Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems

Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neural engineering Ročník 9; číslo 5; s. 056002
Hlavní autori: Shin, Younghak, Lee, Seungchan, Lee, Junho, Lee, Heung-No
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.10.2012
Predmet:
ISSN:1741-2552, 1741-2552
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).
AbstractList Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).
Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).
Author Lee, Junho
Shin, Younghak
Lee, Seungchan
Lee, Heung-No
Author_xml – sequence: 1
  givenname: Younghak
  surname: Shin
  fullname: Shin, Younghak
  organization: School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju, Korea
– sequence: 2
  givenname: Seungchan
  surname: Lee
  fullname: Lee, Seungchan
– sequence: 3
  givenname: Junho
  surname: Lee
  fullname: Lee, Junho
– sequence: 4
  givenname: Heung-No
  surname: Lee
  fullname: Lee, Heung-No
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22872668$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxTAQhYMo3of-A5Eu3dQm6StdysUXXHChrss0mWovbVIz7eL-e4NWcPPN4cxhYM6GnVpnkbErwW8FVyoRZSZimRc8qZI84UFwecLWi53L0396xTZEB85TUVb8nK2kVKUsCrVmh9cRPGHkcfRIaCeYOmfjBghNpHsg6tpO_5gR6U8cMGqdjwY3BXYDfKA_LunGQ2dj7YZxnjAsbWALGiM60oQDXbCzFnrCy2Vu2fvD_dvuKd6_PD7v7vaxTpWYYqUg07kx0pi0VVVTZRmC4SBaqUUjsdCCozEFFJDqvGkrDaXkhUwDdVaWcstufu-O3n3NSFM9dKSx78Gim6kO7YX-0pKLEL1eonMzoKlHH17yx_qvH_kNxZNs0A
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_015
crossref_primary_10_1109_TMI_2014_2308901
crossref_primary_10_1109_TNSRE_2018_2837501
crossref_primary_10_1109_TMI_2015_2418734
crossref_primary_10_1007_s13042_025_02556_6
crossref_primary_10_3389_fnagi_2016_00172
crossref_primary_10_1016_j_neucom_2019_08_037
crossref_primary_10_1109_TIFS_2018_2825940
crossref_primary_10_1016_j_neuroimage_2015_02_015
crossref_primary_10_3389_fnins_2020_00155
crossref_primary_10_1007_s11517_017_1622_1
crossref_primary_10_1007_s11042_019_08602_0
crossref_primary_10_1155_2018_9593682
crossref_primary_10_1109_ACCESS_2020_2997116
crossref_primary_10_1109_ACCESS_2020_3016700
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1016_j_neuroimage_2014_01_021
crossref_primary_10_1016_j_jneumeth_2016_12_010
crossref_primary_10_1007_s11042_021_10716_3
crossref_primary_10_1016_j_neucom_2015_06_049
crossref_primary_10_1016_j_bspc_2015_05_007
crossref_primary_10_1016_j_jneumeth_2021_109274
crossref_primary_10_31083_j_jin_2019_02_17
crossref_primary_10_1088_1741_2560_12_6_066009
crossref_primary_10_1155_2018_6265108
crossref_primary_10_1007_s11517_017_1707_x
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_1007_s12553_023_00770_2
crossref_primary_10_1109_TNSRE_2023_3255233
crossref_primary_10_1016_j_compbiomed_2015_08_017
crossref_primary_10_1007_s12264_013_1385_0
crossref_primary_10_1016_j_asoc_2022_108416
crossref_primary_10_1080_03091902_2021_1906966
crossref_primary_10_1109_TMI_2014_2340816
crossref_primary_10_1016_j_neucom_2016_08_082
crossref_primary_10_3233_JIFS_181309
crossref_primary_10_1016_j_bspc_2017_03_001
crossref_primary_10_3390_s23052480
crossref_primary_10_1038_s41598_023_42790_y
crossref_primary_10_1016_j_jneumeth_2015_03_031
crossref_primary_10_3390_electronics14061108
crossref_primary_10_1016_j_neunet_2018_02_011
crossref_primary_10_3390_s140814601
crossref_primary_10_1007_s00521_017_2950_7
crossref_primary_10_1007_s11042_023_14659_9
crossref_primary_10_1016_j_neucom_2021_02_051
crossref_primary_10_1007_s00521_018_3735_3
crossref_primary_10_1080_2326263X_2020_1783170
crossref_primary_10_1186_s12859_021_04091_x
crossref_primary_10_1371_journal_pone_0276133
crossref_primary_10_1016_j_optcom_2017_12_009
crossref_primary_10_1109_MSP_2013_2296790
crossref_primary_10_1016_j_neucom_2013_01_001
crossref_primary_10_1088_1741_2552_ab123a
crossref_primary_10_1016_j_cmpb_2016_04_023
crossref_primary_10_1063_1_5001896
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2560/9/5/056002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 22872668
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AERVB
AFYNE
AGQPQ
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
7X8
AEINN
ID FETCH-LOGICAL-c381t-88a4c5dd2dd3f89b944ead0a1f2c1b2e6c10edd6a6a3c5bf9ca720623720c4772
IEDL.DBID 7X8
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309511200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-2552
IngestDate Thu Sep 04 18:17:26 EDT 2025
Mon Jul 21 06:06:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-88a4c5dd2dd3f89b944ead0a1f2c1b2e6c10edd6a6a3c5bf9ca720623720c4772
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22872668
PQID 1080883701
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1080883701
pubmed_primary_22872668
PublicationCentury 2000
PublicationDate 2012-Oct
20121001
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-Oct
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2012
SSID ssj0031790
Score 2.2766774
Snippet Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 056002
SubjectTerms Brain-Computer Interfaces - classification
Databases, Factual
Electroencephalography - methods
Evoked Potentials, Motor - physiology
Humans
Imagination - physiology
Title Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
URI https://www.ncbi.nlm.nih.gov/pubmed/22872668
https://www.proquest.com/docview/1080883701
Volume 9
WOSCitedRecordID wos000309511200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXjxVR_1RQTxFjabZLfZkxSxeLEUVOht2TwWKnRbu1Xov3dmH3oSBC85hM2yJLOZ70tmviHkRoU5z6WJmFQmZ0oAQdFceRYZ4a2wxvPYVMUm-qORnkyScXPgVjZhle2eWG3Ubm7xjDzAWDiNSi3h3eKdYdUovF1tSmhsko4EKINW3Z983yJIVJ-qEyJDBtBZtKlzQPqavpgHSRAFHP2--B1kVs5muPffz9wnuw3MpIPaLg7Ihi8OSXdQAMWerektrQI_qxP1Lnl7XgC79bTSt2xzkQqG_s1Ri-gaw4mqTgpc2M88BaRLYY2hnc5QBGPdPG2w4ASzTaUIiloUyzyzntaC0eUReR0-vNw_sqYEA7PgyldM60zZyDnhnMx1YhKlwPR4FubChrCcsQ25dy7O4kzayOSJzfqCA6SC1ipA7sdkq5gX_pRQTHPNjAbf4OCd4AVdKMPYSyBosfBc98h1O6MpmDjeW2SFn3-U6c-c9shJvSzpotbiSAUwPsAY-uwPo8_JDsAdUYfiXZBODj-4vyTb9nM1LZdXle1AOxo_fQHVNs_p
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+representation-based+classification+scheme+for+motor+imagery-based+brain-computer+interface+systems&rft.jtitle=Journal+of+neural+engineering&rft.au=Shin%2C+Younghak&rft.au=Lee%2C+Seungchan&rft.au=Lee%2C+Junho&rft.au=Lee%2C+Heung-No&rft.date=2012-10-01&rft.eissn=1741-2552&rft.volume=9&rft.issue=5&rft.spage=056002&rft_id=info:doi/10.1088%2F1741-2560%2F9%2F5%2F056002&rft_id=info%3Apmid%2F22872668&rft_id=info%3Apmid%2F22872668&rft.externalDocID=22872668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon