Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil

Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incuba...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 752; p. 141956
Main Authors: Yu, Hong, Zhang, Zheng, Zhang, Ying, Fan, Ping, Xi, Beidou, Tan, Wenbing
Format: Journal Article
Language:English
Published: Elsevier B.V 15.01.2021
Subjects:
ISSN:0048-9697, 1879-1026, 1879-1026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types. [Display omitted] •Microplastics stimulated heavy metal (HM) transformation from bioavailable to organic bound.•The stimulation degree was different across HMs and soil aggregate fractions.•Microplastics affected HM speciation through direct adsorption and changing soil properties.•pH and DOC were significant factors affecting HM speciation in the presence of microplastics.
AbstractList Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types. [Display omitted] •Microplastics stimulated heavy metal (HM) transformation from bioavailable to organic bound.•The stimulation degree was different across HMs and soil aggregate fractions.•Microplastics affected HM speciation through direct adsorption and changing soil properties.•pH and DOC were significant factors affecting HM speciation in the presence of microplastics.
Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types.
Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types.Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types.
ArticleNumber 141956
Author Zhang, Ying
Xi, Beidou
Fan, Ping
Zhang, Zheng
Yu, Hong
Tan, Wenbing
Author_xml – sequence: 1
  givenname: Hong
  surname: Yu
  fullname: Yu, Hong
  organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
– sequence: 2
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  organization: Center for Soil Environmental Protection, Chinese Academy of Environmental Planning, Beijing 100012, China
– sequence: 3
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
– sequence: 4
  givenname: Ping
  surname: Fan
  fullname: Fan, Ping
  organization: College of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
– sequence: 5
  givenname: Beidou
  orcidid: 0000-0002-1055-1581
  surname: Xi
  fullname: Xi, Beidou
  email: xibeidou@yeah.net
  organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
– sequence: 6
  givenname: Wenbing
  orcidid: 0000-0001-9896-7604
  surname: Tan
  fullname: Tan, Wenbing
  organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
BookMark eNqNUU1v3CAQRVUqdZP2N5RjL94CxmAfeoiifkmJemnPiOBhw8oGlyEr7R_p7w2uqx56STkwgnnvjea9S3IRUwRC3nK254yr98c9ulBSgXjaCybqr-RDp16QHe_10HAm1AXZMSb7ZlCDfkUuEY-sHt3zHfl1B8VOtJwXoDaO1B4OGQ62AJ2Dy6mKhpziDLHQQzpBjrQ8AM2AS4oIFOHnI0QHNHmKC7hgS0gVk21En_K8PWtzDN5DXmUewJ7OdF7HIi1pm7NMFktwSEOkmML0mrz0tQ9v_tQr8uPTx-83X5rbb5-_3lzfNq7teWk64MqP3ErNtWWtUq1VtYDkQkDvVd_dS61tRUDLGEjf9fUC290LMbpxbK_Iu013yalugsXMAR1Mk42QHtGIoVftwESnn4dKyaTSLecVqjdo3QwxgzdLDrPNZ8OZWUMzR_M3NLOGZrbQKvPDP8wK-21itTRM_8G_3vhQTTsFyCtuDWgMGVwxYwrPajwBp_y_8w
CitedBy_id crossref_primary_10_1016_j_envpol_2023_122592
crossref_primary_10_1016_j_chemosphere_2021_130800
crossref_primary_10_1080_15226514_2023_2250464
