Diverse collections in matroids and graphs

We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M , a weight function ω : E ( M ) → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 204; no. 1-2; pp. 415 - 447
Main Authors: Fomin, Fedor V., Golovach, Petr A., Panolan, Fahad, Philip, Geevarghese, Saurabh, Saket
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M , a weight function ω : E ( M ) → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of k bases B 1 , ⋯ , B k of M such that the weight of the symmetric difference of any pair of these bases is at least d . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M 1 , M 2 defined on the same ground set E , a weight function ω : E → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of k common independent sets I 1 , ⋯ , I k of M 1 and M 2 such that the weight of the symmetric difference of any pair of these sets is at least d . The input to the Diverse Perfect Matchings problem consists of a graph G and integers k ≥ 1 , d ≥ 1 . The task is to decide if G contains k perfect matchings M 1 , ⋯ , M k such that the symmetric difference of any two of these matchings is at least d . We show that none of these problems can be solved in polynomial time unless P = NP . We derive fixed-parameter tractable ( FPT ) algorithms for all three problems with ( k , d ) as the parameter, and present a p o l y ( k , d ) -sized kernel for Weighted Diverse Bases .
AbstractList We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid [Formula omitted], a weight function [Formula omitted], and integers [Formula omitted]. The task is to decide if there is a collection of [Formula omitted]bases [Formula omitted] of [Formula omitted] such that the weight of the symmetric difference of any pair of these bases is at least [Formula omitted]. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids [Formula omitted] defined on the same ground set [Formula omitted], a weight function [Formula omitted], and integers [Formula omitted]. The task is to decide if there is a collection of [Formula omitted]common independent sets [Formula omitted] of [Formula omitted] and [Formula omitted] such that the weight of the symmetric difference of any pair of these sets is at least [Formula omitted]. The input to the Diverse Perfect Matchings problem consists of a graph [Formula omitted] and integers [Formula omitted]. The task is to decide if [Formula omitted] contains [Formula omitted]perfect matchings [Formula omitted] such that the symmetric difference of any two of these matchings is at least [Formula omitted]. We show that none of these problems can be solved in polynomial time unless [Formula omitted]. We derive fixed-parameter tractable ( [Formula omitted]) algorithms for all three problems with [Formula omitted] as the parameter, and present a [Formula omitted]-sized kernel for Weighted Diverse Bases.
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid , a weight function , and integers . The task is to decide if there is a collection of of such that the weight of the symmetric difference of any pair of these bases is at least . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids defined on the same ground set , a weight function , and integers . The task is to decide if there is a collection of of and such that the weight of the symmetric difference of any pair of these sets is at least . The input to the Diverse Perfect Matchings problem consists of a graph and integers . The task is to decide if contains such that the symmetric difference of any two of these matchings is at least . We show that none of these problems can be solved in polynomial time unless . We derive fixed-parameter tractable ( ) algorithms for all three problems with as the parameter, and present a -sized kernel for Weighted Diverse Bases.
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid $$M$$ M , a weight function $$\omega :E(M)\rightarrow \mathbb {N} $$ ω : E ( M ) → N , and integers $$k\ge 1, d\ge 1$$ k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of $$k$$ k bases $$B_{1}, \dotsc , B_{k}$$ B 1 , ⋯ , B k of $$M$$ M such that the weight of the symmetric difference of any pair of these bases is at least $$d$$ d . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids $$M_{1},M_{2}$$ M 1 , M 2 defined on the same ground set $$E$$ E , a weight function $$\omega :E\rightarrow \mathbb {N} $$ ω : E → N , and integers $$k\ge 1, d\ge 1$$ k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of $$k$$ k common independent sets $$I_{1}, \dotsc , I_{k}$$ I 1 , ⋯ , I k of $$M_{1}$$ M 1 and $$M_{2}$$ M 2 such that the weight of the symmetric difference of any pair of these sets is at least $$d$$ d . The input to the Diverse Perfect Matchings problem consists of a graph $$G$$ G and integers $$k\ge 1, d\ge 1$$ k ≥ 1 , d ≥ 1 . The task is to decide if $$G$$ G contains $$k$$ k perfect matchings $$M_{1},\dotsc ,M_{k}$$ M 1 , ⋯ , M k such that the symmetric difference of any two of these matchings is at least $$d$$ d . We show that none of these problems can be solved in polynomial time unless $${{\,\mathrm{\textsf{P}}\,}} ={{\,\mathrm{\textsf{NP}}\,}} $$ P = NP . We derive fixed-parameter tractable ( $${{\,\mathrm{\textsf{FPT}}\,}}$$ FPT ) algorithms for all three problems with $$(k,d)$$ ( k , d ) as the parameter, and present a $$poly(k,d)$$ p o l y ( k , d ) -sized kernel for Weighted Diverse Bases .
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M , a weight function ω : E ( M ) → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of k bases B 1 , ⋯ , B k of M such that the weight of the symmetric difference of any pair of these bases is at least d . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M 1 , M 2 defined on the same ground set E , a weight function ω : E → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of k common independent sets I 1 , ⋯ , I k of M 1 and M 2 such that the weight of the symmetric difference of any pair of these sets is at least d . The input to the Diverse Perfect Matchings problem consists of a graph G and integers k ≥ 1 , d ≥ 1 . The task is to decide if G contains k perfect matchings M 1 , ⋯ , M k such that the symmetric difference of any two of these matchings is at least d . We show that none of these problems can be solved in polynomial time unless P = NP . We derive fixed-parameter tractable ( FPT ) algorithms for all three problems with ( k , d ) as the parameter, and present a p o l y ( k , d ) -sized kernel for Weighted Diverse Bases .
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M, a weight function ω:E(M)→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k bases B1,⋯,Bk of M such that the weight of the symmetric difference of any pair of these bases is at least d. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M1,M2 defined on the same ground set E, a weight function ω:E→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k common independent sets I1,⋯,Ik of M1 and M2 such that the weight of the symmetric difference of any pair of these sets is at least d. The input to the Diverse Perfect Matchings problem consists of a graph G and integers k≥1,d≥1. The task is to decide if G contains k perfect matchings M1,⋯,Mk such that the symmetric difference of any two of these matchings is at least d. We show that none of these problems can be solved in polynomial time unless P=NP. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k,d) as the parameter, and present a poly(k,d)-sized kernel for Weighted Diverse Bases.We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M, a weight function ω:E(M)→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k bases B1,⋯,Bk of M such that the weight of the symmetric difference of any pair of these bases is at least d. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M1,M2 defined on the same ground set E, a weight function ω:E→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k common independent sets I1,⋯,Ik of M1 and M2 such that the weight of the symmetric difference of any pair of these sets is at least d. The input to the Diverse Perfect Matchings problem consists of a graph G and integers k≥1,d≥1. The task is to decide if G contains k perfect matchings M1,⋯,Mk such that the symmetric difference of any two of these matchings is at least d. We show that none of these problems can be solved in polynomial time unless P=NP. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k,d) as the parameter, and present a poly(k,d)-sized kernel for Weighted Diverse Bases.
Audience Academic
Author Fomin, Fedor V.
Philip, Geevarghese
Golovach, Petr A.
Panolan, Fahad
Saurabh, Saket
Author_xml – sequence: 1
  givenname: Fedor V.
  surname: Fomin
  fullname: Fomin, Fedor V.
  organization: University of Bergen
– sequence: 2
  givenname: Petr A.
  orcidid: 0000-0002-2619-2990
  surname: Golovach
  fullname: Golovach, Petr A.
  email: Petr.Golovach@uib.no
  organization: University of Bergen
– sequence: 3
  givenname: Fahad
  surname: Panolan
  fullname: Panolan, Fahad
  organization: IIT Hyderabad
– sequence: 4
  givenname: Geevarghese
  surname: Philip
  fullname: Philip, Geevarghese
  organization: Chennai Mathematical Institute, UMI ReLaX
– sequence: 5
  givenname: Saket
  surname: Saurabh
  fullname: Saurabh, Saket
  organization: University of Bergen, Institute of Mathematical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38371324$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLxDAUhYMoOo7-ARfSpQjVm2fTpfiGATe6Dm2TjJE2GZOO4Px6ox1dyl0cuHznLL5DtOuDNwidYLjAANVlwoChKoHQEnDN63Kzg2aYUVEywcQumgEQXnKB4QAdpvQGAJhKuY8OqKQVpoTN0PmN-zAxmaILfW-60QWfCueLoRljcDoVjdfFMjar13SE9mzTJ3O8zTl6ubt9vn4oF0_3j9dXi7KjEo-lkEJ2jFAOuhK65RRIS4ysbQ2SUMJZ22oKFSYWt5biljOurWat1TUl1tR0js6m3VUM72uTRjW41Jm-b7wJ66RITSSXkjGR0YsJXTa9Uc7bMMamy6fN4Lpsy7r8v6okqYiQ7Hv7dLu9bgej1Sq6oYmf6ldIBsgEdDGkFI39QzCob-tqsq6ydfVjXW1yiU6llGG_NFG9hXX0WdJ_rS_CQ4Ji
Cites_doi 10.1007/978-3-319-21275-3
10.1145/322217.322225
10.3390/a12120254
10.1007/BF01294456
10.1016/0196-6774(81)90032-8
10.1016/0304-3975(79)90044-6
10.6028/jres.069B.005
10.1017/S0963548305007327
10.1007/BF01584082
10.1016/j.artint.2021.103644
10.1007/s10107-020-01497-y
10.1137/100815232
10.1006/jctb.1998.1860
10.1016/j.disc.2022.113297
10.1137/0210055
10.4230/LIPIcs.STACS.2021.31
10.1007/3-540-09519-5_73
10.4230/LIPIcs.ISAAC.2020.26
10.1007/978-1-4471-5559-1
10.4230/LIPIcs.STACS.2013.341
10.1017/9781107415157
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: COPYRIGHT 2024 Springer
DBID C6C
AAYXX
CITATION
NPM
7X8
DOI 10.1007/s10107-023-01959-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 447
ExternalDocumentID A782726849
38371324
10_1007_s10107_023_01959_z
Genre Journal Article
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 314528
  funderid: http://dx.doi.org/10.13039/501100005416
– fundername: Department of Science and Technology, Ministry of Science and Technology
  grantid: DST/SJF/MSA-01/2017-18; 314528
  funderid: http://dx.doi.org/10.13039/501100001409
– fundername: IIT Hyderabad
  grantid: SG/IITH/F224/2020-21/SG-79
– fundername: European Research Council
  grantid: 819416
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
7X8
ID FETCH-LOGICAL-c381t-6868c42350d76db5302b2e89f90823254bbd30712f1bf31b545dfd4bfd932fe93
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000973627400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Wed Jul 30 11:14:08 EDT 2025
Mon Nov 24 15:41:04 EST 2025
Thu Apr 03 07:04:23 EDT 2025
Sat Nov 29 03:34:04 EST 2025
Fri Feb 21 02:42:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 68Q25
05B35
68W40
Diversity of solutions
05C85
68Q27
Matroids
Graphs
05C70
Parameterized complexity
Language English
License The Author(s) 2023.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-6868c42350d76db5302b2e89f90823254bbd30712f1bf31b545dfd4bfd932fe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2619-2990
OpenAccessLink https://link.springer.com/10.1007/s10107-023-01959-z
PMID 38371324
PQID 2928588446
PQPubID 23479
PageCount 33
ParticipantIDs proquest_miscellaneous_2928588446
gale_infotracacademiconefile_A782726849
pubmed_primary_38371324
crossref_primary_10_1007_s10107_023_01959_z
springer_journals_10_1007_s10107_023_01959_z
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Netherlands
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationTitleAlternate Math Program
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References Bérczi, Schwarcz (CR3) 2021; 188
Edmonds (CR10) 1971; 1
Valiant (CR25) 1979; 8
Giménez, Noy (CR17) 2006; 15
CR18
CR14
CR13
CR12
CR11
Frank (CR15) 1981; 2
Harvey, Király, Lau (CR19) 2011; 25
Vertigan (CR26) 1998; 74
Edmonds (CR8) 1965; 69
Bérczi, Csáji, Király (CR4) 2023; 346
Holyer (CR20) 1981; 10
Colbourn, Provan, Vertigan (CR5) 1995; 15
CR7
CR28
CR9
CR27
CR23
Baste, Jaffke, Masařík, Philip, Rote (CR2) 2019; 12
CR22
CR21
Baste, Fellows, Jaffke, Masarík, de Oliveira Oliveira, Philip, Rosamond (CR1) 2022; 303
Schwartz (CR24) 1980; 27
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (CR6) 2015
Garey, Johnson (CR16) 1979
1959_CR27
1959_CR21
1959_CR23
1959_CR22
1959_CR28
O Giménez (1959_CR17) 2006; 15
CJ Colbourn (1959_CR5) 1995; 15
J Edmonds (1959_CR8) 1965; 69
NJA Harvey (1959_CR19) 2011; 25
A Frank (1959_CR15) 1981; 2
M Cygan (1959_CR6) 2015
I Holyer (1959_CR20) 1981; 10
1959_CR14
D Vertigan (1959_CR26) 1998; 74
1959_CR13
LG Valiant (1959_CR25) 1979; 8
1959_CR12
1959_CR11
1959_CR7
1959_CR9
J Baste (1959_CR2) 2019; 12
1959_CR18
J Baste (1959_CR1) 2022; 303
K Bérczi (1959_CR3) 2021; 188
K Bérczi (1959_CR4) 2023; 346
JT Schwartz (1959_CR24) 1980; 27
J Edmonds (1959_CR10) 1971; 1
MR Garey (1959_CR16) 1979
References_xml – ident: CR22
– ident: CR18
– year: 2015
  ident: CR6
  publication-title: Parameterized Algorithms
  doi: 10.1007/978-3-319-21275-3
– ident: CR14
– ident: CR12
– volume: 27
  start-page: 701
  issue: 4
  year: 1980
  end-page: 717
  ident: CR24
  article-title: Fast probabilistic algorithms for verification of polynomial identities
  publication-title: J. ACM
  doi: 10.1145/322217.322225
– volume: 12
  start-page: 254
  issue: 12
  year: 2019
  ident: CR2
  article-title: FPT algorithms for diverse collections of hitting sets
  publication-title: Algorithms
  doi: 10.3390/a12120254
– volume: 15
  start-page: 1
  issue: 1
  year: 1995
  end-page: 10
  ident: CR5
  article-title: The complexity of computing the Tutte polynomial on transversal matroids
  publication-title: Combinatorica
  doi: 10.1007/BF01294456
– volume: 2
  start-page: 328
  issue: 4
  year: 1981
  end-page: 336
  ident: CR15
  article-title: A weighted matroid intersection algorithm
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(81)90032-8
– year: 1979
  ident: CR16
  publication-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– ident: CR27
– ident: CR23
– ident: CR21
– volume: 8
  start-page: 189
  issue: 2
  year: 1979
  end-page: 201
  ident: CR25
  article-title: The complexity of computing the permanent
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(79)90044-6
– volume: 69
  start-page: 73
  year: 1965
  end-page: 77
  ident: CR8
  article-title: Lehman’s switching game and a theorem of Tutte and Nash-Williams
  publication-title: J. Res. Nat. Bur. Standards Sect. B
  doi: 10.6028/jres.069B.005
– volume: 15
  start-page: 385
  issue: 3
  year: 2006
  end-page: 395
  ident: CR17
  article-title: On the complexity of computing the Tutte polynomial of bicircular matroids
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548305007327
– volume: 1
  start-page: 127
  issue: 1
  year: 1971
  end-page: 136
  ident: CR10
  article-title: Matroids and the greedy algorithm
  publication-title: Math. Program.
  doi: 10.1007/BF01584082
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 303
  year: 2022
  ident: CR1
  article-title: Diversity of solutions: an exploration through the lens of fixed-parameter tractability theory
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2021.103644
– volume: 188
  start-page: 1
  issue: 1
  year: 2021
  end-page: 18
  ident: CR3
  article-title: Complexity of packing common bases in matroids
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01497-y
– volume: 25
  start-page: 1792
  issue: 4
  year: 2011
  end-page: 1803
  ident: CR19
  article-title: On disjoint common bases in two matroids
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/100815232
– volume: 74
  start-page: 378
  issue: 2
  year: 1998
  end-page: 396
  ident: CR26
  article-title: Bicycle dimension and special points of the Tutte polynomial
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.1998.1860
– ident: CR7
– ident: CR28
– volume: 346
  issue: 4
  year: 2023
  ident: CR4
  article-title: On the complexity of packing rainbow spanning trees
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2022.113297
– volume: 10
  start-page: 718
  issue: 4
  year: 1981
  end-page: 720
  ident: CR20
  article-title: The NP-completeness of edge-coloring
  publication-title: SIAM J. Comput.
  doi: 10.1137/0210055
– ident: 1959_CR18
– volume: 15
  start-page: 1
  issue: 1
  year: 1995
  ident: 1959_CR5
  publication-title: Combinatorica
  doi: 10.1007/BF01294456
– volume: 303
  year: 2022
  ident: 1959_CR1
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2021.103644
– volume: 346
  issue: 4
  year: 2023
  ident: 1959_CR4
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2022.113297
– volume: 15
  start-page: 385
  issue: 3
  year: 2006
  ident: 1959_CR17
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548305007327
– ident: 1959_CR22
– ident: 1959_CR9
– ident: 1959_CR13
  doi: 10.4230/LIPIcs.STACS.2021.31
– volume: 25
  start-page: 1792
  issue: 4
  year: 2011
  ident: 1959_CR19
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/100815232
– volume: 8
  start-page: 189
  issue: 2
  year: 1979
  ident: 1959_CR25
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(79)90044-6
– ident: 1959_CR28
  doi: 10.1007/3-540-09519-5_73
– volume: 2
  start-page: 328
  issue: 4
  year: 1981
  ident: 1959_CR15
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(81)90032-8
– ident: 1959_CR12
  doi: 10.4230/LIPIcs.ISAAC.2020.26
– volume: 10
  start-page: 718
  issue: 4
  year: 1981
  ident: 1959_CR20
  publication-title: SIAM J. Comput.
  doi: 10.1137/0210055
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 1959_CR6
  doi: 10.1007/978-3-319-21275-3
– volume: 27
  start-page: 701
  issue: 4
  year: 1980
  ident: 1959_CR24
  publication-title: J. ACM
  doi: 10.1145/322217.322225
– ident: 1959_CR7
  doi: 10.1007/978-1-4471-5559-1
– volume: 12
  start-page: 254
  issue: 12
  year: 2019
  ident: 1959_CR2
  publication-title: Algorithms
  doi: 10.3390/a12120254
– ident: 1959_CR23
– volume: 74
  start-page: 378
  issue: 2
  year: 1998
  ident: 1959_CR26
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.1998.1860
– ident: 1959_CR21
– volume: 188
  start-page: 1
  issue: 1
  year: 2021
  ident: 1959_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01497-y
– volume: 1
  start-page: 127
  issue: 1
  year: 1971
  ident: 1959_CR10
  publication-title: Math. Program.
  doi: 10.1007/BF01584082
– ident: 1959_CR27
  doi: 10.4230/LIPIcs.STACS.2013.341
– ident: 1959_CR11
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: 1959_CR16
– volume: 69
  start-page: 73
  year: 1965
  ident: 1959_CR8
  publication-title: J. Res. Nat. Bur. Standards Sect. B
  doi: 10.6028/jres.069B.005
– ident: 1959_CR14
  doi: 10.1017/9781107415157
SSID ssj0001388
Score 2.4294884
Snippet We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse...
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 415
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Diverse collections in matroids and graphs
URI https://link.springer.com/article/10.1007/s10107-023-01959-z
https://www.ncbi.nlm.nih.gov/pubmed/38371324
https://www.proquest.com/docview/2928588446
Volume 204
WOSCitedRecordID wos000973627400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_Wj4ftoftevY_gwWCw1hDLji09ZlnDYCSYpN3SvgjrC_Iwt8RpH_rX706206yMwfZyIDCWOOl0P0l3vwP4oNlAGcVN5BJrotSWNhL9pIxcGXNh-tYlWvtiE_l0yhcLUbRJYXUX7d49SfqdeivZLaZrNUbxP3R5dbsDe-juOJnjbP59s__GCeddoVZCB22qzJ__8Zs7ur8pb3mle8-k3vuMH__fuJ_AQYs2w2GzPJ7CA1s9g0dbHITYmmyIW-vn8OmLj9OwIa0PH6VV1eGyCn_SlfnS1GFZmdCTXNcv4Gx8cjr6GrXlFCKNbnkdZTzjGtHToG_yzCgqF6SY5cL5qud4UFTKoMXHzMXKJbFCbGWcSZUziPGcFclL2K0uK3sIobamtMQ1R6-YRguu0pTlKjaZiB1ikACOOq3Kq4Y1Q97xI5M-JOpDen3I2wA-kuIlmdR6VeqyzQzAvoicSg4RxeTESiMCeN_NjUQzoLeNsrKX17VkgnHKuU2zAF41k7bpmQ7heOhOAzjuZki2llr_ZViv_-3zN_CQIeBp4tPewu56dW3fwb6-WS_rVQ928h_nJBe8B3ufT6bFDFvf8gjlpD8iyQqS-RxlMbjo-UX9Cymp51M
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurB92N9riAI6kL30W1yLGqp2BbRKt7C5gU9uJVu66G_3ky6W2sRQY8LYRMmM5kvmZlvAM5EUOGSE-npUEkvUonyaDlMPJ34hMqy0qEQttlEtd0mr6_0IS8Ky4ps9yIkaU_qqWI3H5_VAsz_wcer0TwsRMZjYSLf49PL5Pz1Q0KKRq2IDvJSmZ__8c0dzR7KU15pJkxqvU997X_rXofVHG26tbF6bMCcSjdhZYqD0Hy1JsSt2RZc3Ng8DeWiftgsrTRzu6n7hk_mXZm5SSpdS3KdbcNz_bZz3fDydgqeMG554MUkJsKgp0pZVmPJsV0QDxSh2nY9NxdFzqWxeD_QPtehzw22klpGXEuD8bSi4Q6U0l6q9sAVSiYKueYwiikFJTyKgir3ZUx9bTCIA5eFVNn7mDWDffEjozyYkQez8mAjB85R8AxNatBPRJJXBpi5kJyK1QyKqSIrDXXgtNgbZswAYxtJqnrDjAU0IFhzG8UO7I43bTIzXsLNpTty4KrYIZZbavbLsvb_NvwElhqdVpM179r3B7AcGPAzzlU7hNKgP1RHsCg-Bt2sf2zV9RNLSOIU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiD9xHPCIKghjaH6e6jWIuiFsED35bsBX0wLU30ob_enU1SaxFBfAyE7GZmd-ebnZlvAI5EcM4lJ9LToZJepBLl0UaYeDrxCZUNpUMhbLOJZqdDXl_pw1gVv812r0KSRU0DsjSleb0vdX2s8M3HK7YAc4HwIms4DTMRNg1Cf_3xZXQW-yEhVdNWRApl2czP3_hmmiYP6DELNREytZaovfT_f1iGxRKFuhfFslmBKZWuwsIYN6F5uh8RumZrcNKy-RvKxXVjs7fSzO2m7htepXdl5iapdC35dbYOz-2rp8trr2yz4AljrnMvJjERBlWdN2QzlhzbCPFAEaptN3TjQHIuzUngB9rnOvS5wVxSy4hrabCfVjTcgFraS9UWuELJRCEHHUY3paCER1HQ5L6Mqa8NNnHgtJIw6xdsGuyLNxnlwYw8mJUHGzpwjEpguNXyQSKSsmLAjIWkVezCoJsmstVQBw4rPTGzPTDmkaSq956xgAYEa3Gj2IHNQoGjkdE5N8545MBZpS1W7uDsl2lt_-31A5h7aLXZ3U3ndgfmA4OJihS2Xajlg3e1B7PiI-9mg327cj8BCwLq-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+collections+in+matroids+and+graphs&rft.jtitle=Mathematical+programming&rft.au=Fomin%2C+Fedor+V.&rft.au=Golovach%2C+Petr+A.&rft.au=Panolan%2C+Fahad&rft.au=Philip%2C+Geevarghese&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=204&rft.issue=1-2&rft.spage=415&rft.epage=447&rft_id=info:doi/10.1007%2Fs10107-023-01959-z&rft.externalDocID=10_1007_s10107_023_01959_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon