Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse

The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment Jg. 909; S. 168524
Hauptverfasser: Bilea, Florin, Bradu, Corina, Cicirma, Marius, Medvedovici, Andrei Valentin, Magureanu, Monica
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 20.01.2024
Schlagworte:
ISSN:0048-9697, 1879-1026, 1879-1026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21–0.49 min−1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties. [Display omitted] •Conventional wastewater treatment is insufficient for combating water pollution.•Pollutant removal by plasma and toxicity evaluation after treatment were addressed.•Sulfamethoxazole degradation using a plasma-ozonation method was investigated.•Formation and subsequent removal of multiple degradation intermediates was studied.•The plasma-ozonation method is fast, highly efficient and reduces pollutant toxicity.
AbstractList The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21–0.49 min⁻¹, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21–0.49 min−1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties. [Display omitted] •Conventional wastewater treatment is insufficient for combating water pollution.•Pollutant removal by plasma and toxicity evaluation after treatment were addressed.•Sulfamethoxazole degradation using a plasma-ozonation method was investigated.•Formation and subsequent removal of multiple degradation intermediates was studied.•The plasma-ozonation method is fast, highly efficient and reduces pollutant toxicity.
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
ArticleNumber 168524
Author Cicirma, Marius
Medvedovici, Andrei Valentin
Magureanu, Monica
Bilea, Florin
Bradu, Corina
Author_xml – sequence: 1
  givenname: Florin
  surname: Bilea
  fullname: Bilea, Florin
  email: florin.bilea@inflpr.ro
  organization: National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
– sequence: 2
  givenname: Corina
  surname: Bradu
  fullname: Bradu, Corina
  organization: Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91–95, 050095 Bucharest, Romania
– sequence: 3
  givenname: Marius
  surname: Cicirma
  fullname: Cicirma, Marius
  organization: National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
– sequence: 4
  givenname: Andrei Valentin
  surname: Medvedovici
  fullname: Medvedovici, Andrei Valentin
  organization: Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania
– sequence: 5
  givenname: Monica
  surname: Magureanu
  fullname: Magureanu, Monica
  email: monica.magureanu@inflpr.ro
  organization: National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
BookMark eNqNkUuLFDEUhYOMYM_obzBLF1abVOqRCC6GYdSBAV3oOtxK3WiaVNImqXmt_eGmbXHhZswilwvnHA73OyUnIQYk5CVnW8748Ga3zcaVWDDcbFvWii0fZN92T8iGy1E1nLXDCdkw1slGDWp8Rk5z3rH6Rsk35OdnD3kBWhJCWTAUGi3Nq7ewYPke7-AheqQmhgKLC1Bwprf1T2_pVahjwdnVle5TnFdT8mta4p2rfe4p5Iw5_46EMNP9oWFx4Cl8S86svqypLgnXjM_JUws-44s_84x8fX_55eJjc_3pw9XF-XVjhOSlGSdhkfFJTAj90DG0Xdcb21kUXLJhbKfOjK3opQQOViqwOGA3cDBMGIuTOCOvjrm17o8Vc9GLywa9h4BxzVrwXgxKtYo9Km2l4mPPOVNVOh6lJsWcE1q9T26BdK850wdEeqf_ItIHRPqIqDrf_eOsMiiuXjuB8__hPz_6sR7txmE66DCYCiWhKXqO7tGMX0MHulU
CitedBy_id crossref_primary_10_1016_j_envres_2024_119647
crossref_primary_10_3390_plants14091277
crossref_primary_10_1016_j_bej_2024_109484
crossref_primary_10_1016_j_jenvman_2024_122512
crossref_primary_10_1016_j_dwt_2024_100600
crossref_primary_10_1002_slct_202500680
crossref_primary_10_1016_j_scitotenv_2024_177320
crossref_primary_10_1007_s11090_025_10561_4
crossref_primary_10_1016_j_jece_2025_118506
crossref_primary_10_1016_j_seppur_2024_128464
crossref_primary_10_1016_j_cogsc_2025_100999
crossref_primary_10_1016_j_jhazmat_2024_133558
crossref_primary_10_1016_j_seppur_2024_130381
crossref_primary_10_3389_fenvc_2024_1416702
crossref_primary_10_1016_j_jenvman_2024_122574
crossref_primary_10_1016_j_jece_2025_116150
Cites_doi 10.1016/j.chemosphere.2020.127351
10.1002/ppap.201700201
10.1007/s10311-021-01379-5
10.3389/fmicb.2012.00018
10.1016/j.watres.2016.04.001
10.1016/j.chemosphere.2020.126351
10.1088/1361-6463/ab795a
10.1016/j.seppur.2022.121608
10.1016/j.chroma.2010.02.049
10.1016/S0926-3373(97)00059-3
10.1016/j.watres.2021.117200
10.1016/j.cej.2015.02.073
10.1039/D0NJ00520G
10.1016/j.ultsonch.2014.07.008
10.1021/acs.joc.2c00321
10.1021/jp111129t
10.1016/j.cplett.2015.10.005
10.1016/j.chemosphere.2016.09.073
10.1016/j.chemosphere.2019.07.033
10.1002/jsfa.870
10.1016/j.chemosphere.2018.12.156
10.1016/j.watres.2007.02.026
10.1016/j.watres.2017.12.046
10.1016/j.jece.2018.07.047
10.1021/es801611a
10.1007/s11783-020-1368-0
10.3389/fchem.2017.00021
10.1016/j.jhazmat.2021.125481
10.1016/j.synthmet.2008.01.005
10.1289/ehp.8564209
10.1080/21622515.2014.990935
10.1002/jms.1777
10.1016/j.watres.2022.118128
10.1016/j.cej.2021.133916
10.1039/C5RA25994K
10.1016/j.seppur.2022.120540
10.3390/catal11060728
10.1016/j.seppur.2021.118665
10.1016/j.jhazmat.2017.04.050
10.1007/s11356-014-2964-y
10.1016/j.jphotochem.2018.07.007
10.1088/0963-0252/25/5/053002
10.1016/j.watres.2009.04.006
10.1016/j.cej.2016.12.080
10.3390/catal11121548
10.1021/acs.est.0c05644
10.1016/j.jhazmat.2014.04.024
10.1016/j.tifs.2018.05.007
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.168524
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2023_168524
S0048969723071528
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c381t-7b3fe01b3bea5640ef445cf4fe3180672b4c723588a1af89afe6e461ac03cfeb3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119137800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 22:53:51 EDT 2025
Sat Sep 27 21:36:39 EDT 2025
Tue Nov 18 22:08:19 EST 2025
Sat Nov 29 07:27:12 EST 2025
Sun Apr 06 06:54:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Advanced oxidation processes
Water treatment
Non-thermal plasma
Sulfamethoxazole
Phytotoxicity
Water reuse
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-7b3fe01b3bea5640ef445cf4fe3180672b4c723588a1af89afe6e461ac03cfeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2891751109
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153699290
proquest_miscellaneous_2891751109
crossref_primary_10_1016_j_scitotenv_2023_168524
crossref_citationtrail_10_1016_j_scitotenv_2023_168524
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_168524
PublicationCentury 2000
PublicationDate 2024-01-20
PublicationDateYYYYMMDD 2024-01-20
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-20
  day: 20
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Magureanu, Dobrin, Bradu, Gherendi, Mandache, Parvulescu (bb0160) 2016; 165
Gorelova, Ambach, Rébeillé, Stove, Van Der Straeten (bb0070) 2017; 5
Bradu, Magureanu, Parvulescu (bb0015) 2017; 336
Kim, Kim, Cha, Yu (bb0120) 2017; 313
Kim, Kam, Mok (bb0125) 2015; 271
Yin, Guo, Zhou, Zheng, Du, Wu, Chang, Ren (bb0255) 2016; 6
Du, Guo, Wang, Yin, Zheng, Feng, Che, Ren (bb0050) 2018; 138
Kutuzova, Dontsova, Kwapinski (bb0140) 2021; 11
Hong, Wang, Lu (bb0100) 2020; 258
Massima Mouele, Myint Myo, Kyaw, Tijani, Dinu, Parau, Pana, El Ouardi, Al-Sabahi, Al-Belushi, Sosnin, Tarasenko, Zhang, Shao, Iordache, Teodor, Laatikainen, Vladescu, Al-Abri, Sarbu, Braic, Braic, Dobretsov, Petrik (bb0180) 2022; 5
Gao, Zhao, Xu, Tian, Qi, Lin, Cui (bb0060) 2014; 274
Lima, Fajardo, Nogueira, Pereira, Oliveira, de Mesquita, Silva (bb0145) 2020; 44
U.S. EPA (bb0230) 2012
Brillas, Mur, Sauleda, Sànchez, Peral, Domènech, Casado (bb0030) 1998; 16
Zhang, Zhou, Li, Liu, Li, Xue, Miruka, Zheng, Liu (bb0260) 2022; 212
Brain, Ramirez, Fulton, Chambliss, Brooks (bb0025) 2008; 42
Back, Obholzer, Winkler, Jabornig, Rupprich (bb0005) 2018; 6
National Institute of Standards and Technology, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg MD, n.d. doi
Marjanović, Juranić, Ćirić-Marjanović (bb0175) 2011; 115
Magureanu, Mandache, Bradu, Parvulescu (bb0165) 2018
.
von Sonntag, von Gunten (bb0240) 2012
Bruggeman, Kushner, Locke, Gardeniers, Graham, Graves, Hofman-Caris, Maric, Reid, Ceriani, Fernandez Rivas, Foster, Garrick, Gorbanev, Hamaguchi, Iza, Jablonowski, Klimova, Kolb, Krcma, Lukes, MacHala, Marinov, Mariotti, Mededovic Thagard, Minakata, Neyts, Pawlat, Petrovic, Pflieger, Reuter, Schram, Schröter, Shiraiwa, Tarabová, Tsai, Verlet, Von Woedtke, Wilson, Yasui, Zvereva (bb0035) 2016; 25
Ray, Dhakal, Lee (bb0200) 2018; 364
Thirumdas, Kothakota, Annapure, Siliveru, Blundell, Gatt, Valdramidis (bb0220) 2018; 77
Wojnárovits, Takács (bb0250) 2019; 220
Szczepanik, Słomkiewicz, Wideł, Czaplicka, Frydel (bb0210) 2021; 11
Huang, Liu, Grassian (bb0115) 2020; 54
Liu, Su, Tian, Li, Yuan (bb0150) 2021; 15
Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bb0135) 2020; 251
Han, Gu, Li, Qi, Liang (bb0085) 2022; 87
Hu, Flanders, Miller, Strathmann (bb0110) 2007; 41
Bradu, Kutasi, Magureanu, Puač, Živković (bb0020) 2020; 53
Gulde, Rutsch, Clerc, Schollée, von Gunten, McArdell (bb0075) 2021; 200
Tekle-Röttering, von Sonntag, Reisz, vom Eyser, Lutze, Türk, Naumov, Schmidt, Schmidt (bb0215) 2016; 98
Kohantorabi, Moussavi, Oulego, Giannakis (bb0130) 2021; 267
Shang, Morent, Wang, Wang, Peng, Jiang, Lu, Li (bb0205) 2022; 431
Gambonnet, Jabrin, Ravanel, Karan, Douce, Rébeillé (bb0055) 2001; 81
Gómez-Ramos, Mezcua, Agüera, Fernández-Alba, Gonzalo, Rodríguez, Rosal (bb0065) 2011; 192
Neta, Huie (bb0195) 1985; 64
Wang, Huang, Guo, Puyang, Han, Li, Ruan (bb0245) 2022; 287
Hijosa-Valsero, Molina, Montràs, Müller, Bayona (bb0090) 2014; 3
Zhang, Xiao, Du, Song, Hu, Huang, Wang, Wu (bb0265) 2022; 298
Horai, Arita, Kanaya, Nihei, Ikeda, Suwa, Ojima, Tanaka, Tanaka, Aoshima, Oda, Kakazu, Kusano, Tohge, Matsuda, Sawada, Hirai, Nakanishi, Ikeda, Akimoto, Maoka, Takahashi, Ara, Sakurai, Suzuki, Shibata, Neumann, Iida, Tanaka, Funatsu, Matsuura, Soga, Taguchi, Saito, Nishioka (bb0105) 2010; 45
Morin-Crini, Lichtfouse, Fourmentin, Ribeiro, Noutsopoulos, Mapelli, Fenyvesi, Vieira, Picos-Corrales, Moreno-Piraján, Giraldo, Sohajda, Huq, Soltan, Torri, Magureanu, Bradu, Crini (bb0185) 2022; 20
Holčapek, Jirásko, Lísa (bb0095) 2010; 1217
Ćirić-Marjanović, Konyushenko, Trchová, Stejskal (bb0040) 2008; 158
Lupo, Coyne, Berendonk (bb0155) 2012; 3
Dobrin, Magureanu, Bradu, Mandache, Ionita, Parvulescu (bb0045) 2014; 21
Magureanu, Bilea, Bradu, Hong (bb0170) 2021; 417
Trovó, Nogueira, Agüera, Fernandez-Alba, Sirtori, Malato (bb0225) 2009; 43
Valdés, Alzate-Morales, Osorio, Villaseñor, Navarro-Retamal (bb0235) 2015; 640
Guo, Yin, Zhou, Du, Cao, Yang, Ren (bb0080) 2015; 22
Bilea, Bradu, Mandache, Magureanu (bb0010) 2019; 236
Brillas (10.1016/j.scitotenv.2023.168524_bb0030) 1998; 16
Hu (10.1016/j.scitotenv.2023.168524_bb0110) 2007; 41
Morin-Crini (10.1016/j.scitotenv.2023.168524_bb0185) 2022; 20
Thirumdas (10.1016/j.scitotenv.2023.168524_bb0220) 2018; 77
Gómez-Ramos (10.1016/j.scitotenv.2023.168524_bb0065) 2011; 192
Du (10.1016/j.scitotenv.2023.168524_bb0050) 2018; 138
Bradu (10.1016/j.scitotenv.2023.168524_bb0015) 2017; 336
Marjanović (10.1016/j.scitotenv.2023.168524_bb0175) 2011; 115
Brain (10.1016/j.scitotenv.2023.168524_bb0025) 2008; 42
Guo (10.1016/j.scitotenv.2023.168524_bb0080) 2015; 22
Zhang (10.1016/j.scitotenv.2023.168524_bb0260) 2022; 212
Bruggeman (10.1016/j.scitotenv.2023.168524_bb0035) 2016; 25
Ray (10.1016/j.scitotenv.2023.168524_bb0200) 2018; 364
Gao (10.1016/j.scitotenv.2023.168524_bb0060) 2014; 274
Hong (10.1016/j.scitotenv.2023.168524_bb0100) 2020; 258
Huang (10.1016/j.scitotenv.2023.168524_bb0115) 2020; 54
Horai (10.1016/j.scitotenv.2023.168524_bb0105) 2010; 45
Lupo (10.1016/j.scitotenv.2023.168524_bb0155) 2012; 3
Shang (10.1016/j.scitotenv.2023.168524_bb0205) 2022; 431
U.S. EPA (10.1016/j.scitotenv.2023.168524_bb0230)
Yin (10.1016/j.scitotenv.2023.168524_bb0255) 2016; 6
Valdés (10.1016/j.scitotenv.2023.168524_bb0235) 2015; 640
Ćirić-Marjanović (10.1016/j.scitotenv.2023.168524_bb0040) 2008; 158
Hijosa-Valsero (10.1016/j.scitotenv.2023.168524_bb0090) 2014; 3
Holčapek (10.1016/j.scitotenv.2023.168524_bb0095) 2010; 1217
Kutuzova (10.1016/j.scitotenv.2023.168524_bb0140) 2021; 11
Zhang (10.1016/j.scitotenv.2023.168524_bb0265) 2022; 298
Trovó (10.1016/j.scitotenv.2023.168524_bb0225) 2009; 43
Szczepanik (10.1016/j.scitotenv.2023.168524_bb0210) 2021; 11
Back (10.1016/j.scitotenv.2023.168524_bb0005) 2018; 6
Massima Mouele (10.1016/j.scitotenv.2023.168524_bb0180) 2022; 5
Bilea (10.1016/j.scitotenv.2023.168524_bb0010) 2019; 236
Kovalakova (10.1016/j.scitotenv.2023.168524_bb0135) 2020; 251
Neta (10.1016/j.scitotenv.2023.168524_bb0195) 1985; 64
Kim (10.1016/j.scitotenv.2023.168524_bb0125) 2015; 271
Magureanu (10.1016/j.scitotenv.2023.168524_bb0160) 2016; 165
Liu (10.1016/j.scitotenv.2023.168524_bb0150) 2021; 15
Gambonnet (10.1016/j.scitotenv.2023.168524_bb0055) 2001; 81
Wang (10.1016/j.scitotenv.2023.168524_bb0245) 2022; 287
Lima (10.1016/j.scitotenv.2023.168524_bb0145) 2020; 44
von Sonntag (10.1016/j.scitotenv.2023.168524_bb0240) 2012
Magureanu (10.1016/j.scitotenv.2023.168524_bb0170) 2021; 417
Dobrin (10.1016/j.scitotenv.2023.168524_bb0045) 2014; 21
Magureanu (10.1016/j.scitotenv.2023.168524_bb0165) 2018
Bradu (10.1016/j.scitotenv.2023.168524_bb0020) 2020; 53
Han (10.1016/j.scitotenv.2023.168524_bb0085) 2022; 87
10.1016/j.scitotenv.2023.168524_bb0190
Kim (10.1016/j.scitotenv.2023.168524_bb0120) 2017; 313
Tekle-Röttering (10.1016/j.scitotenv.2023.168524_bb0215) 2016; 98
Wojnárovits (10.1016/j.scitotenv.2023.168524_bb0250) 2019; 220
Kohantorabi (10.1016/j.scitotenv.2023.168524_bb0130) 2021; 267
Gulde (10.1016/j.scitotenv.2023.168524_bb0075) 2021; 200
Gorelova (10.1016/j.scitotenv.2023.168524_bb0070) 2017; 5
References_xml – volume: 21
  start-page: 12190
  year: 2014
  end-page: 12197
  ident: bb0045
  article-title: Degradation of methylparaben in water by corona plasma coupled with ozonation
  publication-title: Environ. Sci. Pollut. Res.
– volume: 44
  start-page: 8710
  year: 2020
  end-page: 8717
  ident: bb0145
  article-title: Selective oxidation of aniline into azoxybenzene catalyzed by Nb-peroxo@iron oxides at room temperature
  publication-title: New J. Chem.
– volume: 258
  year: 2020
  ident: bb0100
  article-title: UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix
  publication-title: Chemosphere
– volume: 77
  start-page: 21
  year: 2018
  end-page: 31
  ident: bb0220
  article-title: Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture
  publication-title: Trends Food Sci. Technol.
– year: 2012
  ident: bb0230
  article-title: Methodology Document for the ECOlogical Structure-activity Relationship Model (ECOSAR) Class Program
– volume: 267
  start-page: 1
  year: 2021
  end-page: 46
  ident: bb0130
  article-title: Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis, driven by magnetically separable Fe3O4@CeO2@BiOI nanospheres
  publication-title: Sep. Purif. Technol.
– volume: 274
  start-page: 258
  year: 2014
  end-page: 269
  ident: bb0060
  article-title: Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-a comparative study
  publication-title: J. Hazard. Mater.
– volume: 287
  year: 2022
  ident: bb0245
  article-title: Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma
  publication-title: Sep. Purif. Technol.
– volume: 212
  year: 2022
  ident: bb0260
  article-title: Motivation of reactive oxygen and nitrogen species by a novel non-thermal plasma coupled with calcium peroxide system for synergistic removal of sulfamethoxazole in waste activated sludge
  publication-title: Water Res.
– volume: 3
  start-page: 71
  year: 2014
  end-page: 91
  ident: bb0090
  article-title: Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review
  publication-title: Environ. Technol.Rev.
– volume: 313
  start-page: 556
  year: 2017
  end-page: 566
  ident: bb0120
  article-title: Degradation of sulfamethoxazole by ionizing radiation: identification and characterization of radiolytic products
  publication-title: Chem. Eng. J.
– volume: 298
  year: 2022
  ident: bb0265
  article-title: Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect
  publication-title: Sep. Purif. Technol.
– volume: 98
  start-page: 147
  year: 2016
  end-page: 159
  ident: bb0215
  article-title: Ozonation of anilines: kinetics, stoichiometry, product identification and elucidation of pathways
  publication-title: Water Res.
– volume: 417
  year: 2021
  ident: bb0170
  article-title: A review on non-thermal plasma treatment of water contaminated with antibiotics
  publication-title: J. Hazard. Mater.
– volume: 138
  start-page: 323
  year: 2018
  end-page: 332
  ident: bb0050
  article-title: Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways
  publication-title: Water Res.
– volume: 11
  year: 2021
  ident: bb0140
  article-title: Application of tio2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin
  publication-title: Catalysts
– volume: 3
  year: 2012
  ident: bb0155
  article-title: Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies
  publication-title: Front. Microbiol.
– volume: 165
  start-page: 507
  year: 2016
  end-page: 514
  ident: bb0160
  article-title: New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds
  publication-title: Chemosphere
– volume: 54
  start-page: 11857
  year: 2020
  end-page: 11864
  ident: bb0115
  article-title: Radical-initiated formation of aromatic organosulfates and sulfonates in the aqueous phase
  publication-title: Environ. Sci. Technol.
– volume: 236
  year: 2019
  ident: bb0010
  article-title: Characterization of the chemical activity of a pulsed corona discharge above water
  publication-title: Chemosphere
– volume: 115
  start-page: 3536
  year: 2011
  end-page: 3550
  ident: bb0175
  article-title: Revised mechanism of Boyland−Sims oxidation
  publication-title: J. Phys. Chem. A
– volume: 11
  start-page: 1
  year: 2021
  end-page: 16
  ident: bb0210
  article-title: Kinetics and mechanism of aniline and chloroanilines degradation photocatalyzed by halloysite-tio2 and halloysite-fe2o3 nanocomposites
  publication-title: Catalysts
– volume: 87
  start-page: 7124
  year: 2022
  end-page: 7135
  ident: bb0085
  article-title: Homolytic aromatic Sulfonation with K 2 S 2 O 5 promoted by a combination of Mn(OAc) 3 ·2H 2 O and HFIP
  publication-title: J. Organomet. Chem.
– volume: 5
  year: 2022
  ident: bb0180
  article-title: Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/C-N-TiO2 supported nanocatalyst
  publication-title: J. Hazard Mater. Adv.
– reference: National Institute of Standards and Technology, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg MD, n.d. doi:
– volume: 271
  start-page: 31
  year: 2015
  end-page: 42
  ident: bb0125
  article-title: Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system
  publication-title: Chem. Eng. J.
– volume: 25
  year: 2016
  ident: bb0035
  article-title: Plasma-liquid interactions: a review and roadmap
  publication-title: Plasma Sources Sci. Technol.
– volume: 251
  year: 2020
  ident: bb0135
  article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review
  publication-title: Chemosphere
– volume: 64
  start-page: 209
  year: 1985
  end-page: 217
  ident: bb0195
  article-title: Free-radical chemistry of sulfite
  publication-title: Environ. Health Perspect.
– volume: 45
  start-page: 703
  year: 2010
  end-page: 714
  ident: bb0105
  article-title: MassBank: a public repository for sharing mass spectral data for life sciences
  publication-title: J. Mass Spectrom.
– volume: 220
  start-page: 1014
  year: 2019
  end-page: 1032
  ident: bb0250
  article-title: Rate constants of sulfate radical anion reactions with organic molecules: a review
  publication-title: Chemosphere
– volume: 640
  start-page: 16
  year: 2015
  end-page: 22
  ident: bb0235
  article-title: A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction
  publication-title: Chem. Phys. Lett.
– volume: 42
  start-page: 8965
  year: 2008
  end-page: 8970
  ident: bb0025
  article-title: Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 3922
  year: 2009
  end-page: 3931
  ident: bb0225
  article-title: Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation
  publication-title: Water Res.
– year: 2018
  ident: bb0165
  article-title: High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen
  publication-title: Plasma Process. Polym.
– volume: 6
  start-page: 7377
  year: 2018
  end-page: 7385
  ident: bb0005
  article-title: Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater
  publication-title: J. Environ. Chem. Eng.
– volume: 5
  year: 2017
  ident: bb0070
  article-title: Folates in plants: research advances and progress in crop biofortification
  publication-title: Front. Chem.
– volume: 192
  start-page: 18
  year: 2011
  end-page: 25
  ident: bb0065
  article-title: Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 182
  year: 2015
  end-page: 187
  ident: bb0080
  article-title: Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways
  publication-title: Ultrason. Sonochem.
– volume: 1217
  start-page: 3908
  year: 2010
  end-page: 3921
  ident: bb0095
  article-title: Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules
  publication-title: J. Chromatogr. A
– volume: 431
  year: 2022
  ident: bb0205
  article-title: Degradation of sulfamethoxazole (SMX) by water falling film DBD plasma/persulfate: reactive species identification and their role in SMX degradation
  publication-title: Chem. Eng. J.
– year: 2012
  ident: bb0240
  article-title: Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications
– volume: 364
  start-page: 686
  year: 2018
  end-page: 695
  ident: bb0200
  article-title: Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 158
  start-page: 200
  year: 2008
  end-page: 211
  ident: bb0040
  article-title: Chemical oxidative polymerization of anilinium sulfate versus aniline: theory and experiment
  publication-title: Synth. Met.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 12
  ident: bb0150
  article-title: Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant
  publication-title: Front. Environ. Sci. Eng.
– volume: 53
  year: 2020
  ident: bb0020
  article-title: Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture
  publication-title: J. Phys. D. Appl. Phys.
– reference: .
– volume: 336
  start-page: 52
  year: 2017
  end-page: 56
  ident: bb0015
  article-title: Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 2612
  year: 2007
  end-page: 2626
  ident: bb0110
  article-title: Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis
  publication-title: Water Res.
– volume: 16
  start-page: 31
  year: 1998
  end-page: 42
  ident: bb0030
  article-title: Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes
  publication-title: Appl Catal B
– volume: 81
  start-page: 835
  year: 2001
  end-page: 841
  ident: bb0055
  article-title: Folate distribution during higher plant development
  publication-title: J. Sci. Food Agric.
– volume: 200
  year: 2021
  ident: bb0075
  article-title: Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: from laboratory- to full-scale
  publication-title: Water Res.
– volume: 6
  start-page: 19265
  year: 2016
  end-page: 19270
  ident: bb0255
  article-title: Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: catalytic performance and degradation mechanism
  publication-title: RSC Adv.
– volume: 20
  start-page: 1333
  year: 2022
  end-page: 1375
  ident: bb0185
  article-title: Removal of emerging contaminants from wastewater using advanced treatments. A review
  publication-title: Environ. Chem. Lett.
– volume: 258
  year: 2020
  ident: 10.1016/j.scitotenv.2023.168524_bb0100
  article-title: UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127351
– year: 2018
  ident: 10.1016/j.scitotenv.2023.168524_bb0165
  article-title: High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201700201
– volume: 20
  start-page: 1333
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0185
  article-title: Removal of emerging contaminants from wastewater using advanced treatments. A review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-021-01379-5
– volume: 3
  year: 2012
  ident: 10.1016/j.scitotenv.2023.168524_bb0155
  article-title: Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00018
– volume: 98
  start-page: 147
  year: 2016
  ident: 10.1016/j.scitotenv.2023.168524_bb0215
  article-title: Ozonation of anilines: kinetics, stoichiometry, product identification and elucidation of pathways
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.001
– volume: 192
  start-page: 18
  year: 2011
  ident: 10.1016/j.scitotenv.2023.168524_bb0065
  article-title: Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution
  publication-title: J. Hazard. Mater.
– volume: 251
  year: 2020
  ident: 10.1016/j.scitotenv.2023.168524_bb0135
  article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126351
– volume: 53
  year: 2020
  ident: 10.1016/j.scitotenv.2023.168524_bb0020
  article-title: Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/ab795a
– volume: 298
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0265
  article-title: Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121608
– volume: 1217
  start-page: 3908
  year: 2010
  ident: 10.1016/j.scitotenv.2023.168524_bb0095
  article-title: Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.02.049
– volume: 16
  start-page: 31
  year: 1998
  ident: 10.1016/j.scitotenv.2023.168524_bb0030
  article-title: Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes
  publication-title: Appl Catal B
  doi: 10.1016/S0926-3373(97)00059-3
– volume: 200
  year: 2021
  ident: 10.1016/j.scitotenv.2023.168524_bb0075
  article-title: Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: from laboratory- to full-scale
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117200
– volume: 271
  start-page: 31
  year: 2015
  ident: 10.1016/j.scitotenv.2023.168524_bb0125
  article-title: Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.073
– volume: 44
  start-page: 8710
  year: 2020
  ident: 10.1016/j.scitotenv.2023.168524_bb0145
  article-title: Selective oxidation of aniline into azoxybenzene catalyzed by Nb-peroxo@iron oxides at room temperature
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ00520G
– volume: 22
  start-page: 182
  year: 2015
  ident: 10.1016/j.scitotenv.2023.168524_bb0080
  article-title: Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.07.008
– volume: 87
  start-page: 7124
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0085
  article-title: Homolytic aromatic Sulfonation with K 2 S 2 O 5 promoted by a combination of Mn(OAc) 3 ·2H 2 O and HFIP
  publication-title: J. Organomet. Chem.
  doi: 10.1021/acs.joc.2c00321
– ident: 10.1016/j.scitotenv.2023.168524_bb0190
– volume: 115
  start-page: 3536
  year: 2011
  ident: 10.1016/j.scitotenv.2023.168524_bb0175
  article-title: Revised mechanism of Boyland−Sims oxidation
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp111129t
– volume: 640
  start-page: 16
  year: 2015
  ident: 10.1016/j.scitotenv.2023.168524_bb0235
  article-title: A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2015.10.005
– volume: 165
  start-page: 507
  year: 2016
  ident: 10.1016/j.scitotenv.2023.168524_bb0160
  article-title: New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.073
– volume: 236
  year: 2019
  ident: 10.1016/j.scitotenv.2023.168524_bb0010
  article-title: Characterization of the chemical activity of a pulsed corona discharge above water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.07.033
– volume: 81
  start-page: 835
  year: 2001
  ident: 10.1016/j.scitotenv.2023.168524_bb0055
  article-title: Folate distribution during higher plant development
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.870
– volume: 220
  start-page: 1014
  year: 2019
  ident: 10.1016/j.scitotenv.2023.168524_bb0250
  article-title: Rate constants of sulfate radical anion reactions with organic molecules: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.156
– volume: 41
  start-page: 2612
  year: 2007
  ident: 10.1016/j.scitotenv.2023.168524_bb0110
  article-title: Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.02.026
– volume: 138
  start-page: 323
  year: 2018
  ident: 10.1016/j.scitotenv.2023.168524_bb0050
  article-title: Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.12.046
– year: 2012
  ident: 10.1016/j.scitotenv.2023.168524_bb0240
– volume: 6
  start-page: 7377
  year: 2018
  ident: 10.1016/j.scitotenv.2023.168524_bb0005
  article-title: Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.07.047
– volume: 42
  start-page: 8965
  year: 2008
  ident: 10.1016/j.scitotenv.2023.168524_bb0025
  article-title: Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801611a
– volume: 15
  start-page: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2023.168524_bb0150
  article-title: Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-020-1368-0
– ident: 10.1016/j.scitotenv.2023.168524_bb0230
– volume: 5
  year: 2017
  ident: 10.1016/j.scitotenv.2023.168524_bb0070
  article-title: Folates in plants: research advances and progress in crop biofortification
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2017.00021
– volume: 417
  year: 2021
  ident: 10.1016/j.scitotenv.2023.168524_bb0170
  article-title: A review on non-thermal plasma treatment of water contaminated with antibiotics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125481
– volume: 158
  start-page: 200
  year: 2008
  ident: 10.1016/j.scitotenv.2023.168524_bb0040
  article-title: Chemical oxidative polymerization of anilinium sulfate versus aniline: theory and experiment
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2008.01.005
– volume: 64
  start-page: 209
  year: 1985
  ident: 10.1016/j.scitotenv.2023.168524_bb0195
  article-title: Free-radical chemistry of sulfite
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8564209
– volume: 3
  start-page: 71
  year: 2014
  ident: 10.1016/j.scitotenv.2023.168524_bb0090
  article-title: Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review
  publication-title: Environ. Technol.Rev.
  doi: 10.1080/21622515.2014.990935
– volume: 5
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0180
  article-title: Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/C-N-TiO2 supported nanocatalyst
  publication-title: J. Hazard Mater. Adv.
– volume: 45
  start-page: 703
  year: 2010
  ident: 10.1016/j.scitotenv.2023.168524_bb0105
  article-title: MassBank: a public repository for sharing mass spectral data for life sciences
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.1777
– volume: 212
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0260
  article-title: Motivation of reactive oxygen and nitrogen species by a novel non-thermal plasma coupled with calcium peroxide system for synergistic removal of sulfamethoxazole in waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118128
– volume: 431
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0205
  article-title: Degradation of sulfamethoxazole (SMX) by water falling film DBD plasma/persulfate: reactive species identification and their role in SMX degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133916
– volume: 6
  start-page: 19265
  year: 2016
  ident: 10.1016/j.scitotenv.2023.168524_bb0255
  article-title: Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: catalytic performance and degradation mechanism
  publication-title: RSC Adv.
  doi: 10.1039/C5RA25994K
– volume: 287
  year: 2022
  ident: 10.1016/j.scitotenv.2023.168524_bb0245
  article-title: Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120540
– volume: 11
  year: 2021
  ident: 10.1016/j.scitotenv.2023.168524_bb0140
  article-title: Application of tio2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin
  publication-title: Catalysts
  doi: 10.3390/catal11060728
– volume: 267
  start-page: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2023.168524_bb0130
  article-title: Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis, driven by magnetically separable Fe3O4@CeO2@BiOI nanospheres
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118665
– volume: 336
  start-page: 52
  year: 2017
  ident: 10.1016/j.scitotenv.2023.168524_bb0015
  article-title: Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.04.050
– volume: 21
  start-page: 12190
  year: 2014
  ident: 10.1016/j.scitotenv.2023.168524_bb0045
  article-title: Degradation of methylparaben in water by corona plasma coupled with ozonation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-2964-y
– volume: 364
  start-page: 686
  year: 2018
  ident: 10.1016/j.scitotenv.2023.168524_bb0200
  article-title: Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2018.07.007
– volume: 25
  year: 2016
  ident: 10.1016/j.scitotenv.2023.168524_bb0035
  article-title: Plasma-liquid interactions: a review and roadmap
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/25/5/053002
– volume: 43
  start-page: 3922
  year: 2009
  ident: 10.1016/j.scitotenv.2023.168524_bb0225
  article-title: Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.04.006
– volume: 313
  start-page: 556
  year: 2017
  ident: 10.1016/j.scitotenv.2023.168524_bb0120
  article-title: Degradation of sulfamethoxazole by ionizing radiation: identification and characterization of radiolytic products
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.080
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2023.168524_bb0210
  article-title: Kinetics and mechanism of aniline and chloroanilines degradation photocatalyzed by halloysite-tio2 and halloysite-fe2o3 nanocomposites
  publication-title: Catalysts
  doi: 10.3390/catal11121548
– volume: 54
  start-page: 11857
  year: 2020
  ident: 10.1016/j.scitotenv.2023.168524_bb0115
  article-title: Radical-initiated formation of aromatic organosulfates and sulfonates in the aqueous phase
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c05644
– volume: 274
  start-page: 258
  year: 2014
  ident: 10.1016/j.scitotenv.2023.168524_bb0060
  article-title: Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-a comparative study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.04.024
– volume: 77
  start-page: 21
  year: 2018
  ident: 10.1016/j.scitotenv.2023.168524_bb0220
  article-title: Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2018.05.007
SSID ssj0000781
Score 2.5176504
Snippet The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168524
SubjectTerms Advanced oxidation processes
antibiotics
energy
environment
folic acid
hydroxylation
Non-thermal plasma
ozone
Phytotoxicity
pollutants
species
Sulfamethoxazole
wastewater
wastewater treatment
water pollution
Water reuse
Water treatment
water utilization
Title Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse
URI https://dx.doi.org/10.1016/j.scitotenv.2023.168524
https://www.proquest.com/docview/2891751109
https://www.proquest.com/docview/3153699290
Volume 909
WOSCitedRecordID wos001119137800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSFiQkhCBQ0QKVkbjBRvt-9BahVICg6qFUua28jl2lCrtVshtSzvw7_hQztveRQBV64LKKrLW12fnW_jz-ZoaQNx7677kXWJPM9zCptmPFnp9YPAp4EDsycFT5tovP0elpPB4nZ73erzoWZjmL8jxerZLr_2pqaANjY-jsHczdDAoN8BuMDlcwO1z_yfBnwIe_sY6CHOjgoppJpopFr9gP1BOiQp2hCgYJ53eGJ-beULsHVSxJifFTKhessnNZrKYc-TprEnnqDANFiWojzDdwOW-zeMxFtViTGCEY61nEiBLKAsMwO3F2rbt-JhSjPVHiwO6hf6Xcutja6ovguWBtMWFH06rZInwRk6WYFDARThvh5vTtBcNV1oxqnB0uCmQs1-5O4D7Mz6GW9NYTeGInnSnYCeNAh2X_sTpoR8XVAMhFie9nOcDi8YO2x3o-7o11slEv1sK4q7QZKMWBUj3QDtlzoyCBVWJv-HE0_tQSgyjWBRzNf1iTG_71mW4jSxu0QXGh88fkkdnE0KEG3xPSE3mf3NdlTW_6ZH_UWhVuM4Zf9MlD7SSmOvbtKfmpsUobrNJC0k2s0i5WqcLqMe0ildZIfUdrnNIWpxRwShuc0i5OqcLpM_L1ZHT-_oNlyoJYHOhlaUWZJ4XtZF4mWBD6tpC-H3DpS3Tno7Ig83mEEeAxc5iMEyZFKPzQYdz2uBSZt0928yIXzwnNHDuZMA8GyJgvfJtx7vJAhq6YBDZQ9wMS1u8_5SZnPpZumaVbMHBA7KbjtU4bs73LcW3g1LBfzWpTgO_2zq9rSKSwPuChH8tFUS1SN05gh4B5hW-_xwPaEyawUbIP7_7cL8iD9kt9SXbLeSVekXt8WU4X8yOyE43jI_Ml_AbnAvn1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+treatment+of+sulfamethoxazole+contaminated+water%3A+Intermediate+products%2C+toxicity+assessment+and+potential+agricultural+reuse&rft.jtitle=The+Science+of+the+total+environment&rft.au=Bilea%2C+Florin&rft.au=Bradu%2C+Corina&rft.au=Cicirma%2C+Marius&rft.au=Medvedovici%2C+Andrei+Valentin&rft.date=2024-01-20&rft.issn=0048-9697&rft.volume=909&rft.spage=168524&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.168524&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2023_168524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon