994
  ident: 10.1016/j.pnmrs.2020.07.002_b0615
  article-title: Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1−xFe2O4 spinel systems: I. particles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(94)90320-4
– volume: 125
  start-page: 9828
  year: 2003
  ident: 10.1016/j.pnmrs.2020.07.002_b0725
  article-title: Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja035474n
– volume: 13
  start-page: 95
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0265
  article-title: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm1467
– volume: 32
  start-page: 2220
  year: 2020
  ident: 10.1016/j.pnmrs.2020.07.002_b0640
  article-title: Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04848
– ident: 10.1016/j.pnmrs.2020.07.002_b0230
  doi: 10.1002/9780470386323.ch6
– volume: 9
  start-page: 1764
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0595
  article-title: Composition-tunable ultrasmall manganese ferrite nanoparticles: insights into their In vivo T1 contrast efficacy
  publication-title: Theranostics
  doi: 10.7150/thno.31233
– ident: 10.1016/j.pnmrs.2020.07.002_b0335
– volume: 382
  start-page: 122848
  year: 2020
  ident: 10.1016/j.pnmrs.2020.07.002_b0825
  article-title: Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122848
– volume: 41
  start-page: 179
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0290
  article-title: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700121f
– volume: 19
  start-page: 3618
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0345
  article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI Performance and improved magnetic hyperthermia therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00630
– volume: 8
  start-page: 35059
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0355
  article-title: Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13161
– volume: 21
  start-page: 4789
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0045
  article-title: The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201405967
– start-page: 25
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0130
  article-title: Relaxivity of gadolinium(III) complexes: theory and mechanism
– volume: 67
  start-page: 3602
  year: 1991
  ident: 10.1016/j.pnmrs.2020.07.002_b0325
  article-title: Size-dependent Curie temperature in nanoscale MnFe2O4 particles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.3602
– volume: 5
  start-page: 8230
  year: 2011
  ident: 10.1016/j.pnmrs.2020.07.002_b0780
  article-title: Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as MR/near-infrared multimodal cellular imaging nanoprobes
  publication-title: ACS Nano
  doi: 10.1021/nn202912b
– volume: 68
  start-page: 3112
  year: 1992
  ident: 10.1016/j.pnmrs.2020.07.002_b0270
  article-title: Comment on “Size-dependent Curie temperature in nanoscale MnFe2O4 particles”
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3112
– volume: 321
  start-page: 3899
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0575
  article-title: T1 and T2 relaxivities of succimer-coated MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.07.057
– volume: 91
  start-page: 2211
  year: 2002
  ident: 10.1016/j.pnmrs.2020.07.002_b0660
  article-title: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1432474
– volume: 48
  start-page: 11480
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0560
  article-title: Mn-doping level dependence on the magnetic response of MnxFe3−xO4 ferrite nanoparticles
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT01620A
– volume: 8
  start-page: 055019
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0810
  article-title: Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging
  publication-title: AIP Adv.
  doi: 10.1063/1.5027898
– volume: 139
  start-page: 479
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0115
  article-title: Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: Interaction, adaptation and oxidative stress
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.08.008
– volume: 15
  start-page: 524
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0390
  article-title: Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics
  publication-title: CrystEngComm
  doi: 10.1039/C2CE25957E
– volume: 113
  start-page: 033912
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0535
  article-title: Cation and magnetic orders in MnFe2O4 from density functional calculations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4776771
– volume: 320
  start-page: 724
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0605
  article-title: Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.08.010
– volume: 6
  start-page: 418
  year: 2011
  ident: 10.1016/j.pnmrs.2020.07.002_b0750
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.95
– volume: 4
  start-page: 025018
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0110
  article-title: Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/4/2/025018
– volume: 241
  start-page: 139
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0250
  article-title: Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.241.139
– volume: 14
  start-page: 1205
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0225
  article-title: Tailor-made nanocontainers for combined magnetic-field-induced release and MRI
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201400122
– volume: 3
  start-page: 317
  year: 1969
  ident: 10.1016/j.pnmrs.2020.07.002_b0275
  article-title: Magnetism, microstructure and crystal chemistry of spinel ferrites
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(69)90042-1
– volume: 17
  start-page: 33
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0505
  article-title: Magnetic La1−xSr xMnO3 nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-014-2848-6
– volume: 108
  start-page: 2064
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0090
  article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr068445e
– volume: 2
  start-page: 4748
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0705
  article-title: Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c4tb00342j
– volume: 18
  start-page: 258
  year: 2008
  ident: 10.1016/j.pnmrs.2020.07.002_b0770
  article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700482
– volume: 119
  start-page: 957
  year: 2019
  ident: 10.1016/j.pnmrs.2020.07.002_b0030
  article-title: Chemistry of MRI contrast agents: current challenges and new frontiers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00363
– volume: 27
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0160
  article-title: NMR relaxation induced by iron oxide particles: testing theoretical models
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/15/155706
– volume: 8
  start-page: 6953
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0395
  article-title: Engineered theranostic magnetic nanostructures: role of composition and surface coating on magnetic resonance imaging contrast and thermal activation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01377
– volume: 46
  start-page: 1222
  year: 2007
  ident: 10.1016/j.pnmrs.2020.07.002_b0470
  article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200602866
– ident: 10.1016/j.pnmrs.2020.07.002_b0460
  doi: 10.5772/67513
– volume: 3
  start-page: 4051
  year: 2010
  ident: 10.1016/j.pnmrs.2020.07.002_b0745
  article-title: Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery
  publication-title: Materials
  doi: 10.3390/ma3074051
– volume: 50
  start-page: 4663
  year: 2011
  ident: 10.1016/j.pnmrs.2020.07.002_b0755
  article-title: Highly magnetic core–shell nanoparticles with a unique magnetization mechanism
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100101
– volume: 66
  start-page: 1748
  year: 2011
  ident: 10.1016/j.pnmrs.2020.07.002_b0145
  article-title: Mechanisms of proton spin dephasing in a system of magnetic particles
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22966
– volume: 106
  start-page: 063906
  year: 2009
  ident: 10.1016/j.pnmrs.2020.07.002_b0200
  article-title: Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3211307
– start-page: 157
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0050
  article-title: Stability and toxicity of contrast agents
– volume: 29
  start-page: 3038
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0610
  article-title: Composition tunable manganese ferrite nanoparticles for optimized T2 contrast ability
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00035
– volume: 28
  start-page: 3497
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0710
  article-title: Cation exchange of anisotropic-shaped magnetite nanoparticles generates high-relaxivity contrast agents for liver tumor imaging
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01256
– volume: 82
  start-page: 975
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0515
  article-title: Cation distribution and valence in synthetic Al-Mn-O and Fe-Mn-O spinels under varying fO2 conditions
  publication-title: Mineral. Mag.
  doi: 10.1180/mgm.2018.109
– volume: 51
  start-page: 447
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0070
  article-title: Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000252
– volume: 511
  start-page: 101
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0420
  article-title: Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.10.001
– volume: 136
  start-page: 1089
  year: 2015
  ident: 10.1016/j.pnmrs.2020.07.002_b0635
  article-title: Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.11.010
– volume: 106
  start-page: 865
  year: 1957
  ident: 10.1016/j.pnmrs.2020.07.002_b0555
  article-title: Cation distribution and magnetic moment of manganese ferrite
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.865
– volume: 427
  start-page: 251
  year: 2017
  ident: 10.1016/j.pnmrs.2020.07.002_b0655
  article-title: Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.10.095
– volume: 242
  start-page: 190
  year: 1973
  ident: 10.1016/j.pnmrs.2020.07.002_b0005
  article-title: Image Formation by Induced local interactions: examples employing nuclear magnetic resonance
  publication-title: Nature
  doi: 10.1038/242190a0
– volume: 12
  start-page: 5074
  year: 2010
  ident: 10.1016/j.pnmrs.2020.07.002_b0495
  article-title: Synthesis and microstructure of manganese ferrite colloidal nanocrystals
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b922646j
– volume: 2
  start-page: 958
  year: 2013
  ident: 10.1016/j.pnmrs.2020.07.002_b0815
  article-title: Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201200340
– volume: 8
  start-page: 3620
  year: 2012
  ident: 10.1016/j.pnmrs.2020.07.002_b0790
  article-title: Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications
  publication-title: Small
  doi: 10.1002/smll.201201427
– volume: 33
  start-page: 1
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0010
  article-title: 25 Years of contrast-enhanced MRI: Developments, current challenges and future perspectives
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-015-0275-4
– volume: 110
  start-page: 5403
  year: 1999
  ident: 10.1016/j.pnmrs.2020.07.002_b0135
  article-title: Theory of proton relaxation induced by superparamagnetic particles
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478435
– volume: 104
  start-page: 328
  year: 1956
  ident: 10.1016/j.pnmrs.2020.07.002_b0255
  article-title: Neutron diffraction study of manganese ferrite
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.104.328
– volume: 6
  start-page: 401
  year: 2018
  ident: 10.1016/j.pnmrs.2020.07.002_b0715
  article-title: Surface manganese substitution in magnetite nanocrystals enhances T1 contrast ability by increasing electron spin relaxation
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB02954C
– volume: 71
  start-page: 1888
  year: 2014
  ident: 10.1016/j.pnmrs.2020.07.002_b0190
  article-title: Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25196
– volume: 6
  start-page: 77558
  year: 2016
  ident: 10.1016/j.pnmrs.2020.07.002_b0695
  article-title: Enhanced magnetic properties and MRI performance of bi-magnetic core-shell nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C6RA14265F
SSID ssj0005627
Score 2.4607902
SecondaryResourceType review_article
Snippet [Display omitted] •Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high...
Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Longitudinal relaxivity
Magnetization
MRI contrast agents
Transverse relaxivity
Zn-doping
Title Relaxivity of manganese ferrite nanoparticles
URI https://dx.doi.org/10.1016/j.pnmrs.2020.07.002
https://www.proquest.com/docview/2461393076
Volume 120-121
WOSCitedRecordID wos000590593200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3301
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005627
  issn: 0079-6565
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVoy9cFwQKifFRBQlyWVNnYie1jVW0F1bL0sJVyixzHrlqBE3ZTtPx7xo69AQpVOXCxIstOonnWeGw_z0PoTZ1zkqoUg_eTPCZVrmNe11VMdYaprhgmwl0UntH5nBUFP_GqaysnJ0CNYes1b_8r1FAHYNurs_8A9-alUAHPADqUADuUNwLe0tvWvSSEPTsX5kxYlcmxtjkYOzU2wsBC2fPhfo5NTyxVyzq-czM2Ns2xWEL3M6P6NM82ZncJaVsnnGOvs3wfHGvntdaOm6b1-6N-LwEWjoGVFtwfozjG2FepP9QFn2n79lebvefrBXiuOOR-b-BivzVfljY7epq4XKlJOsw_4cx9_qk8Op3NysW0WLxtv8ZWGcyeoHuZlC20k9KMg-faOfgwLY4HIk_uhHk3_xlySzkW35Xv_i3--G0mduHF4iF64NcF0UGPyyN0S5kRuncY5PhG6O5Hz4IYoTuOtitXj1E8gB01OtqAHXmwo1_AfoJOj6aLw_exF8CIJQRSXcy4ZrnSmldZLXgqKkaqjMiMYKGEppkQaqKowjTL-UQKpVPJK6lwQrTQBNf4Kdo2jVHPUCQkrPuJrCmrNCFqwiByrThLtKyzXGT5LkqDWUrps8NbkZLPZaABXpTOlqW1ZZlY1kK6i95tOrV9cpTrm-fB3qWP7_q4rYTRcn3H1wGdEqxuj7TAmM0lNCIQjnKYp_LnN2jzAt0fRv1LtN0tL9UrdFt-685Xyz20RQu250fXD6ARfog
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relaxivity+of+manganese+ferrite+nanoparticles&rft.jtitle=Progress+in+nuclear+magnetic+resonance+spectroscopy&rft.au=Peters%2C+Joop+A&rft.date=2020-10-01&rft.issn=1873-3301&rft.eissn=1873-3301&rft.volume=120-121&rft.spage=72&rft_id=info:doi/10.1016%2Fj.pnmrs.2020.07.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6565&client=summon