Diverse collections in matroids and graphs
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M , a weight function ω : E ( M ) → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a...
Saved in:
| Published in: | Mathematical programming Vol. 204; no. 1-2; pp. 415 - 447 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the
Weighted Diverse Bases
problem consists of a matroid
M
, a weight function
ω
:
E
(
M
)
→
N
, and integers
k
≥
1
,
d
≥
1
. The task is to decide if there is a collection of
k
bases
B
1
,
⋯
,
B
k
of
M
such that the weight of the symmetric difference of any pair of these bases is at least
d
. The input to the
Weighted Diverse Common Independent Sets
problem consists of two matroids
M
1
,
M
2
defined on the same ground set
E
, a weight function
ω
:
E
→
N
, and integers
k
≥
1
,
d
≥
1
. The task is to decide if there is a collection of
k
common independent sets
I
1
,
⋯
,
I
k
of
M
1
and
M
2
such that the weight of the symmetric difference of any pair of these sets is at least
d
. The input to the
Diverse Perfect Matchings
problem consists of a graph
G
and integers
k
≥
1
,
d
≥
1
. The task is to decide if
G
contains
k
perfect matchings
M
1
,
⋯
,
M
k
such that the symmetric difference of any two of these matchings is at least
d
. We show that none of these problems can be solved in polynomial time unless
P
=
NP
. We derive fixed-parameter tractable (
FPT
) algorithms for all three problems with
(
k
,
d
)
as the parameter, and present a
p
o
l
y
(
k
,
d
)
-sized kernel for
Weighted Diverse Bases
. |
|---|---|
| AbstractList | We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid [Formula omitted], a weight function [Formula omitted], and integers [Formula omitted]. The task is to decide if there is a collection of [Formula omitted]bases [Formula omitted] of [Formula omitted] such that the weight of the symmetric difference of any pair of these bases is at least [Formula omitted]. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids [Formula omitted] defined on the same ground set [Formula omitted], a weight function [Formula omitted], and integers [Formula omitted]. The task is to decide if there is a collection of [Formula omitted]common independent sets [Formula omitted] of [Formula omitted] and [Formula omitted] such that the weight of the symmetric difference of any pair of these sets is at least [Formula omitted]. The input to the Diverse Perfect Matchings problem consists of a graph [Formula omitted] and integers [Formula omitted]. The task is to decide if [Formula omitted] contains [Formula omitted]perfect matchings [Formula omitted] such that the symmetric difference of any two of these matchings is at least [Formula omitted]. We show that none of these problems can be solved in polynomial time unless [Formula omitted]. We derive fixed-parameter tractable ( [Formula omitted]) algorithms for all three problems with [Formula omitted] as the parameter, and present a [Formula omitted]-sized kernel for Weighted Diverse Bases. We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid , a weight function , and integers . The task is to decide if there is a collection of of such that the weight of the symmetric difference of any pair of these bases is at least . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids defined on the same ground set , a weight function , and integers . The task is to decide if there is a collection of of and such that the weight of the symmetric difference of any pair of these sets is at least . The input to the Diverse Perfect Matchings problem consists of a graph and integers . The task is to decide if contains such that the symmetric difference of any two of these matchings is at least . We show that none of these problems can be solved in polynomial time unless . We derive fixed-parameter tractable ( ) algorithms for all three problems with as the parameter, and present a -sized kernel for Weighted Diverse Bases. We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid $$M$$ M , a weight function $$\omega :E(M)\rightarrow \mathbb {N} $$ ω : E ( M ) → N , and integers $$k\ge 1, d\ge 1$$ k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of $$k$$ k bases $$B_{1}, \dotsc , B_{k}$$ B 1 , ⋯ , B k of $$M$$ M such that the weight of the symmetric difference of any pair of these bases is at least $$d$$ d . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids $$M_{1},M_{2}$$ M 1 , M 2 defined on the same ground set $$E$$ E , a weight function $$\omega :E\rightarrow \mathbb {N} $$ ω : E → N , and integers $$k\ge 1, d\ge 1$$ k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of $$k$$ k common independent sets $$I_{1}, \dotsc , I_{k}$$ I 1 , ⋯ , I k of $$M_{1}$$ M 1 and $$M_{2}$$ M 2 such that the weight of the symmetric difference of any pair of these sets is at least $$d$$ d . The input to the Diverse Perfect Matchings problem consists of a graph $$G$$ G and integers $$k\ge 1, d\ge 1$$ k ≥ 1 , d ≥ 1 . The task is to decide if $$G$$ G contains $$k$$ k perfect matchings $$M_{1},\dotsc ,M_{k}$$ M 1 , ⋯ , M k such that the symmetric difference of any two of these matchings is at least $$d$$ d . We show that none of these problems can be solved in polynomial time unless $${{\,\mathrm{\textsf{P}}\,}} ={{\,\mathrm{\textsf{NP}}\,}} $$ P = NP . We derive fixed-parameter tractable ( $${{\,\mathrm{\textsf{FPT}}\,}}$$ FPT ) algorithms for all three problems with $$(k,d)$$ ( k , d ) as the parameter, and present a $$poly(k,d)$$ p o l y ( k , d ) -sized kernel for Weighted Diverse Bases . We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M , a weight function ω : E ( M ) → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of k bases B 1 , ⋯ , B k of M such that the weight of the symmetric difference of any pair of these bases is at least d . The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M 1 , M 2 defined on the same ground set E , a weight function ω : E → N , and integers k ≥ 1 , d ≥ 1 . The task is to decide if there is a collection of k common independent sets I 1 , ⋯ , I k of M 1 and M 2 such that the weight of the symmetric difference of any pair of these sets is at least d . The input to the Diverse Perfect Matchings problem consists of a graph G and integers k ≥ 1 , d ≥ 1 . The task is to decide if G contains k perfect matchings M 1 , ⋯ , M k such that the symmetric difference of any two of these matchings is at least d . We show that none of these problems can be solved in polynomial time unless P = NP . We derive fixed-parameter tractable ( FPT ) algorithms for all three problems with ( k , d ) as the parameter, and present a p o l y ( k , d ) -sized kernel for Weighted Diverse Bases . We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M, a weight function ω:E(M)→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k bases B1,⋯,Bk of M such that the weight of the symmetric difference of any pair of these bases is at least d. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M1,M2 defined on the same ground set E, a weight function ω:E→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k common independent sets I1,⋯,Ik of M1 and M2 such that the weight of the symmetric difference of any pair of these sets is at least d. The input to the Diverse Perfect Matchings problem consists of a graph G and integers k≥1,d≥1. The task is to decide if G contains k perfect matchings M1,⋯,Mk such that the symmetric difference of any two of these matchings is at least d. We show that none of these problems can be solved in polynomial time unless P=NP. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k,d) as the parameter, and present a poly(k,d)-sized kernel for Weighted Diverse Bases.We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse Bases problem consists of a matroid M, a weight function ω:E(M)→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k bases B1,⋯,Bk of M such that the weight of the symmetric difference of any pair of these bases is at least d. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M1,M2 defined on the same ground set E, a weight function ω:E→N, and integers k≥1,d≥1. The task is to decide if there is a collection of k common independent sets I1,⋯,Ik of M1 and M2 such that the weight of the symmetric difference of any pair of these sets is at least d. The input to the Diverse Perfect Matchings problem consists of a graph G and integers k≥1,d≥1. The task is to decide if G contains k perfect matchings M1,⋯,Mk such that the symmetric difference of any two of these matchings is at least d. We show that none of these problems can be solved in polynomial time unless P=NP. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k,d) as the parameter, and present a poly(k,d)-sized kernel for Weighted Diverse Bases. |
| Audience | Academic |
| Author | Fomin, Fedor V. Philip, Geevarghese Golovach, Petr A. Panolan, Fahad Saurabh, Saket |
| Author_xml | – sequence: 1 givenname: Fedor V. surname: Fomin fullname: Fomin, Fedor V. organization: University of Bergen – sequence: 2 givenname: Petr A. orcidid: 0000-0002-2619-2990 surname: Golovach fullname: Golovach, Petr A. email: Petr.Golovach@uib.no organization: University of Bergen – sequence: 3 givenname: Fahad surname: Panolan fullname: Panolan, Fahad organization: IIT Hyderabad – sequence: 4 givenname: Geevarghese surname: Philip fullname: Philip, Geevarghese organization: Chennai Mathematical Institute, UMI ReLaX – sequence: 5 givenname: Saket surname: Saurabh fullname: Saurabh, Saket organization: University of Bergen, Institute of Mathematical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38371324$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEtLxDAUhYMoOo7-ARfSpQjVm2fTpfiGATe6Dm2TjJE2GZOO4Px6ox1dyl0cuHznLL5DtOuDNwidYLjAANVlwoChKoHQEnDN63Kzg2aYUVEywcQumgEQXnKB4QAdpvQGAJhKuY8OqKQVpoTN0PmN-zAxmaILfW-60QWfCueLoRljcDoVjdfFMjar13SE9mzTJ3O8zTl6ubt9vn4oF0_3j9dXi7KjEo-lkEJ2jFAOuhK65RRIS4ysbQ2SUMJZ22oKFSYWt5biljOurWat1TUl1tR0js6m3VUM72uTRjW41Jm-b7wJ66RITSSXkjGR0YsJXTa9Uc7bMMamy6fN4Lpsy7r8v6okqYiQ7Hv7dLu9bgej1Sq6oYmf6ldIBsgEdDGkFI39QzCob-tqsq6ydfVjXW1yiU6llGG_NFG9hXX0WdJ_rS_CQ4Ji |
| Cites_doi | 10.1007/978-3-319-21275-3 10.1145/322217.322225 10.3390/a12120254 10.1007/BF01294456 10.1016/0196-6774(81)90032-8 10.1016/0304-3975(79)90044-6 10.6028/jres.069B.005 10.1017/S0963548305007327 10.1007/BF01584082 10.1016/j.artint.2021.103644 10.1007/s10107-020-01497-y 10.1137/100815232 10.1006/jctb.1998.1860 10.1016/j.disc.2022.113297 10.1137/0210055 10.4230/LIPIcs.STACS.2021.31 10.1007/3-540-09519-5_73 10.4230/LIPIcs.ISAAC.2020.26 10.1007/978-1-4471-5559-1 10.4230/LIPIcs.STACS.2013.341 10.1017/9781107415157 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: COPYRIGHT 2024 Springer |
| DBID | C6C AAYXX CITATION NPM 7X8 |
| DOI | 10.1007/s10107-023-01959-z |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 447 |
| ExternalDocumentID | A782726849 38371324 10_1007_s10107_023_01959_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Norges Forskningsråd grantid: 314528 funderid: http://dx.doi.org/10.13039/501100005416 – fundername: Department of Science and Technology, Ministry of Science and Technology grantid: DST/SJF/MSA-01/2017-18; 314528 funderid: http://dx.doi.org/10.13039/501100001409 – fundername: IIT Hyderabad grantid: SG/IITH/F224/2020-21/SG-79 – fundername: European Research Council grantid: 819416 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB NPM 7X8 |
| ID | FETCH-LOGICAL-c381t-6868c42350d76db5302b2e89f90823254bbd30712f1bf31b545dfd4bfd932fe93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000973627400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Wed Jul 30 11:14:08 EDT 2025 Mon Nov 24 15:41:04 EST 2025 Thu Apr 03 07:04:23 EDT 2025 Sat Nov 29 03:34:04 EST 2025 Fri Feb 21 02:42:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 68Q25 05B35 68W40 Diversity of solutions 05C85 68Q27 Matroids Graphs 05C70 Parameterized complexity |
| Language | English |
| License | The Author(s) 2023. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-6868c42350d76db5302b2e89f90823254bbd30712f1bf31b545dfd4bfd932fe93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2619-2990 |
| OpenAccessLink | https://link.springer.com/10.1007/s10107-023-01959-z |
| PMID | 38371324 |
| PQID | 2928588446 |
| PQPubID | 23479 |
| PageCount | 33 |
| ParticipantIDs | proquest_miscellaneous_2928588446 gale_infotracacademiconefile_A782726849 pubmed_primary_38371324 crossref_primary_10_1007_s10107_023_01959_z springer_journals_10_1007_s10107_023_01959_z |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Netherlands |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationTitleAlternate | Math Program |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | Bérczi, Schwarcz (CR3) 2021; 188 Edmonds (CR10) 1971; 1 Valiant (CR25) 1979; 8 Giménez, Noy (CR17) 2006; 15 CR18 CR14 CR13 CR12 CR11 Frank (CR15) 1981; 2 Harvey, Király, Lau (CR19) 2011; 25 Vertigan (CR26) 1998; 74 Edmonds (CR8) 1965; 69 Bérczi, Csáji, Király (CR4) 2023; 346 Holyer (CR20) 1981; 10 Colbourn, Provan, Vertigan (CR5) 1995; 15 CR7 CR28 CR9 CR27 CR23 Baste, Jaffke, Masařík, Philip, Rote (CR2) 2019; 12 CR22 CR21 Baste, Fellows, Jaffke, Masarík, de Oliveira Oliveira, Philip, Rosamond (CR1) 2022; 303 Schwartz (CR24) 1980; 27 Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (CR6) 2015 Garey, Johnson (CR16) 1979 1959_CR27 1959_CR21 1959_CR23 1959_CR22 1959_CR28 O Giménez (1959_CR17) 2006; 15 CJ Colbourn (1959_CR5) 1995; 15 J Edmonds (1959_CR8) 1965; 69 NJA Harvey (1959_CR19) 2011; 25 A Frank (1959_CR15) 1981; 2 M Cygan (1959_CR6) 2015 I Holyer (1959_CR20) 1981; 10 1959_CR14 D Vertigan (1959_CR26) 1998; 74 1959_CR13 LG Valiant (1959_CR25) 1979; 8 1959_CR12 1959_CR11 1959_CR7 1959_CR9 J Baste (1959_CR2) 2019; 12 1959_CR18 J Baste (1959_CR1) 2022; 303 K Bérczi (1959_CR3) 2021; 188 K Bérczi (1959_CR4) 2023; 346 JT Schwartz (1959_CR24) 1980; 27 J Edmonds (1959_CR10) 1971; 1 MR Garey (1959_CR16) 1979 |
| References_xml | – ident: CR22 – ident: CR18 – year: 2015 ident: CR6 publication-title: Parameterized Algorithms doi: 10.1007/978-3-319-21275-3 – ident: CR14 – ident: CR12 – volume: 27 start-page: 701 issue: 4 year: 1980 end-page: 717 ident: CR24 article-title: Fast probabilistic algorithms for verification of polynomial identities publication-title: J. ACM doi: 10.1145/322217.322225 – volume: 12 start-page: 254 issue: 12 year: 2019 ident: CR2 article-title: FPT algorithms for diverse collections of hitting sets publication-title: Algorithms doi: 10.3390/a12120254 – volume: 15 start-page: 1 issue: 1 year: 1995 end-page: 10 ident: CR5 article-title: The complexity of computing the Tutte polynomial on transversal matroids publication-title: Combinatorica doi: 10.1007/BF01294456 – volume: 2 start-page: 328 issue: 4 year: 1981 end-page: 336 ident: CR15 article-title: A weighted matroid intersection algorithm publication-title: J. Algorithms doi: 10.1016/0196-6774(81)90032-8 – year: 1979 ident: CR16 publication-title: Computers and Intractability: A Guide to the Theory of NP-Completeness – ident: CR27 – ident: CR23 – ident: CR21 – volume: 8 start-page: 189 issue: 2 year: 1979 end-page: 201 ident: CR25 article-title: The complexity of computing the permanent publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(79)90044-6 – volume: 69 start-page: 73 year: 1965 end-page: 77 ident: CR8 article-title: Lehman’s switching game and a theorem of Tutte and Nash-Williams publication-title: J. Res. Nat. Bur. Standards Sect. B doi: 10.6028/jres.069B.005 – volume: 15 start-page: 385 issue: 3 year: 2006 end-page: 395 ident: CR17 article-title: On the complexity of computing the Tutte polynomial of bicircular matroids publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548305007327 – volume: 1 start-page: 127 issue: 1 year: 1971 end-page: 136 ident: CR10 article-title: Matroids and the greedy algorithm publication-title: Math. Program. doi: 10.1007/BF01584082 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 303 year: 2022 ident: CR1 article-title: Diversity of solutions: an exploration through the lens of fixed-parameter tractability theory publication-title: Artif. Intell. doi: 10.1016/j.artint.2021.103644 – volume: 188 start-page: 1 issue: 1 year: 2021 end-page: 18 ident: CR3 article-title: Complexity of packing common bases in matroids publication-title: Math. Program. doi: 10.1007/s10107-020-01497-y – volume: 25 start-page: 1792 issue: 4 year: 2011 end-page: 1803 ident: CR19 article-title: On disjoint common bases in two matroids publication-title: SIAM J. Discret. Math. doi: 10.1137/100815232 – volume: 74 start-page: 378 issue: 2 year: 1998 end-page: 396 ident: CR26 article-title: Bicycle dimension and special points of the Tutte polynomial publication-title: J. Combin. Theory Ser. B doi: 10.1006/jctb.1998.1860 – ident: CR7 – ident: CR28 – volume: 346 issue: 4 year: 2023 ident: CR4 article-title: On the complexity of packing rainbow spanning trees publication-title: Discrete Math. doi: 10.1016/j.disc.2022.113297 – volume: 10 start-page: 718 issue: 4 year: 1981 end-page: 720 ident: CR20 article-title: The NP-completeness of edge-coloring publication-title: SIAM J. Comput. doi: 10.1137/0210055 – ident: 1959_CR18 – volume: 15 start-page: 1 issue: 1 year: 1995 ident: 1959_CR5 publication-title: Combinatorica doi: 10.1007/BF01294456 – volume: 303 year: 2022 ident: 1959_CR1 publication-title: Artif. Intell. doi: 10.1016/j.artint.2021.103644 – volume: 346 issue: 4 year: 2023 ident: 1959_CR4 publication-title: Discrete Math. doi: 10.1016/j.disc.2022.113297 – volume: 15 start-page: 385 issue: 3 year: 2006 ident: 1959_CR17 publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548305007327 – ident: 1959_CR22 – ident: 1959_CR9 – ident: 1959_CR13 doi: 10.4230/LIPIcs.STACS.2021.31 – volume: 25 start-page: 1792 issue: 4 year: 2011 ident: 1959_CR19 publication-title: SIAM J. Discret. Math. doi: 10.1137/100815232 – volume: 8 start-page: 189 issue: 2 year: 1979 ident: 1959_CR25 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(79)90044-6 – ident: 1959_CR28 doi: 10.1007/3-540-09519-5_73 – volume: 2 start-page: 328 issue: 4 year: 1981 ident: 1959_CR15 publication-title: J. Algorithms doi: 10.1016/0196-6774(81)90032-8 – ident: 1959_CR12 doi: 10.4230/LIPIcs.ISAAC.2020.26 – volume: 10 start-page: 718 issue: 4 year: 1981 ident: 1959_CR20 publication-title: SIAM J. Comput. doi: 10.1137/0210055 – volume-title: Parameterized Algorithms year: 2015 ident: 1959_CR6 doi: 10.1007/978-3-319-21275-3 – volume: 27 start-page: 701 issue: 4 year: 1980 ident: 1959_CR24 publication-title: J. ACM doi: 10.1145/322217.322225 – ident: 1959_CR7 doi: 10.1007/978-1-4471-5559-1 – volume: 12 start-page: 254 issue: 12 year: 2019 ident: 1959_CR2 publication-title: Algorithms doi: 10.3390/a12120254 – ident: 1959_CR23 – volume: 74 start-page: 378 issue: 2 year: 1998 ident: 1959_CR26 publication-title: J. Combin. Theory Ser. B doi: 10.1006/jctb.1998.1860 – ident: 1959_CR21 – volume: 188 start-page: 1 issue: 1 year: 2021 ident: 1959_CR3 publication-title: Math. Program. doi: 10.1007/s10107-020-01497-y – volume: 1 start-page: 127 issue: 1 year: 1971 ident: 1959_CR10 publication-title: Math. Program. doi: 10.1007/BF01584082 – ident: 1959_CR27 doi: 10.4230/LIPIcs.STACS.2013.341 – ident: 1959_CR11 – volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness year: 1979 ident: 1959_CR16 – volume: 69 start-page: 73 year: 1965 ident: 1959_CR8 publication-title: J. Res. Nat. Bur. Standards Sect. B doi: 10.6028/jres.069B.005 – ident: 1959_CR14 doi: 10.1017/9781107415157 |
| SSID | ssj0001388 |
| Score | 2.4294884 |
| Snippet | We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the
Weighted Diverse... We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems. The input to the Weighted Diverse... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 415 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | Diverse collections in matroids and graphs |
| URI | https://link.springer.com/article/10.1007/s10107-023-01959-z https://www.ncbi.nlm.nih.gov/pubmed/38371324 https://www.proquest.com/docview/2928588446 |
| Volume | 204 |
| WOSCitedRecordID | wos000973627400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_Wj4ftoftevY_gwWCw1hDLji09ZlnDYCSYpN3SvgjrC_Iwt8RpH_rX706206yMwfZyIDCWOOl0P0l3vwP4oNlAGcVN5BJrotSWNhL9pIxcGXNh-tYlWvtiE_l0yhcLUbRJYXUX7d49SfqdeivZLaZrNUbxP3R5dbsDe-juOJnjbP59s__GCeddoVZCB22qzJ__8Zs7ur8pb3mle8-k3vuMH__fuJ_AQYs2w2GzPJ7CA1s9g0dbHITYmmyIW-vn8OmLj9OwIa0PH6VV1eGyCn_SlfnS1GFZmdCTXNcv4Gx8cjr6GrXlFCKNbnkdZTzjGtHToG_yzCgqF6SY5cL5qud4UFTKoMXHzMXKJbFCbGWcSZUziPGcFclL2K0uK3sIobamtMQ1R6-YRguu0pTlKjaZiB1ikACOOq3Kq4Y1Q97xI5M-JOpDen3I2wA-kuIlmdR6VeqyzQzAvoicSg4RxeTESiMCeN_NjUQzoLeNsrKX17VkgnHKuU2zAF41k7bpmQ7heOhOAzjuZki2llr_ZViv_-3zN_CQIeBp4tPewu56dW3fwb6-WS_rVQ928h_nJBe8B3ufT6bFDFvf8gjlpD8iyQqS-RxlMbjo-UX9Cymp51M |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurB92N9riAI6kL30W1yLGqp2BbRKt7C5gU9uJVu66G_3ky6W2sRQY8LYRMmM5kvmZlvAM5EUOGSE-npUEkvUonyaDlMPJ34hMqy0qEQttlEtd0mr6_0IS8Ky4ps9yIkaU_qqWI3H5_VAsz_wcer0TwsRMZjYSLf49PL5Pz1Q0KKRq2IDvJSmZ__8c0dzR7KU15pJkxqvU997X_rXofVHG26tbF6bMCcSjdhZYqD0Hy1JsSt2RZc3Ng8DeWiftgsrTRzu6n7hk_mXZm5SSpdS3KdbcNz_bZz3fDydgqeMG554MUkJsKgp0pZVmPJsV0QDxSh2nY9NxdFzqWxeD_QPtehzw22klpGXEuD8bSi4Q6U0l6q9sAVSiYKueYwiikFJTyKgir3ZUx9bTCIA5eFVNn7mDWDffEjozyYkQez8mAjB85R8AxNatBPRJJXBpi5kJyK1QyKqSIrDXXgtNgbZswAYxtJqnrDjAU0IFhzG8UO7I43bTIzXsLNpTty4KrYIZZbavbLsvb_NvwElhqdVpM179r3B7AcGPAzzlU7hNKgP1RHsCg-Bt2sf2zV9RNLSOIU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiD9xHPCIKghjaH6e6jWIuiFsED35bsBX0wLU30ob_enU1SaxFBfAyE7GZmd-ebnZlvAI5EcM4lJ9LToZJepBLl0UaYeDrxCZUNpUMhbLOJZqdDXl_pw1gVv812r0KSRU0DsjSleb0vdX2s8M3HK7YAc4HwIms4DTMRNg1Cf_3xZXQW-yEhVdNWRApl2czP3_hmmiYP6DELNREytZaovfT_f1iGxRKFuhfFslmBKZWuwsIYN6F5uh8RumZrcNKy-RvKxXVjs7fSzO2m7htepXdl5iapdC35dbYOz-2rp8trr2yz4AljrnMvJjERBlWdN2QzlhzbCPFAEaptN3TjQHIuzUngB9rnOvS5wVxSy4hrabCfVjTcgFraS9UWuELJRCEHHUY3paCER1HQ5L6Mqa8NNnHgtJIw6xdsGuyLNxnlwYw8mJUHGzpwjEpguNXyQSKSsmLAjIWkVezCoJsmstVQBw4rPTGzPTDmkaSq956xgAYEa3Gj2IHNQoGjkdE5N8545MBZpS1W7uDsl2lt_-31A5h7aLXZ3U3ndgfmA4OJihS2Xajlg3e1B7PiI-9mg327cj8BCwLq-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+collections+in+matroids+and+graphs&rft.jtitle=Mathematical+programming&rft.au=Fomin%2C+Fedor+V.&rft.au=Golovach%2C+Petr+A.&rft.au=Panolan%2C+Fahad&rft.au=Philip%2C+Geevarghese&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=204&rft.issue=1-2&rft.spage=415&rft.epage=447&rft_id=info:doi/10.1007%2Fs10107-023-01959-z&rft.externalDocID=10_1007_s10107_023_01959_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |