Dual-Masked Autoencoders: Application to Multi-labeled Pediatric Thoracic Diseases
Pediatric thoracic diseases present significant health risks to children. While chest X-rays are commonly used for diagnosing thoracic diseases, interpreting pediatric images comes with unique challenges such as anatomical variations, developmental differences, and potential artifacts. Deep learning...
Saved in:
| Published in: | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.01.2024
|
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Pediatric thoracic diseases present significant health risks to children. While chest X-rays are commonly used for diagnosing thoracic diseases, interpreting pediatric images comes with unique challenges such as anatomical variations, developmental differences, and potential artifacts. Deep learning offers promise in addressing these challenges, yet its effectiveness is hindered by the limited availability of pediatric chest X-ray data. To overcome this limitation, we introduce the dual-masked autoencoders (dual-MAE) algorithm, consisting of online and target networks with encoder and decoder modules. These networks are optimized by minimizing three losses: between the reconstructed image of the online network and the target network, between the input image and the reconstructed image of the online network, and between the input image and the reconstructed image of the target network. To learn efficiently from pediatric chest X-rays, we employ a two-step training strategy: pretraining the dual-MAE model on adult chest X-rays, then fine-tuning it on pediatric X-rays for diagnosing multi-labeled pediatric thoracic diseases. The proposed model exhibited superior performance with the highest mean AUC score (0.752), surpassing the ResNet-34 (0.669) and ViT-S (0.645) trained from scratch. Additionally, the dual-MAE model outperformed the ResNet-34 (0.697) and ViT-S (0.638), both pretrained on the ImageNet dataset and then fine-tuned on pediatric chest X-rays. Despite being pretrained on a significantly smaller number of X-rays compared to the ImageNet dataset, our model demonstrated better performance. Furthermore, it outperformed the ResNet-34 (0.712), ViT-S (0.673), and vanilla MAE method (0.735), all pretrained on adult chest X-rays and fine-tuned on pediatric chest X-rays. Even with only 50% of labeled pediatric chest X-ray images, dual-MAE demonstrated comparable performance to that of the vanilla MAE method and outperformed ResNet-34 and ViT-S fine-tuned with 100% labeled pediatric chest X-ray images. |
|---|---|
| AbstractList | Pediatric thoracic diseases present significant health risks to children. While chest X-rays are commonly used for diagnosing thoracic diseases, interpreting pediatric images comes with unique challenges such as anatomical variations, developmental differences, and potential artifacts. Deep learning offers promise in addressing these challenges, yet its effectiveness is hindered by the limited availability of pediatric chest X-ray data. To overcome this limitation, we introduce the dual-masked autoencoders (dual-MAE) algorithm, consisting of online and target networks with encoder and decoder modules. These networks are optimized by minimizing three losses: between the reconstructed image of the online network and the target network, between the input image and the reconstructed image of the online network, and between the input image and the reconstructed image of the target network. To learn efficiently from pediatric chest X-rays, we employ a two-step training strategy: pretraining the dual-MAE model on adult chest X-rays, then fine-tuning it on pediatric X-rays for diagnosing multi-labeled pediatric thoracic diseases. The proposed model exhibited superior performance with the highest mean AUC score (0.752), surpassing the ResNet-34 (0.669) and ViT-S (0.645) trained from scratch. Additionally, the dual-MAE model outperformed the ResNet-34 (0.697) and ViT-S (0.638), both pretrained on the ImageNet dataset and then fine-tuned on pediatric chest X-rays. Despite being pretrained on a significantly smaller number of X-rays compared to the ImageNet dataset, our model demonstrated better performance. Furthermore, it outperformed the ResNet-34 (0.712), ViT-S (0.673), and vanilla MAE method (0.735), all pretrained on adult chest X-rays and fine-tuned on pediatric chest X-rays. Even with only 50% of labeled pediatric chest X-ray images, dual-MAE demonstrated comparable performance to that of the vanilla MAE method and outperformed ResNet-34 and ViT-S fine-tuned with 100% labeled pediatric chest X-ray images. |
| Author | Yoon, Taeyoung Kang, Daesung |
| Author_xml | – sequence: 1 givenname: Taeyoung surname: Yoon fullname: Yoon, Taeyoung organization: Department of Healthcare Information Technology, Inje University, Gimhae-si, Republic of Korea – sequence: 2 givenname: Daesung orcidid: 0000-0001-6136-3698 surname: Kang fullname: Kang, Daesung organization: Department of Medical Information Technology, Inje University, Gimhae-si, Republic of Korea |
| BookMark | eNp9kMtOAzEMRSMEEq9-ASzmB6Ykk0knYVeVp9QKBGUdORkHUoamStIFf8_QFgmxwBtbVz5X9j0m-8uwRELOGB0yRtXFeDK5fn4eVrSqh7xmUkmxR44qNlIlF3y0_2s-JIOUFrQv2UuiOSJPV2voyhmkd2yL8ToHXNrQYkyXxXi16ryF7MOyyKGYrbvsyw4Mdv3qI7YecvS2mL-FCLYfrnxCSJhOyYGDLuFg10_Iy831fHJXTh9u7yfjaWm5ZLlsqDQMTK2oBEsBgKtKtQqqxhmsjHNc1MoKRZ00bUMFqtY2wlkhTGVljfyE3G992wALvYr-A-KnDuD1RgjxVUPM3naoHUcpW26Q9uSICilrEI1TwDkzgNB7qa2XjSGliE5bnzev5wi-04zq76z1Nmv9nbXeZd2z_A_7c8v_1PmW8oj4ixANrXnNvwDVuY3f |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1038_s41598_025_15704_3 crossref_primary_10_1016_j_engappai_2025_112055 |
| Cites_doi | 10.1038/s41598-023-30208-8 10.1109/ACCESS.2023.3346315 10.1109/CVPR42600.2020.00975 10.1007/s00247-022-05368-w 10.1109/WACV56688.2023.00358 10.1109/CVPR.2016.90 10.1038/s41598-020-73831-5 10.1109/TKDE.2013.39 10.1038/s41598-024-56819-3 10.1038/s41597-023-02102-5 10.5555/3524938.3525087 10.1109/CVPR.2017.369 10.5555/3495724.3497510 10.1007/978-3-030-11149-6_10 10.1007/s10554-023-03039-x 10.1109/CVPR52688.2022.01553 10.1609/aaai.v33i01.3301590 10.15172/pneu.2015.6/621 10.3390/bioengineering10080901 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/ACCESS.2024.3418985 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_f3e88d3be0c84605884a57f9a331baea 10_1109_ACCESS_2024_3418985 10570434 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) grantid: RS-2023-00249104 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD |
| ID | FETCH-LOGICAL-c381t-708b1ab4908ac0aaa3929d9a27fbe2bff3549c590f8bd705e9dc75fc55b2c84e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258805800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:06 EDT 2025 Tue Nov 18 22:35:00 EST 2025 Sat Nov 29 06:25:50 EST 2025 Wed Aug 27 02:07:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-708b1ab4908ac0aaa3929d9a27fbe2bff3549c590f8bd705e9dc75fc55b2c84e3 |
| ORCID | 0000-0001-6136-3698 0009-0008-9454-8590 |
| OpenAccessLink | https://doaj.org/article/f3e88d3be0c84605884a57f9a331baea |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10570434 doaj_primary_oai_doaj_org_article_f3e88d3be0c84605884a57f9a331baea crossref_citationtrail_10_1109_ACCESS_2024_3418985 crossref_primary_10_1109_ACCESS_2024_3418985 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref15 (ref23) 2024 ref11 (ref25) 2024 ref2 Wu (ref22) 2023 ref17 ref16 ref19 Hart (ref1) 2019 ref26 Rajpurkar (ref9) 2017 (ref24) 2024 ref20 ref21 Raghu (ref12); 32 Bhusal (ref10) 2022 ref28 Devlin (ref27); 1 Zhou (ref14) 2022 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Dosovitskiy (ref18) 2020 |
| References_xml | – ident: ref5 doi: 10.1038/s41598-023-30208-8 – ident: ref6 doi: 10.1109/ACCESS.2023.3346315 – ident: ref29 doi: 10.1109/CVPR42600.2020.00975 – volume: 1 start-page: 2 volume-title: Proc. NAACL-HLT ident: ref27 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – ident: ref4 doi: 10.1007/s00247-022-05368-w – year: 2023 ident: ref22 article-title: K-diag: Knowledge-enhanced disease diagnosis in radiographic imaging publication-title: arXiv:2302.11557 – ident: ref20 doi: 10.1109/WACV56688.2023.00358 – ident: ref26 doi: 10.1109/CVPR.2016.90 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref12 article-title: Transfusion: Understanding transfer learning for medical imaging – ident: ref3 doi: 10.1038/s41598-020-73831-5 – volume-title: CheXpert Dataset Repository year: 2024 ident: ref24 – ident: ref19 doi: 10.1109/TKDE.2013.39 – year: 2020 ident: ref18 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – ident: ref16 doi: 10.1038/s41598-024-56819-3 – ident: ref21 doi: 10.1038/s41597-023-02102-5 – volume-title: PediCXR Dataset Repository year: 2024 ident: ref25 – ident: ref28 doi: 10.5555/3524938.3525087 – ident: ref8 doi: 10.1109/CVPR.2017.369 – volume-title: ChestX-Ray14 Dataset Repository year: 2024 ident: ref23 – ident: ref17 doi: 10.5555/3495724.3497510 – start-page: 107 volume-title: Diseases of the Chest, Breast, Heart and Vessels 2019–2022: Diagnostic and Interventional Imaging year: 2019 ident: ref1 article-title: Pediatric chest disorders: Practical imaging approach to diagnosis doi: 10.1007/978-3-030-11149-6_10 – ident: ref11 doi: 10.1007/s10554-023-03039-x – ident: ref13 doi: 10.1109/CVPR52688.2022.01553 – year: 2022 ident: ref14 article-title: Self pre-training with masked autoencoders for medical image classification and segmentation publication-title: arXiv:2203.05573 – ident: ref7 doi: 10.1609/aaai.v33i01.3301590 – year: 2022 ident: ref10 article-title: Multi-label classification of thoracic diseases using dense convolutional network on chest radiographs publication-title: arXiv:2202.03583 – ident: ref2 doi: 10.15172/pneu.2015.6/621 – ident: ref15 doi: 10.3390/bioengineering10080901 – year: 2017 ident: ref9 article-title: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning publication-title: arXiv:1711.05225 |
| SSID | ssj0000816957 |
| Score | 2.3261254 |
| Snippet | Pediatric thoracic diseases present significant health risks to children. While chest X-rays are commonly used for diagnosing thoracic diseases, interpreting... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adult chest X-rays Biomedical imaging Deep learning Diseases dual-masked autoencoders Image reconstruction masked autoencoders pediatric chest X-rays pediatric thoracic diseases Pneumonia X-ray imaging |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECZqPOjBt3F9pQePdoXSFvBWV40HNcasxlvDY4jGza5xW3-_QGtdD5p4I4SmwEc7DMN8H0JHOVHCEAJxLlIdp7lzUFSObawAMsuo5SRc-X-8Zre3_OlJ3LXJ6iEXBgDC5TPo-2KI5ZuJrv1R2YnXpMUpTefRPGOsSdbqDlS8goTIWMssRLA4KQYDNwjnAyZp3_2sufCCyTPWJ5D0_1BVCUblcvWf3VlDK-3uMSoauNfRHIw30PIMp-Amuj-v5Si-kdNXMFFRVxPPVOlvK59GxXewOqomUci9jd0qcJbHRJ1mRzR8dstCu8J5E7yZbqGHy4vh4CpuhRNi7QxwFTPMFZHKx_SkxlJKvwkyQibMKkiUtdR5hToT2HJlGM5AGM0yq7NMJZqnQLfRwngyhh0UJVxxCjkBC26nAs4_cg4e0aCkMlpz0UPJ14SWumUV9-IWozJ4F1iUDQqlR6FsUeih4-6ht4ZU4-_mZx6prqlnxA4VDo2y_cBKS4FzQxVgNwIf6-WpzJgVklKiJMge2vIIzryvAW_3l_o9tOT70Jy27KOF6r2GA7SoP6qX6fthWHqfqjLXqw priority: 102 providerName: IEEE |
| Title | Dual-Masked Autoencoders: Application to Multi-labeled Pediatric Thoracic Diseases |
| URI | https://ieeexplore.ieee.org/document/10570434 https://doaj.org/article/f3e88d3be0c84605884a57f9a331baea |
| Volume | 12 |
| WOSCitedRecordID | wos001258805800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8VFE-agyMBKw4zi22UpbxNBWCBXEFtnOWSBQi2jKyG_HdkIJCywsURQ5ifN88t3L2e8QOsmIlgUhEGcyNXGaOYKiM2xjDcAsp1aQsOT_fsjHY_HwIG8apb78mrBKHrgC7txSEKKgGrARIYcnUsW4lYpSohWE0MhFPQ0yFeZgQTLJeC0zRLA87_Z67oscIUzSMzdzC-mrJzdcUVDs_1FiJXiYqy20WYeGUbfq0jZagekO2mgIBu6i2_5CvcQjNX-GIuouypmXofRLkS-i7ncmOipnUdhYGw-Vdm6liJYFOaLJoxtz4076VWZm3kJ3V4NJ7zquqyLExnnXMuZYaKK0T9gpg5VSPsIppEq41ZBoa6mjfIZJbIUuOGYgC8OZNYzpxEEIdA-tTmdT2EdRIrSgkBGw4LAFR34ceyMGtNKFMUK2UfIFUG5qyXBfueIlD9QBy7xCNfeo5jWqbXS6vOm1Usz4vfmlR37Z1MtdhwvOCPLaCPK_jKCNWn7cGu9jHKc0PfiPhx-idd_h6r_LEVot3xZwjNbMe_k0f-sEu3PH0cegE3YPfgI49Nyn |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7a2KTBYbCtiMLYcthxATu2E5tbV0BMKxWauolb5B_PAoFaRFP-fmwndN1hk7hZlqPY_pw8Pz-_7wP4UlKjHKWYl4rbnJfBQTEl8blBFL5iXtJ05f_3qBqP5eWluuiS1VMuDCKmy2d4EIsplu9mdhGPyg6jJi3hjL-EV4LzgrbpWssjlaghoUTVcQtRog4Hw2EYRvACC34QftdSRcnkFfuTaPr_0lVJZuV085kd2oK33f4xG7SAv4MXOH0PGyusgh_g5_FC3-bnen6DLhssmlnkqoz3lY-ywZ9wddbMspR9m4d1EGyPy5aqHdnkKiwMGwrHbfhm3oNfpyeT4VneSSfkNpjgJq-INFSbGNXTlmit4zbIKV1U3mBhvGfBL7RCES-Nq4hA5WwlvBXCFFZyZNuwNp1NcQeyQhrJsKToMexVMHhIwcWjFo02zlqp-lA8TWhtO17xKG9xWyf_gqi6RaGOKNQdCn34unzorqXV-H_zbxGpZdPIiZ0qAhp194nVnqGUjhkkYQQx2iu5FpVXmjFqNOo-9CKCK-9rwdv9R_1neHM2OR_Vo-_jH3uwHvvTnr18hLXmfoH78No-NNfz-09pGT4CCAPa8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Masked+Autoencoders%3A+Application+to+Multi-Labeled+Pediatric+Thoracic+Diseases&rft.jtitle=IEEE+access&rft.au=Taeyoung+Yoon&rft.au=Daesung+Kang&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=87981&rft.epage=87990&rft_id=info:doi/10.1109%2FACCESS.2024.3418985&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f3e88d3be0c84605884a57f9a331baea |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |