Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems

Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of neural engineering Ročník 9; číslo 5; s. 056002
Hlavní autoři: Shin, Younghak, Lee, Seungchan, Lee, Junho, Lee, Heung-No
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.10.2012
Témata:
ISSN:1741-2552, 1741-2552
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1741-2552
1741-2552
DOI:10.1088/1741-2560/9/5/056002