Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new s...
Uložené v:
| Vydané v: | Journal of neural engineering Ročník 9; číslo 5; s. 056002 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.10.2012
|
| Predmet: | |
| ISSN: | 1741-2552, 1741-2552 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001). |
|---|---|
| AbstractList | Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001). Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001). |
| Author | Lee, Junho Shin, Younghak Lee, Seungchan Lee, Heung-No |
| Author_xml | – sequence: 1 givenname: Younghak surname: Shin fullname: Shin, Younghak organization: School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju, Korea – sequence: 2 givenname: Seungchan surname: Lee fullname: Lee, Seungchan – sequence: 3 givenname: Junho surname: Lee fullname: Lee, Junho – sequence: 4 givenname: Heung-No surname: Lee fullname: Lee, Heung-No |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22872668$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxTAQhYMo3of-A5Eu3dQm6StdysUXXHChrss0mWovbVIz7eL-e4NWcPPN4cxhYM6GnVpnkbErwW8FVyoRZSZimRc8qZI84UFwecLWi53L0396xTZEB85TUVb8nK2kVKUsCrVmh9cRPGHkcfRIaCeYOmfjBghNpHsg6tpO_5gR6U8cMGqdjwY3BXYDfKA_LunGQ2dj7YZxnjAsbWALGiM60oQDXbCzFnrCy2Vu2fvD_dvuKd6_PD7v7vaxTpWYYqUg07kx0pi0VVVTZRmC4SBaqUUjsdCCozEFFJDqvGkrDaXkhUwDdVaWcstufu-O3n3NSFM9dKSx78Gim6kO7YX-0pKLEL1eonMzoKlHH17yx_qvH_kNxZNs0A |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2017_12_015 crossref_primary_10_1109_TMI_2014_2308901 crossref_primary_10_1109_TNSRE_2018_2837501 crossref_primary_10_1109_TMI_2015_2418734 crossref_primary_10_1007_s13042_025_02556_6 crossref_primary_10_3389_fnagi_2016_00172 crossref_primary_10_1016_j_neucom_2019_08_037 crossref_primary_10_1109_TIFS_2018_2825940 crossref_primary_10_1016_j_neuroimage_2015_02_015 crossref_primary_10_3389_fnins_2020_00155 crossref_primary_10_1007_s11517_017_1622_1 crossref_primary_10_1007_s11042_019_08602_0 crossref_primary_10_1155_2018_9593682 crossref_primary_10_1109_ACCESS_2020_2997116 crossref_primary_10_1109_ACCESS_2020_3016700 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_1016_j_neuroimage_2014_01_021 crossref_primary_10_1016_j_jneumeth_2016_12_010 crossref_primary_10_1007_s11042_021_10716_3 crossref_primary_10_1016_j_neucom_2015_06_049 crossref_primary_10_1016_j_bspc_2015_05_007 crossref_primary_10_1016_j_jneumeth_2021_109274 crossref_primary_10_31083_j_jin_2019_02_17 crossref_primary_10_1088_1741_2560_12_6_066009 crossref_primary_10_1155_2018_6265108 crossref_primary_10_1007_s11517_017_1707_x crossref_primary_10_1109_JBHI_2018_2832538 crossref_primary_10_1007_s12553_023_00770_2 crossref_primary_10_1109_TNSRE_2023_3255233 crossref_primary_10_1016_j_compbiomed_2015_08_017 crossref_primary_10_1007_s12264_013_1385_0 crossref_primary_10_1016_j_asoc_2022_108416 crossref_primary_10_1080_03091902_2021_1906966 crossref_primary_10_1109_TMI_2014_2340816 crossref_primary_10_1016_j_neucom_2016_08_082 crossref_primary_10_3233_JIFS_181309 crossref_primary_10_1016_j_bspc_2017_03_001 crossref_primary_10_3390_s23052480 crossref_primary_10_1038_s41598_023_42790_y crossref_primary_10_1016_j_jneumeth_2015_03_031 crossref_primary_10_3390_electronics14061108 crossref_primary_10_1016_j_neunet_2018_02_011 crossref_primary_10_3390_s140814601 crossref_primary_10_1007_s00521_017_2950_7 crossref_primary_10_1007_s11042_023_14659_9 crossref_primary_10_1016_j_neucom_2021_02_051 crossref_primary_10_1007_s00521_018_3735_3 crossref_primary_10_1080_2326263X_2020_1783170 crossref_primary_10_1186_s12859_021_04091_x crossref_primary_10_1371_journal_pone_0276133 crossref_primary_10_1016_j_optcom_2017_12_009 crossref_primary_10_1109_MSP_2013_2296790 crossref_primary_10_1016_j_neucom_2013_01_001 crossref_primary_10_1088_1741_2552_ab123a crossref_primary_10_1016_j_cmpb_2016_04_023 crossref_primary_10_1063_1_5001896 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/1741-2560/9/5/056002 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 22872668 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACARI ACGFS ACHIP ADEQX AEFHF AENEX AERVB AFYNE AGQPQ AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ARNYC ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CGR CJUJL CRLBU CS3 CUY CVF DU5 EBS ECM EDWGO EIF EJD EMSAF EPQRW EQZZN F5P FEDTE HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP 7X8 AEINN |
| ID | FETCH-LOGICAL-c381t-88a4c5dd2dd3f89b944ead0a1f2c1b2e6c10edd6a6a3c5bf9ca720623720c4772 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309511200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1741-2552 |
| IngestDate | Thu Sep 04 18:17:26 EDT 2025 Mon Jul 21 06:06:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-88a4c5dd2dd3f89b944ead0a1f2c1b2e6c10edd6a6a3c5bf9ca720623720c4772 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22872668 |
| PQID | 1080883701 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1080883701 pubmed_primary_22872668 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Oct 20121001 |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-Oct |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAlternate | J Neural Eng |
| PublicationYear | 2012 |
| SSID | ssj0031790 |
| Score | 2.2766774 |
| Snippet | Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 056002 |
| SubjectTerms | Brain-Computer Interfaces - classification Databases, Factual Electroencephalography - methods Evoked Potentials, Motor - physiology Humans Imagination - physiology |
| Title | Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22872668 https://www.proquest.com/docview/1080883701 |
| Volume | 9 |
| WOSCitedRecordID | wos000309511200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXjxVR_1RQTxFjabZLfZkxSxeLEUVOht2TwWKnRbu1Xov3dmH3oSBC85hM2yJLOZ70tmviHkRoU5z6WJmFQmZ0oAQdFceRYZ4a2wxvPYVMUm-qORnkyScXPgVjZhle2eWG3Ubm7xjDzAWDiNSi3h3eKdYdUovF1tSmhsko4EKINW3Z983yJIVJ-qEyJDBtBZtKlzQPqavpgHSRAFHP2--B1kVs5muPffz9wnuw3MpIPaLg7Ihi8OSXdQAMWerektrQI_qxP1Lnl7XgC79bTSt2xzkQqG_s1Ri-gaw4mqTgpc2M88BaRLYY2hnc5QBGPdPG2w4ASzTaUIiloUyzyzntaC0eUReR0-vNw_sqYEA7PgyldM60zZyDnhnMx1YhKlwPR4FubChrCcsQ25dy7O4kzayOSJzfqCA6SC1ipA7sdkq5gX_pRQTHPNjAbf4OCd4AVdKMPYSyBosfBc98h1O6MpmDjeW2SFn3-U6c-c9shJvSzpotbiSAUwPsAY-uwPo8_JDsAdUYfiXZBODj-4vyTb9nM1LZdXle1AOxo_fQHVNs_p |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+representation-based+classification+scheme+for+motor+imagery-based+brain-computer+interface+systems&rft.jtitle=Journal+of+neural+engineering&rft.au=Shin%2C+Younghak&rft.au=Lee%2C+Seungchan&rft.au=Lee%2C+Junho&rft.au=Lee%2C+Heung-No&rft.date=2012-10-01&rft.eissn=1741-2552&rft.volume=9&rft.issue=5&rft.spage=056002&rft_id=info:doi/10.1088%2F1741-2560%2F9%2F5%2F056002&rft_id=info%3Apmid%2F22872668&rft_id=info%3Apmid%2F22872668&rft.externalDocID=22872668 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |