Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a...
Gespeichert in:
| Veröffentlicht in: | The Science of the total environment Jg. 909; S. 168524 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
20.01.2024
|
| Schlagworte: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21–0.49 min−1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
[Display omitted]
•Conventional wastewater treatment is insufficient for combating water pollution.•Pollutant removal by plasma and toxicity evaluation after treatment were addressed.•Sulfamethoxazole degradation using a plasma-ozonation method was investigated.•Formation and subsequent removal of multiple degradation intermediates was studied.•The plasma-ozonation method is fast, highly efficient and reduces pollutant toxicity. |
|---|---|
| AbstractList | The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21–0.49 min⁻¹, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties. The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21–0.49 min−1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties. [Display omitted] •Conventional wastewater treatment is insufficient for combating water pollution.•Pollutant removal by plasma and toxicity evaluation after treatment were addressed.•Sulfamethoxazole degradation using a plasma-ozonation method was investigated.•Formation and subsequent removal of multiple degradation intermediates was studied.•The plasma-ozonation method is fast, highly efficient and reduces pollutant toxicity. The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties. |
| ArticleNumber | 168524 |
| Author | Cicirma, Marius Medvedovici, Andrei Valentin Magureanu, Monica Bilea, Florin Bradu, Corina |
| Author_xml | – sequence: 1 givenname: Florin surname: Bilea fullname: Bilea, Florin email: florin.bilea@inflpr.ro organization: National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania – sequence: 2 givenname: Corina surname: Bradu fullname: Bradu, Corina organization: Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91–95, 050095 Bucharest, Romania – sequence: 3 givenname: Marius surname: Cicirma fullname: Cicirma, Marius organization: National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania – sequence: 4 givenname: Andrei Valentin surname: Medvedovici fullname: Medvedovici, Andrei Valentin organization: Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania – sequence: 5 givenname: Monica surname: Magureanu fullname: Magureanu, Monica email: monica.magureanu@inflpr.ro organization: National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania |
| BookMark | eNqNkUuLFDEUhYOMYM_obzBLF1abVOqRCC6GYdSBAV3oOtxK3WiaVNImqXmt_eGmbXHhZswilwvnHA73OyUnIQYk5CVnW8748Ga3zcaVWDDcbFvWii0fZN92T8iGy1E1nLXDCdkw1slGDWp8Rk5z3rH6Rsk35OdnD3kBWhJCWTAUGi3Nq7ewYPke7-AheqQmhgKLC1Bwprf1T2_pVahjwdnVle5TnFdT8mta4p2rfe4p5Iw5_46EMNP9oWFx4Cl8S86svqypLgnXjM_JUws-44s_84x8fX_55eJjc_3pw9XF-XVjhOSlGSdhkfFJTAj90DG0Xdcb21kUXLJhbKfOjK3opQQOViqwOGA3cDBMGIuTOCOvjrm17o8Vc9GLywa9h4BxzVrwXgxKtYo9Km2l4mPPOVNVOh6lJsWcE1q9T26BdK850wdEeqf_ItIHRPqIqDrf_eOsMiiuXjuB8__hPz_6sR7txmE66DCYCiWhKXqO7tGMX0MHulU |
| CitedBy_id | crossref_primary_10_1016_j_envres_2024_119647 crossref_primary_10_3390_plants14091277 crossref_primary_10_1016_j_bej_2024_109484 crossref_primary_10_1016_j_jenvman_2024_122512 crossref_primary_10_1016_j_dwt_2024_100600 crossref_primary_10_1002_slct_202500680 crossref_primary_10_1016_j_scitotenv_2024_177320 crossref_primary_10_1007_s11090_025_10561_4 crossref_primary_10_1016_j_jece_2025_118506 crossref_primary_10_1016_j_seppur_2024_128464 crossref_primary_10_1016_j_cogsc_2025_100999 crossref_primary_10_1016_j_jhazmat_2024_133558 crossref_primary_10_1016_j_seppur_2024_130381 crossref_primary_10_3389_fenvc_2024_1416702 crossref_primary_10_1016_j_jenvman_2024_122574 crossref_primary_10_1016_j_jece_2025_116150 |
| Cites_doi | 10.1016/j.chemosphere.2020.127351 10.1002/ppap.201700201 10.1007/s10311-021-01379-5 10.3389/fmicb.2012.00018 10.1016/j.watres.2016.04.001 10.1016/j.chemosphere.2020.126351 10.1088/1361-6463/ab795a 10.1016/j.seppur.2022.121608 10.1016/j.chroma.2010.02.049 10.1016/S0926-3373(97)00059-3 10.1016/j.watres.2021.117200 10.1016/j.cej.2015.02.073 10.1039/D0NJ00520G 10.1016/j.ultsonch.2014.07.008 10.1021/acs.joc.2c00321 10.1021/jp111129t 10.1016/j.cplett.2015.10.005 10.1016/j.chemosphere.2016.09.073 10.1016/j.chemosphere.2019.07.033 10.1002/jsfa.870 10.1016/j.chemosphere.2018.12.156 10.1016/j.watres.2007.02.026 10.1016/j.watres.2017.12.046 10.1016/j.jece.2018.07.047 10.1021/es801611a 10.1007/s11783-020-1368-0 10.3389/fchem.2017.00021 10.1016/j.jhazmat.2021.125481 10.1016/j.synthmet.2008.01.005 10.1289/ehp.8564209 10.1080/21622515.2014.990935 10.1002/jms.1777 10.1016/j.watres.2022.118128 10.1016/j.cej.2021.133916 10.1039/C5RA25994K 10.1016/j.seppur.2022.120540 10.3390/catal11060728 10.1016/j.seppur.2021.118665 10.1016/j.jhazmat.2017.04.050 10.1007/s11356-014-2964-y 10.1016/j.jphotochem.2018.07.007 10.1088/0963-0252/25/5/053002 10.1016/j.watres.2009.04.006 10.1016/j.cej.2016.12.080 10.3390/catal11121548 10.1021/acs.est.0c05644 10.1016/j.jhazmat.2014.04.024 10.1016/j.tifs.2018.05.007 |
| ContentType | Journal Article |
| Copyright | 2023 Copyright © 2023. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier B.V. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2023.168524 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 10_1016_j_scitotenv_2023_168524 S0048969723071528 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c381t-7b3fe01b3bea5640ef445cf4fe3180672b4c723588a1af89afe6e461ac03cfeb3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119137800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Thu Oct 02 22:53:51 EDT 2025 Sat Sep 27 21:36:39 EDT 2025 Tue Nov 18 22:08:19 EST 2025 Sat Nov 29 07:27:12 EST 2025 Sun Apr 06 06:54:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Advanced oxidation processes Water treatment Non-thermal plasma Sulfamethoxazole Phytotoxicity Water reuse |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-7b3fe01b3bea5640ef445cf4fe3180672b4c723588a1af89afe6e461ac03cfeb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2891751109 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153699290 proquest_miscellaneous_2891751109 crossref_primary_10_1016_j_scitotenv_2023_168524 crossref_citationtrail_10_1016_j_scitotenv_2023_168524 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_168524 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-20 |
| PublicationDateYYYYMMDD | 2024-01-20 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Magureanu, Dobrin, Bradu, Gherendi, Mandache, Parvulescu (bb0160) 2016; 165 Gorelova, Ambach, Rébeillé, Stove, Van Der Straeten (bb0070) 2017; 5 Bradu, Magureanu, Parvulescu (bb0015) 2017; 336 Kim, Kim, Cha, Yu (bb0120) 2017; 313 Kim, Kam, Mok (bb0125) 2015; 271 Yin, Guo, Zhou, Zheng, Du, Wu, Chang, Ren (bb0255) 2016; 6 Du, Guo, Wang, Yin, Zheng, Feng, Che, Ren (bb0050) 2018; 138 Kutuzova, Dontsova, Kwapinski (bb0140) 2021; 11 Hong, Wang, Lu (bb0100) 2020; 258 Massima Mouele, Myint Myo, Kyaw, Tijani, Dinu, Parau, Pana, El Ouardi, Al-Sabahi, Al-Belushi, Sosnin, Tarasenko, Zhang, Shao, Iordache, Teodor, Laatikainen, Vladescu, Al-Abri, Sarbu, Braic, Braic, Dobretsov, Petrik (bb0180) 2022; 5 Gao, Zhao, Xu, Tian, Qi, Lin, Cui (bb0060) 2014; 274 Lima, Fajardo, Nogueira, Pereira, Oliveira, de Mesquita, Silva (bb0145) 2020; 44 U.S. EPA (bb0230) 2012 Brillas, Mur, Sauleda, Sànchez, Peral, Domènech, Casado (bb0030) 1998; 16 Zhang, Zhou, Li, Liu, Li, Xue, Miruka, Zheng, Liu (bb0260) 2022; 212 Brain, Ramirez, Fulton, Chambliss, Brooks (bb0025) 2008; 42 Back, Obholzer, Winkler, Jabornig, Rupprich (bb0005) 2018; 6 National Institute of Standards and Technology, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg MD, n.d. doi Marjanović, Juranić, Ćirić-Marjanović (bb0175) 2011; 115 Magureanu, Mandache, Bradu, Parvulescu (bb0165) 2018 . von Sonntag, von Gunten (bb0240) 2012 Bruggeman, Kushner, Locke, Gardeniers, Graham, Graves, Hofman-Caris, Maric, Reid, Ceriani, Fernandez Rivas, Foster, Garrick, Gorbanev, Hamaguchi, Iza, Jablonowski, Klimova, Kolb, Krcma, Lukes, MacHala, Marinov, Mariotti, Mededovic Thagard, Minakata, Neyts, Pawlat, Petrovic, Pflieger, Reuter, Schram, Schröter, Shiraiwa, Tarabová, Tsai, Verlet, Von Woedtke, Wilson, Yasui, Zvereva (bb0035) 2016; 25 Ray, Dhakal, Lee (bb0200) 2018; 364 Thirumdas, Kothakota, Annapure, Siliveru, Blundell, Gatt, Valdramidis (bb0220) 2018; 77 Wojnárovits, Takács (bb0250) 2019; 220 Szczepanik, Słomkiewicz, Wideł, Czaplicka, Frydel (bb0210) 2021; 11 Huang, Liu, Grassian (bb0115) 2020; 54 Liu, Su, Tian, Li, Yuan (bb0150) 2021; 15 Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bb0135) 2020; 251 Han, Gu, Li, Qi, Liang (bb0085) 2022; 87 Hu, Flanders, Miller, Strathmann (bb0110) 2007; 41 Bradu, Kutasi, Magureanu, Puač, Živković (bb0020) 2020; 53 Gulde, Rutsch, Clerc, Schollée, von Gunten, McArdell (bb0075) 2021; 200 Tekle-Röttering, von Sonntag, Reisz, vom Eyser, Lutze, Türk, Naumov, Schmidt, Schmidt (bb0215) 2016; 98 Kohantorabi, Moussavi, Oulego, Giannakis (bb0130) 2021; 267 Shang, Morent, Wang, Wang, Peng, Jiang, Lu, Li (bb0205) 2022; 431 Gambonnet, Jabrin, Ravanel, Karan, Douce, Rébeillé (bb0055) 2001; 81 Gómez-Ramos, Mezcua, Agüera, Fernández-Alba, Gonzalo, Rodríguez, Rosal (bb0065) 2011; 192 Neta, Huie (bb0195) 1985; 64 Wang, Huang, Guo, Puyang, Han, Li, Ruan (bb0245) 2022; 287 Hijosa-Valsero, Molina, Montràs, Müller, Bayona (bb0090) 2014; 3 Zhang, Xiao, Du, Song, Hu, Huang, Wang, Wu (bb0265) 2022; 298 Horai, Arita, Kanaya, Nihei, Ikeda, Suwa, Ojima, Tanaka, Tanaka, Aoshima, Oda, Kakazu, Kusano, Tohge, Matsuda, Sawada, Hirai, Nakanishi, Ikeda, Akimoto, Maoka, Takahashi, Ara, Sakurai, Suzuki, Shibata, Neumann, Iida, Tanaka, Funatsu, Matsuura, Soga, Taguchi, Saito, Nishioka (bb0105) 2010; 45 Morin-Crini, Lichtfouse, Fourmentin, Ribeiro, Noutsopoulos, Mapelli, Fenyvesi, Vieira, Picos-Corrales, Moreno-Piraján, Giraldo, Sohajda, Huq, Soltan, Torri, Magureanu, Bradu, Crini (bb0185) 2022; 20 Holčapek, Jirásko, Lísa (bb0095) 2010; 1217 Ćirić-Marjanović, Konyushenko, Trchová, Stejskal (bb0040) 2008; 158 Lupo, Coyne, Berendonk (bb0155) 2012; 3 Dobrin, Magureanu, Bradu, Mandache, Ionita, Parvulescu (bb0045) 2014; 21 Magureanu, Bilea, Bradu, Hong (bb0170) 2021; 417 Trovó, Nogueira, Agüera, Fernandez-Alba, Sirtori, Malato (bb0225) 2009; 43 Valdés, Alzate-Morales, Osorio, Villaseñor, Navarro-Retamal (bb0235) 2015; 640 Guo, Yin, Zhou, Du, Cao, Yang, Ren (bb0080) 2015; 22 Bilea, Bradu, Mandache, Magureanu (bb0010) 2019; 236 Brillas (10.1016/j.scitotenv.2023.168524_bb0030) 1998; 16 Hu (10.1016/j.scitotenv.2023.168524_bb0110) 2007; 41 Morin-Crini (10.1016/j.scitotenv.2023.168524_bb0185) 2022; 20 Thirumdas (10.1016/j.scitotenv.2023.168524_bb0220) 2018; 77 Gómez-Ramos (10.1016/j.scitotenv.2023.168524_bb0065) 2011; 192 Du (10.1016/j.scitotenv.2023.168524_bb0050) 2018; 138 Bradu (10.1016/j.scitotenv.2023.168524_bb0015) 2017; 336 Marjanović (10.1016/j.scitotenv.2023.168524_bb0175) 2011; 115 Brain (10.1016/j.scitotenv.2023.168524_bb0025) 2008; 42 Guo (10.1016/j.scitotenv.2023.168524_bb0080) 2015; 22 Zhang (10.1016/j.scitotenv.2023.168524_bb0260) 2022; 212 Bruggeman (10.1016/j.scitotenv.2023.168524_bb0035) 2016; 25 Ray (10.1016/j.scitotenv.2023.168524_bb0200) 2018; 364 Gao (10.1016/j.scitotenv.2023.168524_bb0060) 2014; 274 Hong (10.1016/j.scitotenv.2023.168524_bb0100) 2020; 258 Huang (10.1016/j.scitotenv.2023.168524_bb0115) 2020; 54 Horai (10.1016/j.scitotenv.2023.168524_bb0105) 2010; 45 Lupo (10.1016/j.scitotenv.2023.168524_bb0155) 2012; 3 Shang (10.1016/j.scitotenv.2023.168524_bb0205) 2022; 431 U.S. EPA (10.1016/j.scitotenv.2023.168524_bb0230) Yin (10.1016/j.scitotenv.2023.168524_bb0255) 2016; 6 Valdés (10.1016/j.scitotenv.2023.168524_bb0235) 2015; 640 Ćirić-Marjanović (10.1016/j.scitotenv.2023.168524_bb0040) 2008; 158 Hijosa-Valsero (10.1016/j.scitotenv.2023.168524_bb0090) 2014; 3 Holčapek (10.1016/j.scitotenv.2023.168524_bb0095) 2010; 1217 Kutuzova (10.1016/j.scitotenv.2023.168524_bb0140) 2021; 11 Zhang (10.1016/j.scitotenv.2023.168524_bb0265) 2022; 298 Trovó (10.1016/j.scitotenv.2023.168524_bb0225) 2009; 43 Szczepanik (10.1016/j.scitotenv.2023.168524_bb0210) 2021; 11 Back (10.1016/j.scitotenv.2023.168524_bb0005) 2018; 6 Massima Mouele (10.1016/j.scitotenv.2023.168524_bb0180) 2022; 5 Bilea (10.1016/j.scitotenv.2023.168524_bb0010) 2019; 236 Kovalakova (10.1016/j.scitotenv.2023.168524_bb0135) 2020; 251 Neta (10.1016/j.scitotenv.2023.168524_bb0195) 1985; 64 Kim (10.1016/j.scitotenv.2023.168524_bb0125) 2015; 271 Magureanu (10.1016/j.scitotenv.2023.168524_bb0160) 2016; 165 Liu (10.1016/j.scitotenv.2023.168524_bb0150) 2021; 15 Gambonnet (10.1016/j.scitotenv.2023.168524_bb0055) 2001; 81 Wang (10.1016/j.scitotenv.2023.168524_bb0245) 2022; 287 Lima (10.1016/j.scitotenv.2023.168524_bb0145) 2020; 44 von Sonntag (10.1016/j.scitotenv.2023.168524_bb0240) 2012 Magureanu (10.1016/j.scitotenv.2023.168524_bb0170) 2021; 417 Dobrin (10.1016/j.scitotenv.2023.168524_bb0045) 2014; 21 Magureanu (10.1016/j.scitotenv.2023.168524_bb0165) 2018 Bradu (10.1016/j.scitotenv.2023.168524_bb0020) 2020; 53 Han (10.1016/j.scitotenv.2023.168524_bb0085) 2022; 87 10.1016/j.scitotenv.2023.168524_bb0190 Kim (10.1016/j.scitotenv.2023.168524_bb0120) 2017; 313 Tekle-Röttering (10.1016/j.scitotenv.2023.168524_bb0215) 2016; 98 Wojnárovits (10.1016/j.scitotenv.2023.168524_bb0250) 2019; 220 Kohantorabi (10.1016/j.scitotenv.2023.168524_bb0130) 2021; 267 Gulde (10.1016/j.scitotenv.2023.168524_bb0075) 2021; 200 Gorelova (10.1016/j.scitotenv.2023.168524_bb0070) 2017; 5 |
| References_xml | – volume: 21 start-page: 12190 year: 2014 end-page: 12197 ident: bb0045 article-title: Degradation of methylparaben in water by corona plasma coupled with ozonation publication-title: Environ. Sci. Pollut. Res. – volume: 44 start-page: 8710 year: 2020 end-page: 8717 ident: bb0145 article-title: Selective oxidation of aniline into azoxybenzene catalyzed by Nb-peroxo@iron oxides at room temperature publication-title: New J. Chem. – volume: 258 year: 2020 ident: bb0100 article-title: UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix publication-title: Chemosphere – volume: 77 start-page: 21 year: 2018 end-page: 31 ident: bb0220 article-title: Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture publication-title: Trends Food Sci. Technol. – year: 2012 ident: bb0230 article-title: Methodology Document for the ECOlogical Structure-activity Relationship Model (ECOSAR) Class Program – volume: 267 start-page: 1 year: 2021 end-page: 46 ident: bb0130 article-title: Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis, driven by magnetically separable Fe3O4@CeO2@BiOI nanospheres publication-title: Sep. Purif. Technol. – volume: 274 start-page: 258 year: 2014 end-page: 269 ident: bb0060 article-title: Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-a comparative study publication-title: J. Hazard. Mater. – volume: 287 year: 2022 ident: bb0245 article-title: Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma publication-title: Sep. Purif. Technol. – volume: 212 year: 2022 ident: bb0260 article-title: Motivation of reactive oxygen and nitrogen species by a novel non-thermal plasma coupled with calcium peroxide system for synergistic removal of sulfamethoxazole in waste activated sludge publication-title: Water Res. – volume: 3 start-page: 71 year: 2014 end-page: 91 ident: bb0090 article-title: Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review publication-title: Environ. Technol.Rev. – volume: 313 start-page: 556 year: 2017 end-page: 566 ident: bb0120 article-title: Degradation of sulfamethoxazole by ionizing radiation: identification and characterization of radiolytic products publication-title: Chem. Eng. J. – volume: 298 year: 2022 ident: bb0265 article-title: Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect publication-title: Sep. Purif. Technol. – volume: 98 start-page: 147 year: 2016 end-page: 159 ident: bb0215 article-title: Ozonation of anilines: kinetics, stoichiometry, product identification and elucidation of pathways publication-title: Water Res. – volume: 417 year: 2021 ident: bb0170 article-title: A review on non-thermal plasma treatment of water contaminated with antibiotics publication-title: J. Hazard. Mater. – volume: 138 start-page: 323 year: 2018 end-page: 332 ident: bb0050 article-title: Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways publication-title: Water Res. – volume: 11 year: 2021 ident: bb0140 article-title: Application of tio2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin publication-title: Catalysts – volume: 3 year: 2012 ident: bb0155 article-title: Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies publication-title: Front. Microbiol. – volume: 165 start-page: 507 year: 2016 end-page: 514 ident: bb0160 article-title: New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds publication-title: Chemosphere – volume: 54 start-page: 11857 year: 2020 end-page: 11864 ident: bb0115 article-title: Radical-initiated formation of aromatic organosulfates and sulfonates in the aqueous phase publication-title: Environ. Sci. Technol. – volume: 236 year: 2019 ident: bb0010 article-title: Characterization of the chemical activity of a pulsed corona discharge above water publication-title: Chemosphere – volume: 115 start-page: 3536 year: 2011 end-page: 3550 ident: bb0175 article-title: Revised mechanism of Boyland−Sims oxidation publication-title: J. Phys. Chem. A – volume: 11 start-page: 1 year: 2021 end-page: 16 ident: bb0210 article-title: Kinetics and mechanism of aniline and chloroanilines degradation photocatalyzed by halloysite-tio2 and halloysite-fe2o3 nanocomposites publication-title: Catalysts – volume: 87 start-page: 7124 year: 2022 end-page: 7135 ident: bb0085 article-title: Homolytic aromatic Sulfonation with K 2 S 2 O 5 promoted by a combination of Mn(OAc) 3 ·2H 2 O and HFIP publication-title: J. Organomet. Chem. – volume: 5 year: 2022 ident: bb0180 article-title: Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/C-N-TiO2 supported nanocatalyst publication-title: J. Hazard Mater. Adv. – reference: National Institute of Standards and Technology, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg MD, n.d. doi: – volume: 271 start-page: 31 year: 2015 end-page: 42 ident: bb0125 article-title: Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system publication-title: Chem. Eng. J. – volume: 25 year: 2016 ident: bb0035 article-title: Plasma-liquid interactions: a review and roadmap publication-title: Plasma Sources Sci. Technol. – volume: 251 year: 2020 ident: bb0135 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere – volume: 64 start-page: 209 year: 1985 end-page: 217 ident: bb0195 article-title: Free-radical chemistry of sulfite publication-title: Environ. Health Perspect. – volume: 45 start-page: 703 year: 2010 end-page: 714 ident: bb0105 article-title: MassBank: a public repository for sharing mass spectral data for life sciences publication-title: J. Mass Spectrom. – volume: 220 start-page: 1014 year: 2019 end-page: 1032 ident: bb0250 article-title: Rate constants of sulfate radical anion reactions with organic molecules: a review publication-title: Chemosphere – volume: 640 start-page: 16 year: 2015 end-page: 22 ident: bb0235 article-title: A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction publication-title: Chem. Phys. Lett. – volume: 42 start-page: 8965 year: 2008 end-page: 8970 ident: bb0025 article-title: Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect publication-title: Environ. Sci. Technol. – volume: 43 start-page: 3922 year: 2009 end-page: 3931 ident: bb0225 article-title: Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation publication-title: Water Res. – year: 2018 ident: bb0165 article-title: High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen publication-title: Plasma Process. Polym. – volume: 6 start-page: 7377 year: 2018 end-page: 7385 ident: bb0005 article-title: Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater publication-title: J. Environ. Chem. Eng. – volume: 5 year: 2017 ident: bb0070 article-title: Folates in plants: research advances and progress in crop biofortification publication-title: Front. Chem. – volume: 192 start-page: 18 year: 2011 end-page: 25 ident: bb0065 article-title: Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution publication-title: J. Hazard. Mater. – volume: 22 start-page: 182 year: 2015 end-page: 187 ident: bb0080 article-title: Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways publication-title: Ultrason. Sonochem. – volume: 1217 start-page: 3908 year: 2010 end-page: 3921 ident: bb0095 article-title: Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules publication-title: J. Chromatogr. A – volume: 431 year: 2022 ident: bb0205 article-title: Degradation of sulfamethoxazole (SMX) by water falling film DBD plasma/persulfate: reactive species identification and their role in SMX degradation publication-title: Chem. Eng. J. – year: 2012 ident: bb0240 article-title: Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications – volume: 364 start-page: 686 year: 2018 end-page: 695 ident: bb0200 article-title: Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst publication-title: J. Photochem. Photobiol. A Chem. – volume: 158 start-page: 200 year: 2008 end-page: 211 ident: bb0040 article-title: Chemical oxidative polymerization of anilinium sulfate versus aniline: theory and experiment publication-title: Synth. Met. – volume: 15 start-page: 1 year: 2021 end-page: 12 ident: bb0150 article-title: Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant publication-title: Front. Environ. Sci. Eng. – volume: 53 year: 2020 ident: bb0020 article-title: Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture publication-title: J. Phys. D. Appl. Phys. – reference: . – volume: 336 start-page: 52 year: 2017 end-page: 56 ident: bb0015 article-title: Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system publication-title: J. Hazard. Mater. – volume: 41 start-page: 2612 year: 2007 end-page: 2626 ident: bb0110 article-title: Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis publication-title: Water Res. – volume: 16 start-page: 31 year: 1998 end-page: 42 ident: bb0030 article-title: Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes publication-title: Appl Catal B – volume: 81 start-page: 835 year: 2001 end-page: 841 ident: bb0055 article-title: Folate distribution during higher plant development publication-title: J. Sci. Food Agric. – volume: 200 year: 2021 ident: bb0075 article-title: Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: from laboratory- to full-scale publication-title: Water Res. – volume: 6 start-page: 19265 year: 2016 end-page: 19270 ident: bb0255 article-title: Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: catalytic performance and degradation mechanism publication-title: RSC Adv. – volume: 20 start-page: 1333 year: 2022 end-page: 1375 ident: bb0185 article-title: Removal of emerging contaminants from wastewater using advanced treatments. A review publication-title: Environ. Chem. Lett. – volume: 258 year: 2020 ident: 10.1016/j.scitotenv.2023.168524_bb0100 article-title: UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127351 – year: 2018 ident: 10.1016/j.scitotenv.2023.168524_bb0165 article-title: High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201700201 – volume: 20 start-page: 1333 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0185 article-title: Removal of emerging contaminants from wastewater using advanced treatments. A review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-021-01379-5 – volume: 3 year: 2012 ident: 10.1016/j.scitotenv.2023.168524_bb0155 article-title: Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00018 – volume: 98 start-page: 147 year: 2016 ident: 10.1016/j.scitotenv.2023.168524_bb0215 article-title: Ozonation of anilines: kinetics, stoichiometry, product identification and elucidation of pathways publication-title: Water Res. doi: 10.1016/j.watres.2016.04.001 – volume: 192 start-page: 18 year: 2011 ident: 10.1016/j.scitotenv.2023.168524_bb0065 article-title: Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution publication-title: J. Hazard. Mater. – volume: 251 year: 2020 ident: 10.1016/j.scitotenv.2023.168524_bb0135 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126351 – volume: 53 year: 2020 ident: 10.1016/j.scitotenv.2023.168524_bb0020 article-title: Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/ab795a – volume: 298 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0265 article-title: Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121608 – volume: 1217 start-page: 3908 year: 2010 ident: 10.1016/j.scitotenv.2023.168524_bb0095 article-title: Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2010.02.049 – volume: 16 start-page: 31 year: 1998 ident: 10.1016/j.scitotenv.2023.168524_bb0030 article-title: Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes publication-title: Appl Catal B doi: 10.1016/S0926-3373(97)00059-3 – volume: 200 year: 2021 ident: 10.1016/j.scitotenv.2023.168524_bb0075 article-title: Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: from laboratory- to full-scale publication-title: Water Res. doi: 10.1016/j.watres.2021.117200 – volume: 271 start-page: 31 year: 2015 ident: 10.1016/j.scitotenv.2023.168524_bb0125 article-title: Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.073 – volume: 44 start-page: 8710 year: 2020 ident: 10.1016/j.scitotenv.2023.168524_bb0145 article-title: Selective oxidation of aniline into azoxybenzene catalyzed by Nb-peroxo@iron oxides at room temperature publication-title: New J. Chem. doi: 10.1039/D0NJ00520G – volume: 22 start-page: 182 year: 2015 ident: 10.1016/j.scitotenv.2023.168524_bb0080 article-title: Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.07.008 – volume: 87 start-page: 7124 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0085 article-title: Homolytic aromatic Sulfonation with K 2 S 2 O 5 promoted by a combination of Mn(OAc) 3 ·2H 2 O and HFIP publication-title: J. Organomet. Chem. doi: 10.1021/acs.joc.2c00321 – ident: 10.1016/j.scitotenv.2023.168524_bb0190 – volume: 115 start-page: 3536 year: 2011 ident: 10.1016/j.scitotenv.2023.168524_bb0175 article-title: Revised mechanism of Boyland−Sims oxidation publication-title: J. Phys. Chem. A doi: 10.1021/jp111129t – volume: 640 start-page: 16 year: 2015 ident: 10.1016/j.scitotenv.2023.168524_bb0235 article-title: A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2015.10.005 – volume: 165 start-page: 507 year: 2016 ident: 10.1016/j.scitotenv.2023.168524_bb0160 article-title: New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.073 – volume: 236 year: 2019 ident: 10.1016/j.scitotenv.2023.168524_bb0010 article-title: Characterization of the chemical activity of a pulsed corona discharge above water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.07.033 – volume: 81 start-page: 835 year: 2001 ident: 10.1016/j.scitotenv.2023.168524_bb0055 article-title: Folate distribution during higher plant development publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.870 – volume: 220 start-page: 1014 year: 2019 ident: 10.1016/j.scitotenv.2023.168524_bb0250 article-title: Rate constants of sulfate radical anion reactions with organic molecules: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.156 – volume: 41 start-page: 2612 year: 2007 ident: 10.1016/j.scitotenv.2023.168524_bb0110 article-title: Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis publication-title: Water Res. doi: 10.1016/j.watres.2007.02.026 – volume: 138 start-page: 323 year: 2018 ident: 10.1016/j.scitotenv.2023.168524_bb0050 article-title: Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways publication-title: Water Res. doi: 10.1016/j.watres.2017.12.046 – year: 2012 ident: 10.1016/j.scitotenv.2023.168524_bb0240 – volume: 6 start-page: 7377 year: 2018 ident: 10.1016/j.scitotenv.2023.168524_bb0005 article-title: Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.07.047 – volume: 42 start-page: 8965 year: 2008 ident: 10.1016/j.scitotenv.2023.168524_bb0025 article-title: Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect publication-title: Environ. Sci. Technol. doi: 10.1021/es801611a – volume: 15 start-page: 1 year: 2021 ident: 10.1016/j.scitotenv.2023.168524_bb0150 article-title: Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-020-1368-0 – ident: 10.1016/j.scitotenv.2023.168524_bb0230 – volume: 5 year: 2017 ident: 10.1016/j.scitotenv.2023.168524_bb0070 article-title: Folates in plants: research advances and progress in crop biofortification publication-title: Front. Chem. doi: 10.3389/fchem.2017.00021 – volume: 417 year: 2021 ident: 10.1016/j.scitotenv.2023.168524_bb0170 article-title: A review on non-thermal plasma treatment of water contaminated with antibiotics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125481 – volume: 158 start-page: 200 year: 2008 ident: 10.1016/j.scitotenv.2023.168524_bb0040 article-title: Chemical oxidative polymerization of anilinium sulfate versus aniline: theory and experiment publication-title: Synth. Met. doi: 10.1016/j.synthmet.2008.01.005 – volume: 64 start-page: 209 year: 1985 ident: 10.1016/j.scitotenv.2023.168524_bb0195 article-title: Free-radical chemistry of sulfite publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8564209 – volume: 3 start-page: 71 year: 2014 ident: 10.1016/j.scitotenv.2023.168524_bb0090 article-title: Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review publication-title: Environ. Technol.Rev. doi: 10.1080/21622515.2014.990935 – volume: 5 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0180 article-title: Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/C-N-TiO2 supported nanocatalyst publication-title: J. Hazard Mater. Adv. – volume: 45 start-page: 703 year: 2010 ident: 10.1016/j.scitotenv.2023.168524_bb0105 article-title: MassBank: a public repository for sharing mass spectral data for life sciences publication-title: J. Mass Spectrom. doi: 10.1002/jms.1777 – volume: 212 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0260 article-title: Motivation of reactive oxygen and nitrogen species by a novel non-thermal plasma coupled with calcium peroxide system for synergistic removal of sulfamethoxazole in waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2022.118128 – volume: 431 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0205 article-title: Degradation of sulfamethoxazole (SMX) by water falling film DBD plasma/persulfate: reactive species identification and their role in SMX degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133916 – volume: 6 start-page: 19265 year: 2016 ident: 10.1016/j.scitotenv.2023.168524_bb0255 article-title: Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: catalytic performance and degradation mechanism publication-title: RSC Adv. doi: 10.1039/C5RA25994K – volume: 287 year: 2022 ident: 10.1016/j.scitotenv.2023.168524_bb0245 article-title: Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120540 – volume: 11 year: 2021 ident: 10.1016/j.scitotenv.2023.168524_bb0140 article-title: Application of tio2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin publication-title: Catalysts doi: 10.3390/catal11060728 – volume: 267 start-page: 1 year: 2021 ident: 10.1016/j.scitotenv.2023.168524_bb0130 article-title: Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis, driven by magnetically separable Fe3O4@CeO2@BiOI nanospheres publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118665 – volume: 336 start-page: 52 year: 2017 ident: 10.1016/j.scitotenv.2023.168524_bb0015 article-title: Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.04.050 – volume: 21 start-page: 12190 year: 2014 ident: 10.1016/j.scitotenv.2023.168524_bb0045 article-title: Degradation of methylparaben in water by corona plasma coupled with ozonation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-2964-y – volume: 364 start-page: 686 year: 2018 ident: 10.1016/j.scitotenv.2023.168524_bb0200 article-title: Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2018.07.007 – volume: 25 year: 2016 ident: 10.1016/j.scitotenv.2023.168524_bb0035 article-title: Plasma-liquid interactions: a review and roadmap publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/25/5/053002 – volume: 43 start-page: 3922 year: 2009 ident: 10.1016/j.scitotenv.2023.168524_bb0225 article-title: Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation publication-title: Water Res. doi: 10.1016/j.watres.2009.04.006 – volume: 313 start-page: 556 year: 2017 ident: 10.1016/j.scitotenv.2023.168524_bb0120 article-title: Degradation of sulfamethoxazole by ionizing radiation: identification and characterization of radiolytic products publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.080 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.scitotenv.2023.168524_bb0210 article-title: Kinetics and mechanism of aniline and chloroanilines degradation photocatalyzed by halloysite-tio2 and halloysite-fe2o3 nanocomposites publication-title: Catalysts doi: 10.3390/catal11121548 – volume: 54 start-page: 11857 year: 2020 ident: 10.1016/j.scitotenv.2023.168524_bb0115 article-title: Radical-initiated formation of aromatic organosulfates and sulfonates in the aqueous phase publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05644 – volume: 274 start-page: 258 year: 2014 ident: 10.1016/j.scitotenv.2023.168524_bb0060 article-title: Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-a comparative study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.04.024 – volume: 77 start-page: 21 year: 2018 ident: 10.1016/j.scitotenv.2023.168524_bb0220 article-title: Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2018.05.007 |
| SSID | ssj0000781 |
| Score | 2.5176504 |
| Snippet | The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 168524 |
| SubjectTerms | Advanced oxidation processes antibiotics energy environment folic acid hydroxylation Non-thermal plasma ozone Phytotoxicity pollutants species Sulfamethoxazole wastewater wastewater treatment water pollution Water reuse Water treatment water utilization |
| Title | Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2023.168524 https://www.proquest.com/docview/2891751109 https://www.proquest.com/docview/3153699290 |
| Volume | 909 |
| WOSCitedRecordID | wos001119137800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSFiQkhCBQ0QKVkbjBRvt-9BahVICg6qFUua28jl2lCrtVshtSzvw7_hQztveRQBV64LKKrLW12fnW_jz-ZoaQNx7677kXWJPM9zCptmPFnp9YPAp4EDsycFT5tovP0elpPB4nZ73erzoWZjmL8jxerZLr_2pqaANjY-jsHczdDAoN8BuMDlcwO1z_yfBnwIe_sY6CHOjgoppJpopFr9gP1BOiQp2hCgYJ53eGJ-beULsHVSxJifFTKhessnNZrKYc-TprEnnqDANFiWojzDdwOW-zeMxFtViTGCEY61nEiBLKAsMwO3F2rbt-JhSjPVHiwO6hf6Xcutja6ovguWBtMWFH06rZInwRk6WYFDARThvh5vTtBcNV1oxqnB0uCmQs1-5O4D7Mz6GW9NYTeGInnSnYCeNAh2X_sTpoR8XVAMhFie9nOcDi8YO2x3o-7o11slEv1sK4q7QZKMWBUj3QDtlzoyCBVWJv-HE0_tQSgyjWBRzNf1iTG_71mW4jSxu0QXGh88fkkdnE0KEG3xPSE3mf3NdlTW_6ZH_UWhVuM4Zf9MlD7SSmOvbtKfmpsUobrNJC0k2s0i5WqcLqMe0ildZIfUdrnNIWpxRwShuc0i5OqcLpM_L1ZHT-_oNlyoJYHOhlaUWZJ4XtZF4mWBD6tpC-H3DpS3Tno7Ig83mEEeAxc5iMEyZFKPzQYdz2uBSZt0928yIXzwnNHDuZMA8GyJgvfJtx7vJAhq6YBDZQ9wMS1u8_5SZnPpZumaVbMHBA7KbjtU4bs73LcW3g1LBfzWpTgO_2zq9rSKSwPuChH8tFUS1SN05gh4B5hW-_xwPaEyawUbIP7_7cL8iD9kt9SXbLeSVekXt8WU4X8yOyE43jI_Ml_AbnAvn1 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+treatment+of+sulfamethoxazole+contaminated+water%3A+Intermediate+products%2C+toxicity+assessment+and+potential+agricultural+reuse&rft.jtitle=The+Science+of+the+total+environment&rft.au=Bilea%2C+Florin&rft.au=Bradu%2C+Corina&rft.au=Cicirma%2C+Marius&rft.au=Medvedovici%2C+Andrei+Valentin&rft.date=2024-01-20&rft.issn=0048-9697&rft.volume=909&rft.spage=168524&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.168524&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2023_168524 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |