Relaxivity of manganese ferrite nanoparticles
[Display omitted] •Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high magnetization.•Zn0.4Mn0.6Fe2O4 and Mn0.4Fe2.6O4 have maximal r2.•Preparation procedures determine thickness of the magnetic dead layer.•r1 is strongly dependent...
Uložené v:
| Vydané v: | Progress in nuclear magnetic resonance spectroscopy Ročník 120-121; s. 72 - 94 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2020
|
| Predmet: | |
| ISSN: | 0079-6565, 1873-3301, 1873-3301 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high magnetization.•Zn0.4Mn0.6Fe2O4 and Mn0.4Fe2.6O4 have maximal r2.•Preparation procedures determine thickness of the magnetic dead layer.•r1 is strongly dependent on magnetic field strength, while r2 is not.
Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization. |
|---|---|
| AbstractList | Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization. [Display omitted] •Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high magnetization.•Zn0.4Mn0.6Fe2O4 and Mn0.4Fe2.6O4 have maximal r2.•Preparation procedures determine thickness of the magnetic dead layer.•r1 is strongly dependent on magnetic field strength, while r2 is not. Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization. |
| Author | Peters, Joop A. |
| Author_xml | – sequence: 1 givenname: Joop A. surname: Peters fullname: Peters, Joop A. email: J.A.Peters@tudelft.nl organization: Biocatalysis, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands |
| BookMark | eNqFkD1PwzAURS1UJNrCL2DJyJLwHCdxMjCgii-pEhKC2Xp1n5GrxAm2W9F_T0qZGGC6yz1XV2fGJq53xNglh4wDr6432eA6H7IccshAZgD5CZvyWopUCOATNgWQTVqVVXnGZiFsAKCscjll6Qu1-Gl3Nu6T3iQdund0FCgx5L2NlDh0_YA-Wt1SOGenBttAFz85Z2_3d6-Lx3T5_PC0uF2mWtQ8pnVj6oqMaVblGpscV3WxKgtdFgIJjSwRiZMkIcuq4RrJ5LpZaRJQGDSFWIs5uzruDr7_2FKIqrNBU9uO3_ptUHlRcdEIkNVYbY5V7fsQPBmlbcRoexc92lZxUAdFaqO-FamDIgVSjYpGVvxiB2879Pt_qJsjRaOBnSWvgrbkNK2tJx3Vurd_8l8M6oTa |
| CitedBy_id | crossref_primary_10_1134_S106378262460222X crossref_primary_10_3390_cells11244029 crossref_primary_10_3390_molecules29235591 crossref_primary_10_1016_j_jwpe_2025_107329 crossref_primary_10_1016_j_mseb_2025_118058 crossref_primary_10_1021_acsanm_5c00309 crossref_primary_10_3390_nano15171382 crossref_primary_10_1515_ract_2024_0368 crossref_primary_10_3390_ma15217645 crossref_primary_10_3390_nano12193304 crossref_primary_10_3390_nano13050804 crossref_primary_10_1016_j_jallcom_2021_162715 crossref_primary_10_1016_j_rsurfi_2025_100545 crossref_primary_10_3390_nano13081373 crossref_primary_10_1016_j_jallcom_2025_181992 crossref_primary_10_1016_j_jddst_2024_106224 crossref_primary_10_3390_magnetochemistry9070170 crossref_primary_10_1002_wnan_1858 crossref_primary_10_1007_s42250_025_01466_y crossref_primary_10_1016_j_ccr_2021_214069 crossref_primary_10_1016_j_jmmm_2022_170219 crossref_primary_10_1021_acs_jpcc_4c07127 crossref_primary_10_1111_jace_20145 crossref_primary_10_1016_j_ceramint_2024_10_084 crossref_primary_10_1016_j_heliyon_2024_e31428 crossref_primary_10_1016_j_jallcom_2024_175932 crossref_primary_10_3390_molecules27238297 crossref_primary_10_3390_ph16020249 crossref_primary_10_1016_j_jiec_2021_07_043 crossref_primary_10_1007_s10876_024_02598_w |
| Cites_doi | 10.1039/C5DT00212E 10.1002/adhm.201200078 10.1021/cm300301c 10.1016/j.jmmm.2012.12.005 10.1007/BF01587300 10.1109/TMAG.1975.1058861 10.1021/ja104503g 10.1103/PhysRevB.77.092416 10.1016/j.jmr.2011.06.024 10.1016/j.jmmm.2005.01.070 10.1016/j.ssc.2014.10.001 10.1039/C5RA07632C 10.1063/1.4966253 10.1016/j.ceramint.2016.05.041 10.1088/2053-1591/ab66a4 10.1039/C5RA20474G 10.1002/9781118503652 10.1007/s11051-016-3402-5 10.1002/mrm.22944 10.1103/PhysRev.121.1379 10.1021/nl070363y 10.1002/adfm.201200275 10.1103/PhysRevB.51.12009 10.1016/j.jmmm.2011.10.017 10.1016/j.jmmm.2008.02.022 10.1143/JPSJ.22.174 10.1016/j.biomaterials.2014.07.019 10.1002/mrm.10059 10.1016/j.biomaterials.2009.02.001 10.1021/nl071099b 10.1016/j.jmmm.2018.11.097 10.1109/TMAG.2018.2844253 10.1016/0022-3697(67)90130-8 10.1039/C4DT00162A 10.1016/j.biomaterials.2010.01.055 10.1021/ja973085l 10.1002/mrm.1910320610 10.1016/j.pep.2016.01.008 10.1016/j.jmmm.2006.09.011 10.1063/1.125792 10.1039/C4CP05122J 10.1016/j.ejpb.2007.08.001 10.1021/jp404199f 10.1002/anie.200701674 10.1039/C5DT00372E 10.1177/0885328215601926 10.1007/s00062-018-0678-0 10.1039/C7RA05495E 10.1021/acsnano.6b07684 10.1088/1361-6528/ab3f17 10.1002/pssa.2210400258 10.1039/b804544e 10.1021/jp510937r 10.1016/j.bcp.2006.11.008 10.1021/nn101129r 10.1186/s40580-014-0032-4 10.1007/s00775-013-1074-5 10.1007/BF00307535 10.1016/j.reactfunctpolym.2019.104352 10.1016/j.materresbull.2012.11.097 10.1039/C4NR05781C 10.1021/ja0380852 10.1088/0022-3727/41/13/134021 10.1016/j.matlet.2015.03.120 10.1109/TNB.2009.2021521 10.1021/ic50059a031 10.1088/0957-4484/20/18/185704 10.1021/acsami.7b05912 10.1016/S0304-8853(98)00555-1 10.4155/fmc-2018-0608 10.1063/1.4751442 10.1002/mrm.1135 10.1063/1.1746464 10.1148/radiol.2015150805 10.1103/PhysRevB.54.9288 10.1179/1753555713Y.0000000066 10.2214/AJR.07.3951 10.1016/j.jcis.2014.06.003 10.1039/b912149h 10.1039/C4DT02425G 10.1007/s11547-017-0816-9 10.1021/cr980440x 10.1097/RLI.0000000000000241 10.1109/TMAG.2008.2005329 10.1073/pnas.0902365106 10.1002/anie.200461875 10.1002/adma.200701952 10.1088/0957-4484/19/48/485101 10.1021/cr300068p 10.1039/c3ra43985b 10.1007/s11051-013-1743-x 10.1021/acs.jpcc.6b09274 10.3938/jkps.62.1696 10.1148/radiol.2015142690 10.1002/anie.200805149 10.1016/j.jmmm.2004.09.138 10.1016/j.mri.2008.01.039 10.1016/S0304-8853(02)00706-0 10.1016/0304-8853(94)90320-4 10.1021/ja035474n 10.1038/nm1467 10.1021/acs.chemmater.9b04848 10.1002/9780470386323.ch6 10.7150/thno.31233 10.1016/j.cej.2019.122848 10.1021/ar700121f 10.1021/acs.nanolett.9b00630 10.1021/acsami.6b13161 10.1002/chem.201405967 10.1103/PhysRevLett.67.3602 10.1021/nn202912b 10.1103/PhysRevLett.68.3112 10.1016/j.jmmm.2009.07.057 10.1063/1.1432474 10.1039/C9DT01620A 10.1063/1.5027898 10.1016/j.chemosphere.2015.08.008 10.1039/C2CE25957E 10.1063/1.4776771 10.1016/j.jmmm.2007.08.010 10.1038/nnano.2011.95 10.1088/1748-6041/4/2/025018 10.4028/www.scientific.net/SSP.241.139 10.1002/mabi.201400122 10.1016/0025-5416(69)90042-1 10.1007/s11051-014-2848-6 10.1021/cr068445e 10.1039/c4tb00342j 10.1002/adfm.200700482 10.1021/acs.chemrev.8b00363 10.1088/0957-4484/27/15/155706 10.1021/acsami.6b01377 10.1002/anie.200602866 10.5772/67513 10.3390/ma3074051 10.1002/anie.201100101 10.1002/mrm.22966 10.1063/1.3211307 10.1021/acs.chemmater.7b00035 10.1021/acs.chemmater.6b01256 10.1180/mgm.2018.109 10.1097/RLI.0000000000000252 10.1016/j.jcis.2017.10.001 10.1016/j.colsurfb.2015.11.010 10.1103/PhysRev.106.865 10.1016/j.jmmm.2016.10.095 10.1038/242190a0 10.1039/b922646j 10.1002/adhm.201200340 10.1002/smll.201201427 10.1007/s12325-015-0275-4 10.1063/1.478435 10.1103/PhysRev.104.328 10.1039/C7TB02954C 10.1002/mrm.25196 10.1039/C6RA14265F |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 |
| DOI | 10.1016/j.pnmrs.2020.07.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| EISSN | 1873-3301 |
| EndPage | 94 |
| ExternalDocumentID | 10_1016_j_pnmrs_2020_07_002 S0079656520300236 |
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABBQC ABEFU ABFNM ABJNI ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJQLL AJRQY AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM LCYCR M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSK SSQ SSZ T5K WH7 WUQ XOL XPP YK3 ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 |
| ID | FETCH-LOGICAL-c381t-89f86eff9b5da92ab84b54c543aeaf75aae1e7e375691caef2c9bce304faf43d3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590593200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0079-6565 1873-3301 |
| IngestDate | Sun Sep 28 09:01:40 EDT 2025 Sat Nov 29 07:20:34 EST 2025 Tue Nov 18 22:11:28 EST 2025 Fri Feb 23 02:45:26 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MRI contrast agents Transverse relaxivity Zn-doping Longitudinal relaxivity Magnetization |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-89f86eff9b5da92ab84b54c543aeaf75aae1e7e375691caef2c9bce304faf43d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.pnmrs.2020.07.002 |
| PQID | 2461393076 |
| PQPubID | 23479 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_2461393076 crossref_citationtrail_10_1016_j_pnmrs_2020_07_002 crossref_primary_10_1016_j_pnmrs_2020_07_002 elsevier_sciencedirect_doi_10_1016_j_pnmrs_2020_07_002 |
| PublicationCentury | 2000 |
| PublicationDate | October-December 2020 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October-December 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Progress in nuclear magnetic resonance spectroscopy |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kim, Nikles, Brazel (b0745) 2010; 3 Botta, Carniato, Esteban-Gómez, Platas-Iglesias, Tei (b0080) 2019; 11 Roch, Gossuin, Muller, Gillis (b0185) 2005; 293 Peng, Choo, Chandrasekharan, Yang, Ding, Chuang, Xue (b0790) 2012; 8 J. Smit, H.P.J. Wijn, Ferrites, Philips' Technical Library, 1959. Chen, Sun, Gu (b0200) 2009; 106 Yang, He, Lv, Gai, Cheng, Dai, Yang (b0585) 2015; 44 Leng, Li, Ren, Deng, Lin (b0785) 2015; 152 The reported plots were digitized with: WebPlotDigitizer Veverka, Kaman, Kačenka, Herynek, Veverka, Šantavá, Lukeš, Jirák (b0505) 2015; 17 Davies, Kirschenbaum, Kustin (b0500) 1968; 7 Bulte, Brooks, Moskowitz, Bryant, Frank (b0295) 1999; 194 Vuong, Gossuin, Gillis, Delangre (b0155) 2012; 137 Hastings, Corliss (b0255) 1956; 104 Giri, Pradhan, Somani, Chelawat, Chhatre, Banerjee, Bahadur (b0605) 2008; 320 Caravan, Ellison, McMurry, Lauffer (b0020) 1999; 99 Stokes, Bromiley, Gatta, Rotiroti, Potts, Saunders (b0515) 2018; 82 Pardo, Pelaz, Gallo, Bañobre-López, Parak, Barbosa, del Pino, Taboada (b0640) 2020; 32 Laurent, Forge, Port, Roch, Robic, Vander Elst, Muller (b0090) 2008; 108 Rotter, Sedlák, Šimša, Brabers (b0520) 1977; 40 Gossuin, Orlando, Basini, Henrard, Lascialfari, Mattea, Stapf, Vuong (b0160) 2016; 27 Pullicino, Radon, Biswas, Bhojak, Das (b0060) 2018; 28 Kim, Zeng, Ng, Brazel (b0575) 2009; 321 Jang, Nah, Lee, Moon, Kim, Cheon (b0435) 2009; 48 . Rosensweig (b0220) 2002; 252 Verwey, Heilmann (b0240) 1947; 15 Lee, Yoon, Figueiredo, Swirski, Weissleder (b0450) 2009; 106 Menelaou, Iatridi, Tsougos, Vasiou, Dendrinou-Samara, Bokias (b0385) 2015; 44 Lauterbur (b0005) 1973; 242 Tóth, Helm, Merbach (b0130) 2013 Levy, Pastero, Hoser, Viscovo (b0480) 2015; 201 O.F. Odio, E. Reguera, Nanostructured spinel ferrites: synthesis, functionalization, nanomagnetism and environmental applications, in: M.S. Seehra (Ed.) Magnetic spinels, IntechOpen, London, 2017, 10.5772/67513. Bannwarth, Ebert, Lauck, Ziener, Tomcin, Jakob, Muennemann, Mailaender, Musyanovych, Landfester (b0225) 2014; 14 Matsumoto, Jasanoff (b0760) 2008; 26 Broese van Groenou, Bongers, Stuyts (b0275) 1969; 3 Leung, Wang, Wang, Xuan, Chak, Cheng (b0720) 2009; 8 Vamvakidis, Sakellari, Angelakeris, Dendrinou-Samara (b0645) 2013; 15 Ereath Beeran, Nazeer, Boniface Fernandez, Surendra Muvvala, Wunderlich, Anil, Vellappally, Rao, John, Jayasree, Varma (b0630) 2015; 17 Kim, Thai, Nikles, Brazel (b0360) 2009; 45 Ding, Xue, Li, Li, Tang, Qi, Wu, Ge (b0670) 2016; 6 Kanal, Tweedle (b0040) 2015; 275 Carta, Casula, Floris, Falqui, Mountjoy, Boni, Sangregorio, Corrias (b0495) 2010; 12 Faraji, Dini, Zahraei (b0600) 2019; 475 Arulmurugan, Jeyadevan, Vaidyanathan, Sendhilnathan (b0680) 2005; 288 Brooks, Moiny, Gillis (b0165) 2001; 45 Nandwana, Ryoo, Kanthala, De, Chou, Prasad, Dravid (b0395) 2016; 8 Augustine, Lee, Kim, Zhang, Kim (b0340) 2019; 144 Vamvakidis, Mourdikoudis, Makridis, Paulidou, Angelakeris, Dendrinou-Samara (b0420) 2018; 511 Jun, Lee, Cheon (b0285) 2008; 47 Yang, Ma, Xin, Li, Sun, Wei, Ren, Chen, Lin, Gao (b0610) 2017; 29 Seo, Yang, Lee, Jung, Kim, Lee, Kim, Suh, Huh, Haam (b0800) 2008; 18 Miao, Zhang, Liu, Ghosal, Fan, Xie, Cai, Jiao, Hu, Yang (b0595) 2019; 9 Cullity B.D., Graham C.D., Ferrimagnetism, Introduction to magnetic materials, Wiley-IEEE Press, 2009, pp. 175–195 Pierre, Allen, Caravan (b0025) 2014; 19 Tang, Sorensen, Klabunde, Hadjipanayis (b0325) 1991; 67 Pernia Leal, Rivera-Fernández, Franco, Pozo, de la Fuente, Garcia-Martin (b0405) 2015; 7 Brücher, Tircsó, Baranyai, Kovács, Sherry (b0050) 2013 Yang, Chinnasamy, Greneche, Chen, Yoon, Chen, Hsu, Cai, Ziemer, Vittoria, Harris (b0475) 2009; 20 Amighian, Karimzadeh, Mozaffari (b0650) 2013; 332 Martins, Silva, Paula, Gomes, Aquino, Mestnik-Filho, Bonville, Porcher, Perzynski, Depeyrot (b0730) 2017; 121 Robert, Violas, Grand, Lehericy, Idee, Ballet, Corot (b0065) 2016; 51 Batlle (b0310) 2002; 35 Galvão, Neto, Freire, Fechine (b0250) 2016; 241 Kandasamy (b0455) 2019; 30 Mirahmadi-Zare, Allafchian, Aboutalebi, Shojaei, Khazaie, Dormiani, Lachinani, Nasr-Esfahani (b0120) 2016; 121 Upadhyay, Davies, Wells, Charles (b0615) 1994; 132 Ahmad, Yao, Zhou, Liu (b0115) 2015; 139 Yablonskiy, Haacke (b0175) 1994; 32 Lasheras, Insausti, de la Fuente, Gil de Muro, Castellanos-Rubio, Marcano, Fernández-Gubieda, Serrano, Martín-Rodríguez, Garaio, García, Lezama (b0560) 2019; 48 Vuong, Gillis, Gossuin (b0700) 2011; 212 Kaman, Kuličková, Herynek, Koktan, Maryško, Dědourková, Knížek, Jirák (b0655) 2017; 427 Lévy, Gazeau, Wilhelm, Neveu, Devaud, Levitz (b0140) 2013; 117 Huh, Lee, Lee, Jun, Kim, Yun, Kim, Suh, Cheon (b0280) 2007; 19 Wang, Bremner, Wu, Gong, Fan, Xie, Zhang, Wu, Zhu (b0825) 2020; 382 Sun, Zeng, Robinson, Raoux, Rice, Wang, Li (b0465) 2004; 126 Kaman, Herynek, Veverka, Kubíčková, Pashchenko, Kuličková, Jirák (b0775) 2018; 54 Yang, Shi, Wang, Shi, Guo, Yang, Wu, Wu (b0795) 2016; 30 Zhao, Chi, Yang, Yang, Ren, Zhu, Zhang, Gao (b0710) 2016; 28 Harrison, Osmond, Teale (b0555) 1957; 106 Štěpánková, Sedlák, Chlan, Novák, Šimša (b0525) 2008; 77 Li, Wang, Sun, Zhao, Lei, Lan, Cheng, Wang, Dou, Lu (b0815) 2013; 2 Bleicher, Kanal (b0035) 2008; 191 Vuong, Gillis, Roch, Gossuin (b0125) 2017; 9 Yoon, Lee, Shao, Weissleder (b0755) 2011; 50 Kurz, Kampf, Heiland, Bendszus, Schlemmer, Ziener (b0190) 2014; 71 Kim, Lee, Hong, Cho, Sung, Poo, Lim (b0780) 2011; 5 Šimša, Brabers (b0530) 1975; 11 Mohapatra, Mitra, Bahadur, Aslam (b0390) 2013; 15 Lu, Salabas, Schüth (b0470) 2007; 46 Karovic, Tonazzini, Rebola, Edström, Lövdahl, Fredholm, Daré (b0105) 2007; 73 Vamvakidis, Katsikini, Sakellari, Paloura, Kalogirou, Dendrinou-Samara (b0210) 2014; 43 Rath, Mishra, Anand, Das, Sahu, Upadhyaya, Verma (b0665) 2000; 76 Li, Zhao, Liu, Cheng, Han, Zhang, Min, Liu, Xu, Shi, Qin, Fan, Ren, Nie (b0590) 2019 Venkatesha, Pudakalakatti, Qurishi, Atreya, Srivastava (b0415) 2015; 5 Pinho, Pereira, Voisin, Kassem, Bouchaud, Etienne, Peters, Carlos, Mornet, Geraldes, Rocha, Delville (b0195) 2010; 4 Zhang, Li, Liu, Jiao, Ng, Yi, Luo, Bay, Zhao, Peng, Gu, Fan (b0430) 2017; 11 Sharifi, Shokrollahi, Amiri (b0685) 2012; 324 Wahsner, Gale, Rodríguez-Rodríguez, Caravan (b0030) 2019; 119 Vuong, Berret, Fresnais, Gossuin, Sandre (b0150) 2012; 1 Tromsdorf, Bigall, Kaul, Bruns, Nikolic, Mollwitz, Sperling, Reimer, Hohenberg, Parak, Foerster, Beisiegel, Adam, Weller (b0565) 2007; 7 Pereira, Pereira, Fernandes, Rocha, Mendes, Fernández-Garcíá, Guedes, Tavares, Grenèche, Araújo, Freire (b0300) 2012; 24 Yang, Zhang, Shi, Hu, Du, Fang, Ma, Wu, Yang (b0425) 2010; 31 Lohrke, Frenzel, Endrikat, Alves, Grist, Law, Lee, Leiner, Li, Nikolaou, Prince, Prince, Schild, Weinreb, Yoshikawa, Pietsch (b0010) 2016; 33 van der Zaag, Noordermeer, Johnson, Bongers (b0270) 1992; 68 Zhang, Wang, Chakoumakos, Yin (b0490) 1998; 120 Ahmad, Bae, Rhee (b0810) 2018; 8 Hamed, Fitzgerald, Wang, Gueorguieva, Malik, Melzer (b0690) 2013; 28 Vamvakidis, Katsikini, Vourlias, Angelakeris, Paloura, Dendrinou-Samara (b0550) 2015; 44 Huang, Cheng (b0535) 2013; 113 Murata, Gonzalez-Cuyar, Murata, Fligner, Dills, Hippe, Maravilla (b0070) 2016; 51 Lee, Yang, Ko, Oh, Kang, Son, Lee, Lee, Yoon, Suh, Huh, Haam (b0770) 2008; 18 Aslibeiki, Kameli, Ehsani (b0320) 2016; 42 Chlan, Procházka, Štěpánková, Sedlák, Novák, Šimša, Brabers (b0260) 2008; 320 Reddy, Arias, Nicolas, Couvreur (b0830) 2012; 112 Zhao, Sun, Bao, Yang, Wei, Cheng, Lin, Gao (b0715) 2018; 6 Yasuoka, Hirai, Shinjo, Kiyama, Bando, Takada (b0540) 1967; 22 Kanda, Fukusato, Matsuda, Toyoda, Oba, Kotoku, Haruyama, Kitajima, Furui (b0055) 2015; 276 Gillis, Moiny, Brooks (b0180) 2002; 47 Lu, Ma, Sun, Xia, Liu, Wang, Zhao, Gao, Gong, Song, Shuai, Ai, Gu (b0375) 2009; 30 Lee, Yang, Seo, Ko, Suh, Huh, Haam (b0570) 2008; 19 Du, Liu, Liang, Liang, Tian (b0345) 2019; 19 Wang, Wu, Tang, Zeng, Qiao, Zhao, Zhang, Hu, Gao (b0620) 2013; 3 v.d. Giessen (b0215) 1967; 28 Hill, Craig, Gibbs (b0245) 1979; 4 Chithrani, Chan (b0445) 2007; 7 Wang, Liu, Li, Liu, Wang (b0705) 2014; 2 Lim, Yang, Suh, Huh, Haam (b0370) 2009; 19 Sahoo, Devi, Dutta, Maiti, Pramanik, Dhara (b0740) 2014; 431 Lee, Huh, Jun, Seo, Jang, Song, Kim, Cho, Yoon, Suh, Cheon (b0265) 2007; 13 Park, Kang, Kim, Suh, Huh, Haam (b0400) 2015; 2 de Haan (b0145) 2011; 66 Mazarío, Sánchez-Marcos, Menéndez, Cañete, Mayoral, Rivera-Fernández, de la Fuente, Herrasti (b0380) 2015; 119 Rinck (b0095) 2019; 30 Ahmad, Iqbal, Bae, Rhee, Hong, Chang, Lee (b0580) 2013; 62 (last accessed: 30-06-2020). Iatridi, Vamvakidis, Tsougos, Vassiou, Dendrinou-Samara, Bokias (b0355) 2016; 8 Chen, Sorensen, Klabunde, Hadjipanayis, Devlin, Kostikas (b0315) 1996; 54 Livramento, Tóth, Sour, Borel, Merbach, Ruloff (b0765) 2005; 44 Boni, Marinone, Innocenti, Sangregorio, Corti, Lascialfari, Mariani, Orsini, Poletti, Casula (b0625) 2008; 41 Ravichandran, Velumani (b0410) 2020; 7 Rath, Anand, Das, Sahu, Kulkarni, Date, Mishra (b0660) 2002; 91 Choo, Peng, Rajendran, Chandrasekharan, Yang, Ding, Chuang, Xue (b0805) 2013; 23 Baranyai, Brücher, Uggeri, Maiocchi, Tóth, Andrási, Gáspár, Zékány, Aime (b0045) 2015; 21 Gaumet, Vargas, Gurny, Delie (b0440) 2008; 69 Jun, Seo, Cheon (b0290) 2008; 41 Günay, Erdemi, Baykal, Sözeri, Toprak (b0350) 2013; 48 Kumar, Daverey, Khalilzad-Sharghi, Sahu, Kidambi, Othman, Bahadur (b0365) 2015; 5 Cardona, Urquiza, Presa, Tobón, Pal, Fraijo, Yacaman, Lozada Ramirez, Ivkov, Angulo-Molina, Mendez-Rojas (b0695) 2016; 6 Vestal, Zhang (b0725) 2003; 125 de Haan, Paquet (b0205) 2011; 66 Millan, Urtizberea, Silva, Palacio, Amaral, Snoeck, Serin (b0305) 2007; 312 Banerjee, Blasiak, Pasquier, Tomanek, Trudel (b0330) 2017; 7 Jirák, Vratislav (b0485) 1974; 24 Splendiani, Perri, Marsecano, Vellucci, Michelini, Barile, Di Cesare (b0075) 2018; 123 Kaman, Dědourková, Koktan, Kuličková, Maryško, Veverka, Havelek, Královec, Turnovcová, Jendelová, Schröfel, Svoboda (b0510) 2016; 18 Merbach A.E., Helm L., Tóth É., The chemistry of contrast agents in medical magnetic resonance imaging, second ed., John Wiley & Sons, Ltd, Chichester (UK, 2013 Ereath Beeran, Boniface Fernandez, John, Nazeer, Jayasree, Anil, Vellappally, Al Kheraif, Varma (b0635) 2015; 136 Kwon, Xia, Glyn-Jones, Beard, G Vuong (10.1016/j.pnmrs.2020.07.002_b0125) 2017; 9 Lohrke (10.1016/j.pnmrs.2020.07.002_b0010) 2016; 33 Pierre (10.1016/j.pnmrs.2020.07.002_b0025) 2014; 19 Pinho (10.1016/j.pnmrs.2020.07.002_b0195) 2010; 4 Chlan (10.1016/j.pnmrs.2020.07.002_b0260) 2008; 320 Augustine (10.1016/j.pnmrs.2020.07.002_b0340) 2019; 144 Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0210) 2014; 43 Cardona (10.1016/j.pnmrs.2020.07.002_b0695) 2016; 6 Seo (10.1016/j.pnmrs.2020.07.002_b0800) 2008; 18 Mohapatra (10.1016/j.pnmrs.2020.07.002_b0390) 2013; 15 Yang (10.1016/j.pnmrs.2020.07.002_b0475) 2009; 20 Murata (10.1016/j.pnmrs.2020.07.002_b0070) 2016; 51 Sun (10.1016/j.pnmrs.2020.07.002_b0465) 2004; 126 Ahmad (10.1016/j.pnmrs.2020.07.002_b0810) 2018; 8 Yang (10.1016/j.pnmrs.2020.07.002_b0795) 2016; 30 Gossuin (10.1016/j.pnmrs.2020.07.002_b0160) 2016; 27 Roch (10.1016/j.pnmrs.2020.07.002_b0135) 1999; 110 Kanda (10.1016/j.pnmrs.2020.07.002_b0055) 2015; 276 Faraji (10.1016/j.pnmrs.2020.07.002_b0600) 2019; 475 Yang (10.1016/j.pnmrs.2020.07.002_b0585) 2015; 44 Brooks (10.1016/j.pnmrs.2020.07.002_b0165) 2001; 45 Vuong (10.1016/j.pnmrs.2020.07.002_b0700) 2011; 212 Laurent (10.1016/j.pnmrs.2020.07.002_b0090) 2008; 108 Kumar (10.1016/j.pnmrs.2020.07.002_b0365) 2015; 5 Caravan (10.1016/j.pnmrs.2020.07.002_b0020) 1999; 99 Matsumoto (10.1016/j.pnmrs.2020.07.002_b0760) 2008; 26 Bleicher (10.1016/j.pnmrs.2020.07.002_b0035) 2008; 191 Zhao (10.1016/j.pnmrs.2020.07.002_b0715) 2018; 6 Bannwarth (10.1016/j.pnmrs.2020.07.002_b0225) 2014; 14 Hastings (10.1016/j.pnmrs.2020.07.002_b0255) 1956; 104 Boni (10.1016/j.pnmrs.2020.07.002_b0625) 2008; 41 Zhang (10.1016/j.pnmrs.2020.07.002_b0735) 2017; 9 Kaman (10.1016/j.pnmrs.2020.07.002_b0775) 2018; 54 Robert (10.1016/j.pnmrs.2020.07.002_b0065) 2016; 51 Aslibeiki (10.1016/j.pnmrs.2020.07.002_b0320) 2016; 42 Vuong (10.1016/j.pnmrs.2020.07.002_b0155) 2012; 137 Zhang (10.1016/j.pnmrs.2020.07.002_b0430) 2017; 11 Leung (10.1016/j.pnmrs.2020.07.002_b0720) 2009; 8 Mazarío (10.1016/j.pnmrs.2020.07.002_b0380) 2015; 119 Pernia Leal (10.1016/j.pnmrs.2020.07.002_b0405) 2015; 7 Jun (10.1016/j.pnmrs.2020.07.002_b0290) 2008; 41 Kim (10.1016/j.pnmrs.2020.07.002_b0780) 2011; 5 Gaumet (10.1016/j.pnmrs.2020.07.002_b0440) 2008; 69 Pullicino (10.1016/j.pnmrs.2020.07.002_b0060) 2018; 28 Lévy (10.1016/j.pnmrs.2020.07.002_b0140) 2013; 117 Lee (10.1016/j.pnmrs.2020.07.002_b0265) 2007; 13 10.1016/j.pnmrs.2020.07.002_b0015 Leng (10.1016/j.pnmrs.2020.07.002_b0785) 2015; 152 Banerjee (10.1016/j.pnmrs.2020.07.002_b0330) 2017; 7 Rotter (10.1016/j.pnmrs.2020.07.002_b0520) 1977; 40 Kandasamy (10.1016/j.pnmrs.2020.07.002_b0455) 2019; 30 Peng (10.1016/j.pnmrs.2020.07.002_b0790) 2012; 8 Wahsner (10.1016/j.pnmrs.2020.07.002_b0030) 2019; 119 Stokes (10.1016/j.pnmrs.2020.07.002_b0515) 2018; 82 Harrison (10.1016/j.pnmrs.2020.07.002_b0555) 1957; 106 Yang (10.1016/j.pnmrs.2020.07.002_b0610) 2017; 29 Sharifi (10.1016/j.pnmrs.2020.07.002_b0685) 2012; 324 Choo (10.1016/j.pnmrs.2020.07.002_b0805) 2013; 23 Mirahmadi-Zare (10.1016/j.pnmrs.2020.07.002_b0120) 2016; 121 Galvão (10.1016/j.pnmrs.2020.07.002_b0250) 2016; 241 Šimša (10.1016/j.pnmrs.2020.07.002_b0530) 1975; 11 Bulte (10.1016/j.pnmrs.2020.07.002_b0295) 1999; 194 Vestal (10.1016/j.pnmrs.2020.07.002_b0725) 2003; 125 Zhang (10.1016/j.pnmrs.2020.07.002_b0490) 1998; 120 10.1016/j.pnmrs.2020.07.002_b0100 Chen (10.1016/j.pnmrs.2020.07.002_b0200) 2009; 106 van der Zaag (10.1016/j.pnmrs.2020.07.002_b0270) 1992; 68 Günay (10.1016/j.pnmrs.2020.07.002_b0350) 2013; 48 Pereira (10.1016/j.pnmrs.2020.07.002_b0300) 2012; 24 10.1016/j.pnmrs.2020.07.002_b0460 de Haan (10.1016/j.pnmrs.2020.07.002_b0205) 2011; 66 Tóth (10.1016/j.pnmrs.2020.07.002_b0130) 2013 10.1016/j.pnmrs.2020.07.002_b0085 Gillis (10.1016/j.pnmrs.2020.07.002_b0180) 2002; 47 Zhao (10.1016/j.pnmrs.2020.07.002_b0710) 2016; 28 Huang (10.1016/j.pnmrs.2020.07.002_b0535) 2013; 113 Batlle (10.1016/j.pnmrs.2020.07.002_b0310) 2002; 35 Chen (10.1016/j.pnmrs.2020.07.002_b0315) 1996; 54 Lee (10.1016/j.pnmrs.2020.07.002_b0450) 2009; 106 Park (10.1016/j.pnmrs.2020.07.002_b0400) 2015; 2 Ereath Beeran (10.1016/j.pnmrs.2020.07.002_b0630) 2015; 17 Brown (10.1016/j.pnmrs.2020.07.002_b0170) 1961; 121 Wang (10.1016/j.pnmrs.2020.07.002_b0825) 2020; 382 Yablonskiy (10.1016/j.pnmrs.2020.07.002_b0175) 1994; 32 Iatridi (10.1016/j.pnmrs.2020.07.002_b0355) 2016; 8 Ding (10.1016/j.pnmrs.2020.07.002_b0670) 2016; 6 10.1016/j.pnmrs.2020.07.002_b0230 Livramento (10.1016/j.pnmrs.2020.07.002_b0765) 2005; 44 10.1016/j.pnmrs.2020.07.002_b0235 Jirák (10.1016/j.pnmrs.2020.07.002_b0485) 1974; 24 Tromsdorf (10.1016/j.pnmrs.2020.07.002_b0565) 2007; 7 Tang (10.1016/j.pnmrs.2020.07.002_b0325) 1991; 67 Ahmad (10.1016/j.pnmrs.2020.07.002_b0580) 2013; 62 Lee (10.1016/j.pnmrs.2020.07.002_b0750) 2011; 6 Veverka (10.1016/j.pnmrs.2020.07.002_b0505) 2015; 17 Miao (10.1016/j.pnmrs.2020.07.002_b0595) 2019; 9 Menelaou (10.1016/j.pnmrs.2020.07.002_b0385) 2015; 44 Vuong (10.1016/j.pnmrs.2020.07.002_b0150) 2012; 1 v.d. Giessen (10.1016/j.pnmrs.2020.07.002_b0215) 1967; 28 Li (10.1016/j.pnmrs.2020.07.002_b0590) 2019 Rath (10.1016/j.pnmrs.2020.07.002_b0665) 2000; 76 Kurz (10.1016/j.pnmrs.2020.07.002_b0190) 2014; 71 Lauterbur (10.1016/j.pnmrs.2020.07.002_b0005) 1973; 242 Baranyai (10.1016/j.pnmrs.2020.07.002_b0045) 2015; 21 Xie (10.1016/j.pnmrs.2020.07.002_b0675) 2014; 35 Broese van Groenou (10.1016/j.pnmrs.2020.07.002_b0275) 1969; 3 Lim (10.1016/j.pnmrs.2020.07.002_b0370) 2009; 19 Ereath Beeran (10.1016/j.pnmrs.2020.07.002_b0635) 2015; 136 Kaman (10.1016/j.pnmrs.2020.07.002_b0655) 2017; 427 Arulmurugan (10.1016/j.pnmrs.2020.07.002_b0680) 2005; 288 Choi (10.1016/j.pnmrs.2020.07.002_b0820) 2010; 132 Lu (10.1016/j.pnmrs.2020.07.002_b0470) 2007; 46 Chithrani (10.1016/j.pnmrs.2020.07.002_b0445) 2007; 7 Amighian (10.1016/j.pnmrs.2020.07.002_b0650) 2013; 332 de Haan (10.1016/j.pnmrs.2020.07.002_b0145) 2011; 66 Jang (10.1016/j.pnmrs.2020.07.002_b0435) 2009; 48 Reddy (10.1016/j.pnmrs.2020.07.002_b0830) 2012; 112 Sahoo (10.1016/j.pnmrs.2020.07.002_b0740) 2014; 431 Rinck (10.1016/j.pnmrs.2020.07.002_b0095) 2019; 30 Carta (10.1016/j.pnmrs.2020.07.002_b0495) 2010; 12 Yoon (10.1016/j.pnmrs.2020.07.002_b0755) 2011; 50 Lee (10.1016/j.pnmrs.2020.07.002_b0770) 2008; 18 Hamed (10.1016/j.pnmrs.2020.07.002_b0690) 2013; 28 Rath (10.1016/j.pnmrs.2020.07.002_b0660) 2002; 91 Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0645) 2013; 15 Karovic (10.1016/j.pnmrs.2020.07.002_b0105) 2007; 73 Kwon (10.1016/j.pnmrs.2020.07.002_b0110) 2009; 4 Hill (10.1016/j.pnmrs.2020.07.002_b0245) 1979; 4 10.1016/j.pnmrs.2020.07.002_b0335 Ravichandran (10.1016/j.pnmrs.2020.07.002_b0410) 2020; 7 Venkatesha (10.1016/j.pnmrs.2020.07.002_b0415) 2015; 5 Li (10.1016/j.pnmrs.2020.07.002_b0815) 2013; 2 Martins (10.1016/j.pnmrs.2020.07.002_b0730) 2017; 121 Ahmad (10.1016/j.pnmrs.2020.07.002_b0115) 2015; 139 Yasuoka (10.1016/j.pnmrs.2020.07.002_b0540) 1967; 22 Kim (10.1016/j.pnmrs.2020.07.002_b0745) 2010; 3 Roch (10.1016/j.pnmrs.2020.07.002_b0185) 2005; 293 Lee (10.1016/j.pnmrs.2020.07.002_b0570) 2008; 19 Upadhyay (10.1016/j.pnmrs.2020.07.002_b0615) 1994; 132 Kaman (10.1016/j.pnmrs.2020.07.002_b0510) 2016; 18 Rosensweig (10.1016/j.pnmrs.2020.07.002_b0220) 2002; 252 Brücher (10.1016/j.pnmrs.2020.07.002_b0050) 2013 Wang (10.1016/j.pnmrs.2020.07.002_b0620) 2013; 3 Kanal (10.1016/j.pnmrs.2020.07.002_b0040) 2015; 275 Du (10.1016/j.pnmrs.2020.07.002_b0345) 2019; 19 Yang (10.1016/j.pnmrs.2020.07.002_b0425) 2010; 31 Levy (10.1016/j.pnmrs.2020.07.002_b0480) 2015; 201 Štěpánková (10.1016/j.pnmrs.2020.07.002_b0525) 2008; 77 Nandwana (10.1016/j.pnmrs.2020.07.002_b0395) 2016; 8 Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0420) 2018; 511 Vamvakidis (10.1016/j.pnmrs.2020.07.002_b0550) 2015; 44 Wang (10.1016/j.pnmrs.2020.07.002_b0705) 2014; 2 Splendiani (10.1016/j.pnmrs.2020.07.002_b0075) 2018; 123 Lasheras (10.1016/j.pnmrs.2020.07.002_b0560) 2019; 48 Lu (10.1016/j.pnmrs.2020.07.002_b0375) 2009; 30 Millan (10.1016/j.pnmrs.2020.07.002_b0305) 2007; 312 Giri (10.1016/j.pnmrs.2020.07.002_b0605) 2008; 320 Verwey (10.1016/j.pnmrs.2020.07.002_b0240) 1947; 15 Pardo (10.1016/j.pnmrs.2020.07.002_b0640) 2020; 32 Kim (10.1016/j.pnmrs.2020.07.002_b0575) 2009; 321 Huh (10.1016/j.pnmrs.2020.07.002_b0280) 2007; 19 Jun (10.1016/j.pnmrs.2020.07.002_b0285) 2008; 47 Davies (10.1016/j.pnmrs.2020.07.002_b0500) 1968; 7 van der Zaag (10.1016/j.pnmrs.2020.07.002_b0545) 1995; 51 Kim (10.1016/j.pnmrs.2020.07.002_b0360) 2009; 45 Botta (10.1016/j.pnmrs.2020.07.002_b0080) 2019; 11 |
| References_xml | – volume: 275 start-page: 630 year: 2015 end-page: 634 ident: b0040 article-title: Residual or retained gadolinium: practical implications for radiologists and our patients publication-title: Radiology – volume: 41 start-page: 179 year: 2008 end-page: 189 ident: b0290 article-title: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences publication-title: Acc. Chem. Res. – volume: 191 start-page: W307 year: 2008 end-page: W311 ident: b0035 article-title: Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine publication-title: Am. J. Roentgenol. – volume: 320 start-page: e96 year: 2008 end-page: e99 ident: b0260 article-title: Fe NMR study of manganese ferrites publication-title: J. Magn. Magn. Mater. – volume: 76 start-page: 475 year: 2000 end-page: 477 ident: b0665 article-title: Appearance of superparamagnetism on heating nanosize Mn0.65Zn0.35Fe2O4 publication-title: Appl. Phys. Lett. – volume: 121 start-page: 8982 year: 2017 end-page: 8991 ident: b0730 article-title: Local structure of core-shell MnFe publication-title: J. Phys. Chem. C – reference: The reported plots were digitized with: WebPlotDigitizer, – volume: 332 start-page: 157 year: 2013 end-page: 162 ident: b0650 article-title: The effect of Mn publication-title: J. Magn. Magn. Mater. – volume: 194 start-page: 217 year: 1999 end-page: 223 ident: b0295 article-title: Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L publication-title: J. Magn. Magn. Mater. – volume: 22 start-page: 174 year: 1967 end-page: 180 ident: b0540 article-title: NMR determination of metal Ion distribution in manganese ferrite prepared from aqueous solution publication-title: J. Phys. Soc. Jpn. – volume: 3 start-page: 23454 year: 2013 end-page: 23460 ident: b0620 article-title: Ultrasmall PEGylated Mn publication-title: RSC Adv. – volume: 19 start-page: 127 year: 2014 end-page: 131 ident: b0025 article-title: Contrast agents for MRI: 30+ years and where are we going? publication-title: J. Biol. Inorg. Chem. – volume: 43 start-page: 12754 year: 2014 end-page: 12765 ident: b0210 article-title: Reducing the inversion degree of MnFe publication-title: Dalton Trans. – volume: 511 start-page: 101 year: 2018 end-page: 109 ident: b0420 article-title: Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 4051 year: 2010 end-page: 4065 ident: b0745 article-title: Synthesis and characterization of multifunctional chitosan-MnFe publication-title: Materials – volume: 48 start-page: 1234 year: 2009 end-page: 1238 ident: b0435 article-title: Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 9288 year: 1996 end-page: 9296 ident: b0315 article-title: Size-dependent magnetic properties of MnFe publication-title: Phys. Rev. B – volume: 9 start-page: 1764 year: 2019 end-page: 1776 ident: b0595 article-title: Composition-tunable ultrasmall manganese ferrite nanoparticles: insights into their In vivo T publication-title: Theranostics – volume: 15 start-page: 174 year: 1947 end-page: 180 ident: b0240 article-title: Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels publication-title: J. Chem. Phys. – volume: 13 start-page: 95 year: 2007 end-page: 99 ident: b0265 article-title: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging publication-title: Nat. Med. – volume: 71 start-page: 1888 year: 2014 end-page: 1895 ident: b0190 article-title: Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers publication-title: Magn. Reson. Med. – volume: 30 start-page: 502001 year: 2019 ident: b0455 article-title: Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications publication-title: Nanotechnology – volume: 30 start-page: 5 year: 2019 end-page: 8 ident: b0095 article-title: MR imaging: quo vadis? publication-title: Rinckside – volume: 30 start-page: 2919 year: 2009 end-page: 2928 ident: b0375 article-title: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging publication-title: Biomaterials – volume: 51 start-page: 12009 year: 1995 end-page: 12011 ident: b0545 article-title: Comment on “Particle-size effects on the value of T publication-title: Phys. Rev. B – volume: 42 start-page: 12789 year: 2016 end-page: 12795 ident: b0320 article-title: MnFe publication-title: Ceram. Int. – volume: 7 start-page: 2422 year: 2007 end-page: 2427 ident: b0565 article-title: Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents publication-title: Nano Lett. – volume: 431 start-page: 31 year: 2014 end-page: 41 ident: b0740 article-title: Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications publication-title: J. Colloid Interface Sci. – start-page: 1906799 year: 2019 ident: b0590 article-title: A bioinspired nanoprobe with multilevel responsive T publication-title: Adv. Mater. – volume: 126 start-page: 273 year: 2004 end-page: 279 ident: b0465 article-title: Monodisperse MFe publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 258 year: 2008 end-page: 264 ident: b0770 article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy publication-title: Adv. Funct. Mater. – volume: 2 start-page: 958 year: 2013 end-page: 964 ident: b0815 article-title: Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging publication-title: Adv. Healthcare Mater. – volume: 324 start-page: 903 year: 2012 end-page: 915 ident: b0685 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater. – volume: 23 start-page: 496 year: 2013 end-page: 505 ident: b0805 article-title: Superparamagnetic nanostructures for off-resonance magnetic resonance spectroscopic imaging publication-title: Adv. Funct. Mater. – reference: (last accessed: 30-06-2020). – volume: 51 start-page: 73 year: 2016 end-page: 82 ident: b0065 article-title: Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats publication-title: Invest. Radiol. – volume: 11 start-page: 1303 year: 1975 end-page: 1305 ident: b0530 article-title: Influence of the degree of inversion on magnetic properties of MnFe publication-title: IEEE Trans. Magn. – volume: 8 start-page: 3620 year: 2012 end-page: 3630 ident: b0790 article-title: Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications publication-title: Small – volume: 35 start-page: 9126 year: 2014 end-page: 9136 ident: b0675 article-title: High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics publication-title: Biomaterials – volume: 19 start-page: 485101 year: 2008 ident: b0570 article-title: Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging publication-title: Nanotechnology – volume: 288 start-page: 470 year: 2005 end-page: 477 ident: b0680 article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation publication-title: J. Magn. Magn. Mater. – volume: 32 start-page: 749 year: 1994 end-page: 763 ident: b0175 article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime publication-title: Magn. Reson. Med. – volume: 8 start-page: 6953 year: 2016 end-page: 6961 ident: b0395 article-title: Engineered theranostic magnetic nanostructures: role of composition and surface coating on magnetic resonance imaging contrast and thermal activation publication-title: ACS Appl. Mater. Interfaces – volume: 20 year: 2009 ident: b0475 article-title: Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion publication-title: Nanotechnology – volume: 24 start-page: 1496 year: 2012 end-page: 1504 ident: b0300 article-title: Superparamagnetic MFe publication-title: Chem. Mater. – volume: 17 start-page: 4609 year: 2015 end-page: 4619 ident: b0630 article-title: An aqueous method for the controlled manganese (Mn publication-title: Phys. Chem. Chem. Phys. – volume: 45 start-page: 64 year: 2009 end-page: 70 ident: b0360 article-title: Heating of aqueous dispersions containing MnFe publication-title: IEEE Trans. Magn. – volume: 242 start-page: 190 year: 1973 end-page: 191 ident: b0005 article-title: Image Formation by Induced local interactions: examples employing nuclear magnetic resonance publication-title: Nature – volume: 144 start-page: 104352 year: 2019 ident: b0340 article-title: Hyperbranched lipopolymer-folate-stabilized manganese ferrite nanoparticles for the water-soluble targeted MRI contrast agent publication-title: React. Funct. Polym. – volume: 62 start-page: 1696 year: 2013 end-page: 1701 ident: b0580 article-title: Relaxivities of hydrogen protons in aqueous solutions of gold-coated manganese ferrite nanoparticles publication-title: J. Korean Phys. Soc. – volume: 7 start-page: 146 year: 1968 end-page: 154 ident: b0500 article-title: Kinetics and stoichiometry of the reaction between manganese(III) and hydrogen peroxide in acid perchlorate solution publication-title: Inorg. Chem. – volume: 11 start-page: 3614 year: 2017 end-page: 3631 ident: b0430 article-title: Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T publication-title: ACS Nano – volume: 132 start-page: 11015 year: 2010 end-page: 11017 ident: b0820 article-title: Self-confirming “AND” logic nanoparticles for fault-free MRI publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 5339 year: 2010 end-page: 5349 ident: b0195 article-title: Fine tuning of the relaxometry of γ-Fe publication-title: ACS Nano – volume: 30 start-page: 810 year: 2016 end-page: 822 ident: b0795 article-title: Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery publication-title: J. Biomater. Appl. – volume: 24 start-page: 642 year: 1974 end-page: 647 ident: b0485 article-title: Temperature dependence of distribution of cations in MnFe publication-title: Czech. J. Phys. B – volume: 48 start-page: 11480 year: 2019 end-page: 11491 ident: b0560 article-title: Mn-doping level dependence on the magnetic response of Mn publication-title: Dalton Trans. – volume: 108 start-page: 2064 year: 2008 end-page: 2110 ident: b0090 article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications publication-title: Chem. Rev. – volume: 8 start-page: 192 year: 2009 end-page: 198 ident: b0720 article-title: Biological and magnetic contrast evaluation of shape-selective Mn-Fe nanowires publication-title: IEEE Trans. Nanobiosci. – volume: 69 start-page: 1 year: 2008 end-page: 9 ident: b0440 article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters publication-title: Eur. J. Pharm. Biopharm. – volume: 241 start-page: 139 year: 2016 end-page: 176 ident: b0250 article-title: Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications publication-title: Solid State Phenom. – volume: 27 year: 2016 ident: b0160 article-title: NMR relaxation induced by iron oxide particles: testing theoretical models publication-title: Nanotechnology – reference: P.A. Rinck, Magnetic resonance in medicine; a critical introduction, BoD, Hamburg, Germany, 2020. – volume: 32 start-page: 2220 year: 2020 end-page: 2231 ident: b0640 article-title: Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools publication-title: Chem. Mater. – volume: 125 start-page: 9828 year: 2003 end-page: 9833 ident: b0725 article-title: Effects of surface coordination chemistry on the magnetic properties of MnFe publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 5403 year: 1999 end-page: 5411 ident: b0135 article-title: Theory of proton relaxation induced by superparamagnetic particles publication-title: J. Chem. Phys. – volume: 99 start-page: 2293 year: 1999 end-page: 2352 ident: b0020 article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications publication-title: Chem. Rev. – start-page: 157 year: 2013 end-page: 208 ident: b0050 article-title: Stability and toxicity of contrast agents publication-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging – volume: 293 start-page: 532 year: 2005 end-page: 539 ident: b0185 article-title: Superparamagnetic colloid suspensions: water magnetic relaxation and clustering publication-title: J. Magn. Magn. Mater. – volume: 3 start-page: 317 year: 1969 end-page: 392 ident: b0275 article-title: Magnetism, microstructure and crystal chemistry of spinel ferrites publication-title: Mater. Sci. Eng. – volume: 312 start-page: L5 year: 2007 end-page: L9 ident: b0305 article-title: Surface effects in maghemite nanoparticles publication-title: J. Magn. Magn. Mater. – volume: 17 start-page: 33 year: 2015 ident: b0505 article-title: Magnetic La publication-title: J. Nanopart. Res. – volume: 41 year: 2008 ident: b0625 article-title: Magnetic and relaxometric properties of Mn ferrites publication-title: J. Phys. D: Appl. Phys. – volume: 21 start-page: 4789 year: 2015 end-page: 4799 ident: b0045 article-title: The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions publication-title: Chem. Eur. J. – volume: 51 start-page: 447 year: 2016 end-page: 453 ident: b0070 article-title: Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function publication-title: Invest. Radiol. – reference: CRC Handbook of Chemistry and Physics, 2016–2017. – volume: 18 start-page: 4402 year: 2008 end-page: 4407 ident: b0800 article-title: Nanohybrids via a polycation-based nanoemulsion method for dual-mode detection of human mesenchymal stem cells publication-title: J. Mater. Chem. – volume: 54 year: 2018 ident: b0775 article-title: Transverse relaxivity of nanoparticle contrast agents for MRI: different magnetic cores and coatings publication-title: IEEE Trans. Magn. – volume: 15 start-page: 1743 year: 2013 ident: b0645 article-title: Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization publication-title: J. Nanopart. Res. – volume: 12 start-page: 5074 year: 2010 end-page: 5083 ident: b0495 article-title: Synthesis and microstructure of manganese ferrite colloidal nanocrystals publication-title: Phys. Chem. Chem. Phys. – volume: 113 start-page: 033912 year: 2013 ident: b0535 article-title: Cation and magnetic orders in MnFe publication-title: J. Appl. Phys. – volume: 7 start-page: 16107 year: 2020 ident: b0410 article-title: Manganese ferrite nanocubes as an MRI contrast agent publication-title: Mater. Res. Express – volume: 6 start-page: 418 year: 2011 end-page: 422 ident: b0750 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: Nat. Nanotechnol. – volume: 382 start-page: 122848 year: 2020 ident: b0825 article-title: Platelet membrane biomimetic bufalin-loaded hollow MnO publication-title: Chem. Eng. J. – volume: 139 start-page: 479 year: 2015 end-page: 485 ident: b0115 article-title: Toxicity of cobalt ferrite (CoFe publication-title: Chemosphere – volume: 46 start-page: 1222 year: 2007 end-page: 1244 ident: b0470 article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 5122 year: 2008 end-page: 5135 ident: b0285 article-title: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging publication-title: Angew. Chem., Int. Ed. – volume: 106 start-page: 063906 year: 2009 ident: b0200 article-title: Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging publication-title: J. Appl. Phys. – volume: 6 start-page: 401 year: 2018 end-page: 413 ident: b0715 article-title: Surface manganese substitution in magnetite nanocrystals enhances T publication-title: J. Mater. Chem. B – volume: 28 start-page: 343 year: 1967 end-page: 346 ident: b0215 article-title: Magnetic properties of ultra-fine iron (III) oxide-hydrate particles prepared from iron (III) oxide-hydrate gels publication-title: J. Phys. Chem. Solids – volume: 112 start-page: 5818 year: 2012 end-page: 5878 ident: b0830 article-title: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications publication-title: Chem. Rev. – volume: 28 start-page: 339 year: 2013 end-page: 346 ident: b0690 article-title: Characterisation of Mn publication-title: Mater. Technol. – volume: 67 start-page: 3602 year: 1991 end-page: 3605 ident: b0325 article-title: Size-dependent Curie temperature in nanoscale MnFe publication-title: Phys. Rev. Lett. – volume: 106 start-page: 865 year: 1957 end-page: 866 ident: b0555 article-title: Cation distribution and magnetic moment of manganese ferrite publication-title: Phys. Rev. – volume: 6 start-page: 77558 year: 2016 end-page: 77568 ident: b0695 article-title: Enhanced magnetic properties and MRI performance of bi-magnetic core-shell nanoparticles publication-title: RSC Adv. – volume: 132 start-page: 249 year: 1994 end-page: 257 ident: b0615 article-title: Preparation and characterization of ultra-fine MnFe publication-title: J. Magn. Magn. Mater. – volume: 4 start-page: 317 year: 1979 end-page: 339 ident: b0245 article-title: Systematics of the spinel structure type publication-title: Phys. Chem. Miner. – volume: 14 start-page: 1205 year: 2014 end-page: 1214 ident: b0225 article-title: Tailor-made nanocontainers for combined magnetic-field-induced release and MRI publication-title: Macromol. Biosci. – volume: 68 start-page: 3112 year: 1992 ident: b0270 article-title: Comment on “Size-dependent Curie temperature in nanoscale MnFe publication-title: Phys. Rev. Lett. – volume: 40 start-page: K169 year: 1977 end-page: K171 ident: b0520 article-title: NMR study of valency states in MnFe publication-title: Phys. Stat. Sol. A – reference: Merbach A.E., Helm L., Tóth É., The chemistry of contrast agents in medical magnetic resonance imaging, second ed., John Wiley & Sons, Ltd, Chichester (UK, 2013, – volume: 201 start-page: 15 year: 2015 end-page: 19 ident: b0480 article-title: Thermal expansion and cation partitioning of MnFe publication-title: Solid State Commun. – volume: 5 start-page: 53180 year: 2015 end-page: 53188 ident: b0365 article-title: Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia publication-title: RSC Adv. – volume: 15 start-page: 524 year: 2013 end-page: 532 ident: b0390 article-title: Surface controlled synthesis of MFe publication-title: CrystEngComm – volume: 44 start-page: 10980 year: 2015 end-page: 10990 ident: b0385 article-title: Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes, NMR and MRI relaxometry publication-title: Dalton Trans. – volume: 31 start-page: 3667 year: 2010 end-page: 3673 ident: b0425 article-title: Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging publication-title: Biomaterials – volume: 44 start-page: 247 year: 2015 end-page: 253 ident: b0585 article-title: A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents publication-title: Dalton Trans. – volume: 4 start-page: 025018 year: 2009 ident: b0110 article-title: Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro publication-title: Biomed. Mater. – volume: 11 start-page: 1461 year: 2019 end-page: 1483 ident: b0080 article-title: Mn(II) compounds as an alternative to Gd-based MRI probes publication-title: Future Med. Chem. – volume: 121 start-page: 1379 year: 1961 end-page: 1382 ident: b0170 article-title: Distribution of fields from randomly placed dipoles: free-precession signal decay as result of magnetic grains publication-title: Phys. Rev. – volume: 66 start-page: 1759 year: 2011 end-page: 1766 ident: b0205 article-title: Enhancement and degradation of the R publication-title: Magn. Reson. Med. – volume: 7 start-page: 38125 year: 2017 end-page: 38134 ident: b0330 article-title: Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T publication-title: RSC Adv. – volume: 9 start-page: 23458 year: 2017 end-page: 23465 ident: b0735 article-title: Surface PEG grafting density determines magnetic relaxation properties of Gd-loaded porous nanoparticles for MR imaging applications publication-title: ACS Appl. Mater. Interfaces – volume: 117 start-page: 15369 year: 2013 end-page: 15374 ident: b0140 article-title: Revisiting MRI contrast properties of nanoparticles: beyond the superparamagnetic regime publication-title: J. Phys. Chem. C – volume: 18 start-page: 100 year: 2016 ident: b0510 article-title: Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity publication-title: J. Nanopart. Res. – volume: 29 start-page: 3038 year: 2017 end-page: 3047 ident: b0610 article-title: Composition tunable manganese ferrite nanoparticles for optimized T publication-title: Chem. Mater. – volume: 19 start-page: 8958 year: 2009 end-page: 8963 ident: b0370 article-title: Self-labeled magneto nanoprobes using tri-aminated polysorbate 80 for detection of human mesenchymal stem cells publication-title: J. Mater. Chem. – volume: 212 start-page: 139 year: 2011 end-page: 148 ident: b0700 article-title: Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents publication-title: J. Magn. Reson. – volume: 106 start-page: 12459 year: 2009 end-page: 12464 ident: b0450 article-title: Rapid detection and profiling of cancer cells in fine-needle aspirates publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 475 start-page: 137 year: 2019 end-page: 145 ident: b0600 article-title: Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging publication-title: J. Magn. Magn. Mater. – volume: 119 start-page: 957 year: 2019 end-page: 1057 ident: b0030 article-title: Chemistry of MRI contrast agents: current challenges and new frontiers publication-title: Chem. Rev. – volume: 7 start-page: 2050 year: 2015 end-page: 2059 ident: b0405 article-title: Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging publication-title: Nanoscale – volume: 152 start-page: 185 year: 2015 end-page: 188 ident: b0785 article-title: Star-block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging publication-title: Mater. Lett. – volume: 9 start-page: e1468 year: 2017 ident: b0125 article-title: Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 66 start-page: 1748 year: 2011 end-page: 1758 ident: b0145 article-title: Mechanisms of proton spin dephasing in a system of magnetic particles publication-title: Magn. Reson. Med. – volume: 35 start-page: 15 year: 2002 ident: b0310 article-title: Finite-size effects in fine particles: magnetic and transport properties publication-title: J. Phys. D: Appl. Phys. – volume: 123 start-page: 125 year: 2018 end-page: 134 ident: b0075 article-title: Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T publication-title: Radiol. Med. – reference: Cullity B.D., Graham C.D., Ferrimagnetism, Introduction to magnetic materials, Wiley-IEEE Press, 2009, pp. 175–195, – reference: O.F. Odio, E. Reguera, Nanostructured spinel ferrites: synthesis, functionalization, nanomagnetism and environmental applications, in: M.S. Seehra (Ed.) Magnetic spinels, IntechOpen, London, 2017, 10.5772/67513. – volume: 26 start-page: 994 year: 2008 end-page: 998 ident: b0760 article-title: T publication-title: Magn. Reson. Imaging – volume: 44 start-page: 1480 year: 2005 end-page: 1484 ident: b0765 article-title: High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent publication-title: Angew. Chem., Int. Ed. – volume: 104 start-page: 328 year: 1956 end-page: 331 ident: b0255 article-title: Neutron diffraction study of manganese ferrite publication-title: Phys. Rev. – volume: 8 start-page: 055019 year: 2018 ident: b0810 article-title: Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T publication-title: AIP Adv. – volume: 320 start-page: 724 year: 2008 end-page: 730 ident: b0605 article-title: Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe publication-title: J. Magn. Magn. Mater. – volume: 427 start-page: 251 year: 2017 end-page: 257 ident: b0655 article-title: Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity publication-title: J. Magn. Magn. Mater. – volume: 1 start-page: 502 year: 2012 end-page: 512 ident: b0150 article-title: A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T publication-title: Adv. Healthcare Mater. – volume: 82 start-page: 975 year: 2018 end-page: 992 ident: b0515 article-title: Cation distribution and valence in synthetic Al-Mn-O and Fe-Mn-O spinels under varying f publication-title: Mineral. Mag. – volume: 136 start-page: 1089 year: 2015 end-page: 1097 ident: b0635 article-title: Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application publication-title: Colloids Surf. B Biointerfaces – volume: 5 start-page: 97807 year: 2015 end-page: 97815 ident: b0415 article-title: MnFe publication-title: RSC Adv. – volume: 48 start-page: 1057 year: 2013 end-page: 1064 ident: b0350 article-title: Triethylene glycol stabilized MnFe publication-title: Mater. Res. Bull. – volume: 2 start-page: 4748 year: 2014 end-page: 4753 ident: b0705 article-title: Controlled synthesis of MnFe publication-title: J. Mater. Chem. B – volume: 33 start-page: 1 year: 2016 end-page: 28 ident: b0010 article-title: 25 Years of contrast-enhanced MRI: Developments, current challenges and future perspectives publication-title: Adv. Ther. – volume: 77 start-page: 092416 year: 2008 ident: b0525 article-title: Fe NMR and spin structure of manganese ferrite publication-title: Phys. Rev. B – volume: 28 start-page: 159 year: 2018 end-page: 169 ident: b0060 article-title: A review of the current evidence on gadolinium deposition in the brain publication-title: Clin. Neuroradiol. – reference: J. Smit, H.P.J. Wijn, Ferrites, Philips' Technical Library, 1959. – volume: 50 start-page: 4663 year: 2011 end-page: 4666 ident: b0755 article-title: Highly magnetic core–shell nanoparticles with a unique magnetization mechanism publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 35059 year: 2016 end-page: 35070 ident: b0355 article-title: Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 3109 year: 2007 end-page: 3112 ident: b0280 article-title: Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery publication-title: Adv. Mater. – volume: 120 start-page: 1800 year: 1998 end-page: 1804 ident: b0490 article-title: Temperature dependence of cation distribution and oxidation state in magnetic Mn−Fe ferrite nanocrystals publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 6828 year: 2015 end-page: 6834 ident: b0380 article-title: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route publication-title: J. Phys. Chem. C – volume: 44 start-page: 5396 year: 2015 end-page: 5406 ident: b0550 article-title: Composition and hydrophilicity control of Mn-doped ferrite (Mn publication-title: Dalton Trans. – volume: 276 start-page: 228 year: 2015 end-page: 232 ident: b0055 article-title: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy publication-title: Radiology – volume: 47 start-page: 257 year: 2002 end-page: 263 ident: b0180 article-title: On T publication-title: Magn. Reson. Med. – volume: 137 year: 2012 ident: b0155 article-title: New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents publication-title: J. Chem. Phys. – volume: 19 start-page: 3618 year: 2019 end-page: 3626 ident: b0345 article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI Performance and improved magnetic hyperthermia therapy publication-title: Nano Lett. – volume: 121 start-page: 52 year: 2016 end-page: 60 ident: b0120 article-title: Super magnetic nanoparticles NiFe publication-title: Protein Expression Purif. – volume: 252 start-page: 370 year: 2002 end-page: 374 ident: b0220 article-title: Heating magnetic fluid with alternating magnetic field publication-title: J. Magn. Magn. Mater. – volume: 91 start-page: 2211 year: 2002 end-page: 2215 ident: b0660 article-title: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite publication-title: J. Appl. Phys. – volume: 6 year: 2016 ident: b0670 article-title: Study of cation distributions in spinel ferrites M publication-title: AIP Adv. – volume: 28 start-page: 3497 year: 2016 end-page: 3506 ident: b0710 article-title: Cation exchange of anisotropic-shaped magnetite nanoparticles generates high-relaxivity contrast agents for liver tumor imaging publication-title: Chem. Mater. – reference: . – volume: 7 start-page: 1542 year: 2007 end-page: 1550 ident: b0445 article-title: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes publication-title: Nano Lett. – volume: 2 start-page: 3/1-3/8 year: 2015 ident: b0400 article-title: A systematic study of core size and coating thickness on manganese-doped nanocrystals for high T publication-title: Nano Converg. – volume: 5 start-page: 8230 year: 2011 end-page: 8240 ident: b0780 article-title: Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as MR/near-infrared multimodal cellular imaging nanoprobes publication-title: ACS Nano – volume: 45 start-page: 1014 year: 2001 end-page: 1020 ident: b0165 article-title: On T publication-title: Magn. Reson. Med. – volume: 321 start-page: 3899 year: 2009 end-page: 3904 ident: b0575 article-title: T publication-title: J. Magn. Magn. Mater. – volume: 73 start-page: 694 year: 2007 end-page: 708 ident: b0105 article-title: Toxic effects of cobalt in primary cultures of mouse astrocytes: Similarities with hypoxia and role of HIF-1α publication-title: Biochem. Pharmacol. – start-page: 25 year: 2013 end-page: 81 ident: b0130 article-title: Relaxivity of gadolinium(III) complexes: theory and mechanism publication-title: Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging – volume: 44 start-page: 5396 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0550 article-title: Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3-xO4) nanoparticles induced by polyol differentiation publication-title: Dalton Trans. doi: 10.1039/C5DT00212E – volume: 1 start-page: 502 year: 2012 ident: 10.1016/j.pnmrs.2020.07.002_b0150 article-title: A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201200078 – volume: 24 start-page: 1496 year: 2012 ident: 10.1016/j.pnmrs.2020.07.002_b0300 article-title: Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route publication-title: Chem. Mater. doi: 10.1021/cm300301c – volume: 332 start-page: 157 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0650 article-title: The effect of Mn2+ substitution on magnetic properties of MnxFe3-xO4 nanoparticles prepared by coprecipitation method publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.12.005 – volume: 24 start-page: 642 year: 1974 ident: 10.1016/j.pnmrs.2020.07.002_b0485 article-title: Temperature dependence of distribution of cations in MnFe2O4 publication-title: Czech. J. Phys. B doi: 10.1007/BF01587300 – volume: 11 start-page: 1303 year: 1975 ident: 10.1016/j.pnmrs.2020.07.002_b0530 article-title: Influence of the degree of inversion on magnetic properties of MnFe2O4 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1975.1058861 – volume: 132 start-page: 11015 year: 2010 ident: 10.1016/j.pnmrs.2020.07.002_b0820 article-title: Self-confirming “AND” logic nanoparticles for fault-free MRI publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104503g – volume: 77 start-page: 092416 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0525 article-title: 57Fe NMR and spin structure of manganese ferrite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.092416 – volume: 212 start-page: 139 year: 2011 ident: 10.1016/j.pnmrs.2020.07.002_b0700 article-title: Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2011.06.024 – volume: 293 start-page: 532 year: 2005 ident: 10.1016/j.pnmrs.2020.07.002_b0185 article-title: Superparamagnetic colloid suspensions: water magnetic relaxation and clustering publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2005.01.070 – volume: 201 start-page: 15 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0480 article-title: Thermal expansion and cation partitioning of MnFe2O4 (Jacobsite) from 1.6 to 1276 K studied by using neutron powder diffraction publication-title: Solid State Commun. doi: 10.1016/j.ssc.2014.10.001 – volume: 5 start-page: 53180 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0365 article-title: Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia publication-title: RSC Adv. doi: 10.1039/C5RA07632C – volume: 6 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0670 article-title: Study of cation distributions in spinel ferrites MxMn1-xFe2O4 (M=Zn, Mg, Al) publication-title: AIP Adv. doi: 10.1063/1.4966253 – volume: 42 start-page: 12789 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0320 article-title: MnFe2O4 bulk, nanoparticles and film: A comparative study of structural and magnetic properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.041 – volume: 7 start-page: 16107 year: 2020 ident: 10.1016/j.pnmrs.2020.07.002_b0410 article-title: Manganese ferrite nanocubes as an MRI contrast agent publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab66a4 – volume: 5 start-page: 97807 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0415 article-title: MnFe2O4-Fe3O4 core-shell nanoparticles as a potential contrast agent for magnetic resonance imaging publication-title: RSC Adv. doi: 10.1039/C5RA20474G – ident: 10.1016/j.pnmrs.2020.07.002_b0015 doi: 10.1002/9781118503652 – volume: 18 start-page: 100 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0510 article-title: Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity publication-title: J. Nanopart. Res. doi: 10.1007/s11051-016-3402-5 – volume: 66 start-page: 1759 year: 2011 ident: 10.1016/j.pnmrs.2020.07.002_b0205 article-title: Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22944 – volume: 121 start-page: 1379 year: 1961 ident: 10.1016/j.pnmrs.2020.07.002_b0170 article-title: Distribution of fields from randomly placed dipoles: free-precession signal decay as result of magnetic grains publication-title: Phys. Rev. doi: 10.1103/PhysRev.121.1379 – volume: 35 start-page: 15 year: 2002 ident: 10.1016/j.pnmrs.2020.07.002_b0310 article-title: Finite-size effects in fine particles: magnetic and transport properties publication-title: J. Phys. D: Appl. Phys. – volume: 7 start-page: 1542 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0445 article-title: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes publication-title: Nano Lett. doi: 10.1021/nl070363y – volume: 23 start-page: 496 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0805 article-title: Superparamagnetic nanostructures for off-resonance magnetic resonance spectroscopic imaging publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200275 – volume: 51 start-page: 12009 year: 1995 ident: 10.1016/j.pnmrs.2020.07.002_b0545 article-title: Comment on “Particle-size effects on the value of TC of MnFe204: Evidence for finite-size scaling” publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.12009 – volume: 324 start-page: 903 year: 2012 ident: 10.1016/j.pnmrs.2020.07.002_b0685 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.10.017 – volume: 320 start-page: e96 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0260 article-title: 57Fe NMR study of manganese ferrites publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2008.02.022 – volume: 22 start-page: 174 year: 1967 ident: 10.1016/j.pnmrs.2020.07.002_b0540 article-title: NMR determination of metal Ion distribution in manganese ferrite prepared from aqueous solution publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.22.174 – volume: 35 start-page: 9126 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0675 article-title: High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.019 – volume: 9 start-page: e1468 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0125 article-title: Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 47 start-page: 257 year: 2002 ident: 10.1016/j.pnmrs.2020.07.002_b0180 article-title: On T2-shortening by strongly magnetized spheres: a partial refocusing model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10059 – volume: 30 start-page: 2919 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0375 article-title: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.001 – volume: 7 start-page: 2422 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0565 article-title: Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents publication-title: Nano Lett. doi: 10.1021/nl071099b – volume: 475 start-page: 137 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0600 article-title: Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.11.097 – volume: 54 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0775 article-title: Transverse relaxivity of nanoparticle contrast agents for MRI: different magnetic cores and coatings publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2018.2844253 – volume: 28 start-page: 343 year: 1967 ident: 10.1016/j.pnmrs.2020.07.002_b0215 article-title: Magnetic properties of ultra-fine iron (III) oxide-hydrate particles prepared from iron (III) oxide-hydrate gels publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(67)90130-8 – volume: 43 start-page: 12754 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0210 article-title: Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their 1H NMR relaxation and heating efficiency publication-title: Dalton Trans. doi: 10.1039/C4DT00162A – volume: 31 start-page: 3667 year: 2010 ident: 10.1016/j.pnmrs.2020.07.002_b0425 article-title: Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.055 – volume: 120 start-page: 1800 year: 1998 ident: 10.1016/j.pnmrs.2020.07.002_b0490 article-title: Temperature dependence of cation distribution and oxidation state in magnetic Mn−Fe ferrite nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja973085l – volume: 32 start-page: 749 year: 1994 ident: 10.1016/j.pnmrs.2020.07.002_b0175 article-title: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910320610 – volume: 30 start-page: 5 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0095 article-title: MR imaging: quo vadis? publication-title: Rinckside – start-page: 1906799 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0590 article-title: A bioinspired nanoprobe with multilevel responsive T1-Weighted MR signal-amplification illuminates ultrasmall metastases publication-title: Adv. Mater. – volume: 121 start-page: 52 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0120 article-title: Super magnetic nanoparticles NiFe2O4, coated with aluminum–nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins publication-title: Protein Expression Purif. doi: 10.1016/j.pep.2016.01.008 – volume: 312 start-page: L5 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0305 article-title: Surface effects in maghemite nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.09.011 – volume: 76 start-page: 475 year: 2000 ident: 10.1016/j.pnmrs.2020.07.002_b0665 article-title: Appearance of superparamagnetism on heating nanosize Mn0.65Zn0.35Fe2O4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.125792 – volume: 17 start-page: 4609 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0630 article-title: An aqueous method for the controlled manganese (Mn2+) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05122J – volume: 69 start-page: 1 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0440 article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2007.08.001 – volume: 117 start-page: 15369 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0140 article-title: Revisiting MRI contrast properties of nanoparticles: beyond the superparamagnetic regime publication-title: J. Phys. Chem. C doi: 10.1021/jp404199f – volume: 47 start-page: 5122 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0285 article-title: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701674 – volume: 44 start-page: 10980 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0385 article-title: Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes, NMR and MRI relaxometry publication-title: Dalton Trans. doi: 10.1039/C5DT00372E – volume: 30 start-page: 810 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0795 article-title: Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery publication-title: J. Biomater. Appl. doi: 10.1177/0885328215601926 – volume: 28 start-page: 159 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0060 article-title: A review of the current evidence on gadolinium deposition in the brain publication-title: Clin. Neuroradiol. doi: 10.1007/s00062-018-0678-0 – volume: 7 start-page: 38125 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0330 article-title: Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T2 contrast agents for high-field MRI publication-title: RSC Adv. doi: 10.1039/C7RA05495E – volume: 11 start-page: 3614 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0430 article-title: Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent publication-title: ACS Nano doi: 10.1021/acsnano.6b07684 – volume: 30 start-page: 502001 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0455 article-title: Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications publication-title: Nanotechnology doi: 10.1088/1361-6528/ab3f17 – volume: 40 start-page: K169 year: 1977 ident: 10.1016/j.pnmrs.2020.07.002_b0520 article-title: NMR study of valency states in MnFe2O4 publication-title: Phys. Stat. Sol. A doi: 10.1002/pssa.2210400258 – volume: 18 start-page: 4402 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0800 article-title: Nanohybrids via a polycation-based nanoemulsion method for dual-mode detection of human mesenchymal stem cells publication-title: J. Mater. Chem. doi: 10.1039/b804544e – volume: 119 start-page: 6828 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0380 article-title: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route publication-title: J. Phys. Chem. C doi: 10.1021/jp510937r – volume: 73 start-page: 694 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0105 article-title: Toxic effects of cobalt in primary cultures of mouse astrocytes: Similarities with hypoxia and role of HIF-1α publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.11.008 – volume: 4 start-page: 5339 year: 2010 ident: 10.1016/j.pnmrs.2020.07.002_b0195 article-title: Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness publication-title: ACS Nano doi: 10.1021/nn101129r – volume: 2 start-page: 3/1-3/8 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0400 article-title: A systematic study of core size and coating thickness on manganese-doped nanocrystals for high T2 relaxivity as magnetic resonance contrast agent publication-title: Nano Converg. doi: 10.1186/s40580-014-0032-4 – volume: 19 start-page: 127 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0025 article-title: Contrast agents for MRI: 30+ years and where are we going? publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-013-1074-5 – volume: 4 start-page: 317 year: 1979 ident: 10.1016/j.pnmrs.2020.07.002_b0245 article-title: Systematics of the spinel structure type publication-title: Phys. Chem. Miner. doi: 10.1007/BF00307535 – volume: 144 start-page: 104352 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0340 article-title: Hyperbranched lipopolymer-folate-stabilized manganese ferrite nanoparticles for the water-soluble targeted MRI contrast agent publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2019.104352 – volume: 48 start-page: 1057 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0350 article-title: Triethylene glycol stabilized MnFe2O4 nanoparticle: synthesis, magnetic and electrical characterization publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.11.097 – volume: 7 start-page: 2050 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0405 article-title: Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging publication-title: Nanoscale doi: 10.1039/C4NR05781C – volume: 126 start-page: 273 year: 2004 ident: 10.1016/j.pnmrs.2020.07.002_b0465 article-title: Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0380852 – volume: 41 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0625 article-title: Magnetic and relaxometric properties of Mn ferrites publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/13/134021 – volume: 152 start-page: 185 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0785 article-title: Star-block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.03.120 – ident: 10.1016/j.pnmrs.2020.07.002_b0235 – volume: 8 start-page: 192 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0720 article-title: Biological and magnetic contrast evaluation of shape-selective Mn-Fe nanowires publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2009.2021521 – volume: 7 start-page: 146 year: 1968 ident: 10.1016/j.pnmrs.2020.07.002_b0500 article-title: Kinetics and stoichiometry of the reaction between manganese(III) and hydrogen peroxide in acid perchlorate solution publication-title: Inorg. Chem. doi: 10.1021/ic50059a031 – volume: 20 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0475 article-title: Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion publication-title: Nanotechnology doi: 10.1088/0957-4484/20/18/185704 – volume: 9 start-page: 23458 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0735 article-title: Surface PEG grafting density determines magnetic relaxation properties of Gd-loaded porous nanoparticles for MR imaging applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05912 – volume: 194 start-page: 217 year: 1999 ident: 10.1016/j.pnmrs.2020.07.002_b0295 article-title: Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00555-1 – volume: 11 start-page: 1461 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0080 article-title: Mn(II) compounds as an alternative to Gd-based MRI probes publication-title: Future Med. Chem. doi: 10.4155/fmc-2018-0608 – volume: 137 year: 2012 ident: 10.1016/j.pnmrs.2020.07.002_b0155 article-title: New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents publication-title: J. Chem. Phys. doi: 10.1063/1.4751442 – volume: 45 start-page: 1014 year: 2001 ident: 10.1016/j.pnmrs.2020.07.002_b0165 article-title: On T2-shortening by weakly magnetized particles: the chemical exchange model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1135 – volume: 15 start-page: 174 year: 1947 ident: 10.1016/j.pnmrs.2020.07.002_b0240 article-title: Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels publication-title: J. Chem. Phys. doi: 10.1063/1.1746464 – volume: 275 start-page: 630 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0040 article-title: Residual or retained gadolinium: practical implications for radiologists and our patients publication-title: Radiology doi: 10.1148/radiol.2015150805 – volume: 54 start-page: 9288 year: 1996 ident: 10.1016/j.pnmrs.2020.07.002_b0315 article-title: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.9288 – volume: 28 start-page: 339 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0690 article-title: Characterisation of Mn0·7Zn0·3Fe2O4 nanoparticles prepared by two stage annealing publication-title: Mater. Technol. doi: 10.1179/1753555713Y.0000000066 – volume: 191 start-page: W307 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0035 article-title: Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.07.3951 – volume: 431 start-page: 31 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0740 article-title: Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.06.003 – volume: 19 start-page: 8958 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0370 article-title: Self-labeled magneto nanoprobes using tri-aminated polysorbate 80 for detection of human mesenchymal stem cells publication-title: J. Mater. Chem. doi: 10.1039/b912149h – ident: 10.1016/j.pnmrs.2020.07.002_b0085 – volume: 44 start-page: 247 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0585 article-title: A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents publication-title: Dalton Trans. doi: 10.1039/C4DT02425G – ident: 10.1016/j.pnmrs.2020.07.002_b0100 – volume: 123 start-page: 125 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0075 article-title: Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients publication-title: Radiol. Med. doi: 10.1007/s11547-017-0816-9 – volume: 99 start-page: 2293 year: 1999 ident: 10.1016/j.pnmrs.2020.07.002_b0020 article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications publication-title: Chem. Rev. doi: 10.1021/cr980440x – volume: 51 start-page: 73 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0065 article-title: Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000241 – volume: 45 start-page: 64 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0360 article-title: Heating of aqueous dispersions containing MnFe2O4 nanoparticles by radio-frequency magnetic field induction publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2008.2005329 – volume: 106 start-page: 12459 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0450 article-title: Rapid detection and profiling of cancer cells in fine-needle aspirates publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0902365106 – volume: 44 start-page: 1480 year: 2005 ident: 10.1016/j.pnmrs.2020.07.002_b0765 article-title: High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461875 – volume: 19 start-page: 3109 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0280 article-title: Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery publication-title: Adv. Mater. doi: 10.1002/adma.200701952 – volume: 19 start-page: 485101 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0570 article-title: Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging publication-title: Nanotechnology doi: 10.1088/0957-4484/19/48/485101 – volume: 112 start-page: 5818 year: 2012 ident: 10.1016/j.pnmrs.2020.07.002_b0830 article-title: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications publication-title: Chem. Rev. doi: 10.1021/cr300068p – volume: 3 start-page: 23454 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0620 article-title: Ultrasmall PEGylated MnxFe3-xO4 (x = 0–0.34) nanoparticles: effects of Mn(II) doping on T1- and T2-weighted magnetic resonance imaging publication-title: RSC Adv. doi: 10.1039/c3ra43985b – volume: 15 start-page: 1743 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0645 article-title: Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization publication-title: J. Nanopart. Res. doi: 10.1007/s11051-013-1743-x – volume: 121 start-page: 8982 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0730 article-title: Local structure of core-shell MnFe2O4+δ-based nanocrystals: cation distribution and valence states of manganese ions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b09274 – volume: 62 start-page: 1696 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0580 article-title: Relaxivities of hydrogen protons in aqueous solutions of gold-coated manganese ferrite nanoparticles publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.62.1696 – volume: 276 start-page: 228 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0055 article-title: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy publication-title: Radiology doi: 10.1148/radiol.2015142690 – volume: 48 start-page: 1234 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0435 article-title: Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805149 – volume: 288 start-page: 470 year: 2005 ident: 10.1016/j.pnmrs.2020.07.002_b0680 article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.09.138 – volume: 26 start-page: 994 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0760 article-title: T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.01.039 – volume: 252 start-page: 370 year: 2002 ident: 10.1016/j.pnmrs.2020.07.002_b0220 article-title: Heating magnetic fluid with alternating magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00706-0 – volume: 132 start-page: 249 year: 1994 ident: 10.1016/j.pnmrs.2020.07.002_b0615 article-title: Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1−xFe2O4 spinel systems: I. particles publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(94)90320-4 – volume: 125 start-page: 9828 year: 2003 ident: 10.1016/j.pnmrs.2020.07.002_b0725 article-title: Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035474n – volume: 13 start-page: 95 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0265 article-title: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging publication-title: Nat. Med. doi: 10.1038/nm1467 – volume: 32 start-page: 2220 year: 2020 ident: 10.1016/j.pnmrs.2020.07.002_b0640 article-title: Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04848 – ident: 10.1016/j.pnmrs.2020.07.002_b0230 doi: 10.1002/9780470386323.ch6 – volume: 9 start-page: 1764 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0595 article-title: Composition-tunable ultrasmall manganese ferrite nanoparticles: insights into their In vivo T1 contrast efficacy publication-title: Theranostics doi: 10.7150/thno.31233 – ident: 10.1016/j.pnmrs.2020.07.002_b0335 – volume: 382 start-page: 122848 year: 2020 ident: 10.1016/j.pnmrs.2020.07.002_b0825 article-title: Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122848 – volume: 41 start-page: 179 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0290 article-title: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences publication-title: Acc. Chem. Res. doi: 10.1021/ar700121f – volume: 19 start-page: 3618 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0345 article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI Performance and improved magnetic hyperthermia therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00630 – volume: 8 start-page: 35059 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0355 article-title: Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13161 – volume: 21 start-page: 4789 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0045 article-title: The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions publication-title: Chem. Eur. J. doi: 10.1002/chem.201405967 – start-page: 25 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0130 article-title: Relaxivity of gadolinium(III) complexes: theory and mechanism – volume: 67 start-page: 3602 year: 1991 ident: 10.1016/j.pnmrs.2020.07.002_b0325 article-title: Size-dependent Curie temperature in nanoscale MnFe2O4 particles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.3602 – volume: 5 start-page: 8230 year: 2011 ident: 10.1016/j.pnmrs.2020.07.002_b0780 article-title: Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as MR/near-infrared multimodal cellular imaging nanoprobes publication-title: ACS Nano doi: 10.1021/nn202912b – volume: 68 start-page: 3112 year: 1992 ident: 10.1016/j.pnmrs.2020.07.002_b0270 article-title: Comment on “Size-dependent Curie temperature in nanoscale MnFe2O4 particles” publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3112 – volume: 321 start-page: 3899 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0575 article-title: T1 and T2 relaxivities of succimer-coated MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.07.057 – volume: 91 start-page: 2211 year: 2002 ident: 10.1016/j.pnmrs.2020.07.002_b0660 article-title: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite publication-title: J. Appl. Phys. doi: 10.1063/1.1432474 – volume: 48 start-page: 11480 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0560 article-title: Mn-doping level dependence on the magnetic response of MnxFe3−xO4 ferrite nanoparticles publication-title: Dalton Trans. doi: 10.1039/C9DT01620A – volume: 8 start-page: 055019 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0810 article-title: Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging publication-title: AIP Adv. doi: 10.1063/1.5027898 – volume: 139 start-page: 479 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0115 article-title: Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: Interaction, adaptation and oxidative stress publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.08.008 – volume: 15 start-page: 524 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0390 article-title: Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics publication-title: CrystEngComm doi: 10.1039/C2CE25957E – volume: 113 start-page: 033912 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0535 article-title: Cation and magnetic orders in MnFe2O4 from density functional calculations publication-title: J. Appl. Phys. doi: 10.1063/1.4776771 – volume: 320 start-page: 724 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0605 article-title: Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2007.08.010 – volume: 6 start-page: 418 year: 2011 ident: 10.1016/j.pnmrs.2020.07.002_b0750 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.95 – volume: 4 start-page: 025018 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0110 article-title: Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro publication-title: Biomed. Mater. doi: 10.1088/1748-6041/4/2/025018 – volume: 241 start-page: 139 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0250 article-title: Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.241.139 – volume: 14 start-page: 1205 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0225 article-title: Tailor-made nanocontainers for combined magnetic-field-induced release and MRI publication-title: Macromol. Biosci. doi: 10.1002/mabi.201400122 – volume: 3 start-page: 317 year: 1969 ident: 10.1016/j.pnmrs.2020.07.002_b0275 article-title: Magnetism, microstructure and crystal chemistry of spinel ferrites publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(69)90042-1 – volume: 17 start-page: 33 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0505 article-title: Magnetic La1−xSr xMnO3 nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2848-6 – volume: 108 start-page: 2064 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0090 article-title: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications publication-title: Chem. Rev. doi: 10.1021/cr068445e – volume: 2 start-page: 4748 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0705 article-title: Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents publication-title: J. Mater. Chem. B doi: 10.1039/c4tb00342j – volume: 18 start-page: 258 year: 2008 ident: 10.1016/j.pnmrs.2020.07.002_b0770 article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700482 – volume: 119 start-page: 957 year: 2019 ident: 10.1016/j.pnmrs.2020.07.002_b0030 article-title: Chemistry of MRI contrast agents: current challenges and new frontiers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00363 – volume: 27 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0160 article-title: NMR relaxation induced by iron oxide particles: testing theoretical models publication-title: Nanotechnology doi: 10.1088/0957-4484/27/15/155706 – volume: 8 start-page: 6953 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0395 article-title: Engineered theranostic magnetic nanostructures: role of composition and surface coating on magnetic resonance imaging contrast and thermal activation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01377 – volume: 46 start-page: 1222 year: 2007 ident: 10.1016/j.pnmrs.2020.07.002_b0470 article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200602866 – ident: 10.1016/j.pnmrs.2020.07.002_b0460 doi: 10.5772/67513 – volume: 3 start-page: 4051 year: 2010 ident: 10.1016/j.pnmrs.2020.07.002_b0745 article-title: Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery publication-title: Materials doi: 10.3390/ma3074051 – volume: 50 start-page: 4663 year: 2011 ident: 10.1016/j.pnmrs.2020.07.002_b0755 article-title: Highly magnetic core–shell nanoparticles with a unique magnetization mechanism publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100101 – volume: 66 start-page: 1748 year: 2011 ident: 10.1016/j.pnmrs.2020.07.002_b0145 article-title: Mechanisms of proton spin dephasing in a system of magnetic particles publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22966 – volume: 106 start-page: 063906 year: 2009 ident: 10.1016/j.pnmrs.2020.07.002_b0200 article-title: Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging publication-title: J. Appl. Phys. doi: 10.1063/1.3211307 – start-page: 157 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0050 article-title: Stability and toxicity of contrast agents – volume: 29 start-page: 3038 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0610 article-title: Composition tunable manganese ferrite nanoparticles for optimized T2 contrast ability publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00035 – volume: 28 start-page: 3497 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0710 article-title: Cation exchange of anisotropic-shaped magnetite nanoparticles generates high-relaxivity contrast agents for liver tumor imaging publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01256 – volume: 82 start-page: 975 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0515 article-title: Cation distribution and valence in synthetic Al-Mn-O and Fe-Mn-O spinels under varying fO2 conditions publication-title: Mineral. Mag. doi: 10.1180/mgm.2018.109 – volume: 51 start-page: 447 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0070 article-title: Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000252 – volume: 511 start-page: 101 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0420 article-title: Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.10.001 – volume: 136 start-page: 1089 year: 2015 ident: 10.1016/j.pnmrs.2020.07.002_b0635 article-title: Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.11.010 – volume: 106 start-page: 865 year: 1957 ident: 10.1016/j.pnmrs.2020.07.002_b0555 article-title: Cation distribution and magnetic moment of manganese ferrite publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.865 – volume: 427 start-page: 251 year: 2017 ident: 10.1016/j.pnmrs.2020.07.002_b0655 article-title: Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.10.095 – volume: 242 start-page: 190 year: 1973 ident: 10.1016/j.pnmrs.2020.07.002_b0005 article-title: Image Formation by Induced local interactions: examples employing nuclear magnetic resonance publication-title: Nature doi: 10.1038/242190a0 – volume: 12 start-page: 5074 year: 2010 ident: 10.1016/j.pnmrs.2020.07.002_b0495 article-title: Synthesis and microstructure of manganese ferrite colloidal nanocrystals publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b922646j – volume: 2 start-page: 958 year: 2013 ident: 10.1016/j.pnmrs.2020.07.002_b0815 article-title: Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201200340 – volume: 8 start-page: 3620 year: 2012 ident: 10.1016/j.pnmrs.2020.07.002_b0790 article-title: Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications publication-title: Small doi: 10.1002/smll.201201427 – volume: 33 start-page: 1 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0010 article-title: 25 Years of contrast-enhanced MRI: Developments, current challenges and future perspectives publication-title: Adv. Ther. doi: 10.1007/s12325-015-0275-4 – volume: 110 start-page: 5403 year: 1999 ident: 10.1016/j.pnmrs.2020.07.002_b0135 article-title: Theory of proton relaxation induced by superparamagnetic particles publication-title: J. Chem. Phys. doi: 10.1063/1.478435 – volume: 104 start-page: 328 year: 1956 ident: 10.1016/j.pnmrs.2020.07.002_b0255 article-title: Neutron diffraction study of manganese ferrite publication-title: Phys. Rev. doi: 10.1103/PhysRev.104.328 – volume: 6 start-page: 401 year: 2018 ident: 10.1016/j.pnmrs.2020.07.002_b0715 article-title: Surface manganese substitution in magnetite nanocrystals enhances T1 contrast ability by increasing electron spin relaxation publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02954C – volume: 71 start-page: 1888 year: 2014 ident: 10.1016/j.pnmrs.2020.07.002_b0190 article-title: Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25196 – volume: 6 start-page: 77558 year: 2016 ident: 10.1016/j.pnmrs.2020.07.002_b0695 article-title: Enhanced magnetic properties and MRI performance of bi-magnetic core-shell nanoparticles publication-title: RSC Adv. doi: 10.1039/C6RA14265F |
| SSID | ssj0005627 |
| Score | 2.4607902 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•Usually r2 (transverse relaxivity) is much larger than r1 (longitudinal relaxivity).•High r1 for small diameter and high... Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 72 |
| SubjectTerms | Longitudinal relaxivity Magnetization MRI contrast agents Transverse relaxivity Zn-doping |
| Title | Relaxivity of manganese ferrite nanoparticles |
| URI | https://dx.doi.org/10.1016/j.pnmrs.2020.07.002 https://www.proquest.com/docview/2461393076 |
| Volume | 120-121 |
| WOSCitedRecordID | wos000590593200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3301 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005627 issn: 0079-6565 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVoy9cFwQKifFRBQlyWVNnYie1jVW0F1bL0sJVyixzHrlqBE3ZTtPx7xo69AQpVOXCxIstOonnWeGw_z0PoTZ1zkqoUg_eTPCZVrmNe11VMdYaprhgmwl0UntH5nBUFP_GqaysnJ0CNYes1b_8r1FAHYNurs_8A9-alUAHPADqUADuUNwLe0tvWvSSEPTsX5kxYlcmxtjkYOzU2wsBC2fPhfo5NTyxVyzq-czM2Ns2xWEL3M6P6NM82ZncJaVsnnGOvs3wfHGvntdaOm6b1-6N-LwEWjoGVFtwfozjG2FepP9QFn2n79lebvefrBXiuOOR-b-BivzVfljY7epq4XKlJOsw_4cx9_qk8Op3NysW0WLxtv8ZWGcyeoHuZlC20k9KMg-faOfgwLY4HIk_uhHk3_xlySzkW35Xv_i3--G0mduHF4iF64NcF0UGPyyN0S5kRuncY5PhG6O5Hz4IYoTuOtitXj1E8gB01OtqAHXmwo1_AfoJOj6aLw_exF8CIJQRSXcy4ZrnSmldZLXgqKkaqjMiMYKGEppkQaqKowjTL-UQKpVPJK6lwQrTQBNf4Kdo2jVHPUCQkrPuJrCmrNCFqwiByrThLtKyzXGT5LkqDWUrps8NbkZLPZaABXpTOlqW1ZZlY1kK6i95tOrV9cpTrm-fB3qWP7_q4rYTRcn3H1wGdEqxuj7TAmM0lNCIQjnKYp_LnN2jzAt0fRv1LtN0tL9UrdFt-685Xyz20RQu250fXD6ARfog |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relaxivity+of+manganese+ferrite+nanoparticles&rft.jtitle=Progress+in+nuclear+magnetic+resonance+spectroscopy&rft.au=Peters%2C+Joop+A&rft.date=2020-10-01&rft.issn=1873-3301&rft.eissn=1873-3301&rft.volume=120-121&rft.spage=72&rft_id=info:doi/10.1016%2Fj.pnmrs.2020.07.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6565&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6565&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6565&client=summon |