crossref_primary_10_1016_j_apsoil_2024_105488
crossref_primary_10_1007_s11356_023_27002_4
crossref_primary_10_1007_s11368_023_03637_1
crossref_primary_10_1016_j_envres_2025_121128
crossref_primary_10_3390_app12020595
crossref_primary_10_1016_j_envpol_2023_122754
crossref_primary_10_1016_j_envres_2024_119960
crossref_primary_10_1007_s00128_022_03523_5
crossref_primary_10_1016_j_jhazmat_2024_135879
crossref_primary_10_1016_j_scitotenv_2022_158353
crossref_primary_10_1016_j_jhazmat_2023_132369
crossref_primary_10_1016_j_jhazmat_2022_130102
crossref_primary_10_1080_15320383_2025_2504599
crossref_primary_10_1016_j_scitotenv_2023_166012
crossref_primary_10_1016_j_jhazmat_2023_131716
crossref_primary_10_1111_sum_12808
crossref_primary_10_1016_j_ecoenv_2025_117956
crossref_primary_10_1016_j_scitotenv_2024_174206
crossref_primary_10_1016_j_watres_2022_118354
crossref_primary_10_1016_j_envpol_2024_124702
crossref_primary_10_3390_w14213586
crossref_primary_10_1016_j_jhazmat_2024_135221
crossref_primary_10_1016_j_jhazmat_2025_138078
crossref_primary_10_3390_toxics13080609
crossref_primary_10_48130_cas_0024_0008
crossref_primary_10_3390_earth3030053
crossref_primary_10_3390_pr11082241
crossref_primary_10_1016_j_scitotenv_2022_155619
crossref_primary_10_1007_s13762_021_03612_8
crossref_primary_10_1002_ep_14301
crossref_primary_10_1016_j_jhazmat_2022_129726
crossref_primary_10_1186_s43591_022_00044_0
crossref_primary_10_1016_j_scitotenv_2024_176831
crossref_primary_10_1371_journal_pone_0304811
crossref_primary_10_1007_s00128_021_03339_9
crossref_primary_10_1016_j_jhazmat_2024_136068
crossref_primary_10_1016_j_chemosphere_2021_129590
crossref_primary_10_1016_j_jhazmat_2024_135535
crossref_primary_10_1007_s11104_025_07704_z
crossref_primary_10_1021_acs_jafc_5c03682
crossref_primary_10_1007_s11368_024_03813_x
crossref_primary_10_1016_j_jhazmat_2022_128801
crossref_primary_10_1016_j_jhazmat_2021_127531
crossref_primary_10_1016_j_eti_2024_103607
crossref_primary_10_1016_j_gr_2022_01_017
crossref_primary_10_3390_agronomy15061319
crossref_primary_10_3390_ijerph20043106
crossref_primary_10_1080_15226514_2022_2033687
crossref_primary_10_1016_j_jhazmat_2023_132636
crossref_primary_10_1016_j_impact_2025_100541
crossref_primary_10_1016_j_envpol_2021_118104
crossref_primary_10_1080_26395940_2023_2263641
crossref_primary_10_1007_s11368_025_04102_x
crossref_primary_10_1007_s11270_025_08222_5
crossref_primary_10_1016_j_ecoenv_2023_115100
crossref_primary_10_1016_j_scitotenv_2021_147133
crossref_primary_10_1016_j_ecoenv_2024_117248
crossref_primary_10_1016_j_plaphy_2025_110350
crossref_primary_10_1016_j_eti_2024_103538
crossref_primary_10_1016_j_envpol_2024_124299
crossref_primary_10_3390_toxics13040245
crossref_primary_10_1016_j_ecoenv_2022_113958
crossref_primary_10_3390_molecules30071464
crossref_primary_10_1016_j_trac_2024_117855
crossref_primary_10_3390_plants13172526
crossref_primary_10_1016_j_watres_2021_117637
crossref_primary_10_1007_s11270_023_06816_5
crossref_primary_10_1016_j_chemosphere_2022_136833
crossref_primary_10_1016_j_jhazmat_2021_127364
crossref_primary_10_1016_j_trac_2023_117294
crossref_primary_10_1016_j_jhazmat_2023_130788
crossref_primary_10_1016_j_jhazmat_2024_133934
crossref_primary_10_1016_j_scitotenv_2021_151487
crossref_primary_10_1007_s10653_025_02529_2
crossref_primary_10_1016_j_jhazmat_2024_134053
crossref_primary_10_1016_j_jhazmat_2025_137621
crossref_primary_10_3390_agronomy15051052
crossref_primary_10_1007_s11783_025_1926_6
crossref_primary_10_1016_j_scitotenv_2024_170281
crossref_primary_10_1016_j_jhazmat_2024_136592
crossref_primary_10_1080_15320383_2023_2286524
crossref_primary_10_1016_j_jhazmat_2025_137505
crossref_primary_10_1016_j_jhazmat_2024_135028
crossref_primary_10_1016_j_chemosphere_2022_134789
crossref_primary_10_1016_j_jhazmat_2024_133884
crossref_primary_10_1016_j_pedsph_2023_06_010
crossref_primary_10_1016_j_jhazmat_2022_129555
crossref_primary_10_1038_s41598_024_56973_8
crossref_primary_10_3390_su15054504
crossref_primary_10_3390_nano11112935
crossref_primary_10_1002_ldr_70049
crossref_primary_10_1016_j_jes_2025_04_061
crossref_primary_10_3390_app14114643
crossref_primary_10_1016_j_coesh_2021_100297
crossref_primary_10_1007_s13762_022_04339_w
crossref_primary_10_1007_s11368_023_03689_3
crossref_primary_10_1016_j_ecoenv_2021_112217
crossref_primary_10_1016_j_scitotenv_2023_166434
crossref_primary_10_1002_ep_14230
crossref_primary_10_1016_j_jhazmat_2025_139813
crossref_primary_10_1016_j_scitotenv_2024_170541
crossref_primary_10_1016_j_chemosphere_2024_142107
crossref_primary_10_1016_j_scitotenv_2024_177610
crossref_primary_10_1080_15320383_2023_2258413
crossref_primary_10_1016_j_coesh_2023_100482
crossref_primary_10_1016_j_envpol_2022_120357
crossref_primary_10_1016_j_jhazmat_2022_130079
crossref_primary_10_1016_j_envres_2025_121631
crossref_primary_10_1016_j_chemosphere_2023_138223
crossref_primary_10_3390_molecules30112370
crossref_primary_10_1016_j_jhazmat_2022_130638
Cites_doi 10.1016/j.scitotenv.2019.134841
10.1016/j.scitotenv.2018.06.068
10.1016/j.marpolbul.2011.09.025
10.1016/j.soilbio.2013.06.014
10.1021/acs.est.8b02212
10.1021/ac50043a017
10.1016/S0269-7491(01)00172-5
10.1016/j.ecoenv.2015.12.023
10.1016/j.chemosphere.2017.04.009
10.1021/es062166r
10.1016/j.envint.2019.105263
10.1016/j.marpolbul.2016.01.006
10.1021/acs.est.5b05478
10.3390/ijerph16173218
10.3184/095422914X14147781158674
10.1016/j.scitotenv.2017.01.190
10.1016/j.envpol.2019.113170
10.1016/j.scitotenv.2018.01.341
10.1016/j.gca.2018.01.014
10.1016/j.envpol.2011.08.052
10.3389/fpls.2017.01805
10.1126/sciadv.aap8060
10.1016/j.scitotenv.2018.03.199
10.1016/j.scitotenv.2018.06.004
10.1016/j.envpol.2017.12.106
10.1016/S0269-7491(00)00243-8
10.1016/j.scitotenv.2019.134722
10.1016/j.jhazmat.2020.122690
10.1016/j.envint.2014.04.014
10.1111/gcb.15043
10.1016/j.geoderma.2018.12.016
10.1016/j.chemosphere.2017.07.064
10.1016/j.biortech.2007.01.025
10.1016/j.envint.2019.104995
10.1016/j.geoderma.2007.05.006
10.1016/j.scitotenv.2018.11.123
10.1016/j.envpol.2018.05.008
10.1016/j.chemosphere.2020.126791
10.1016/j.jhazmat.2019.121775
10.1021/acs.est.7b05559
10.1007/978-3-319-16510-3_7
10.1016/j.scitotenv.2019.03.368
10.1021/es302011r
10.1016/j.scitotenv.2016.01.153
10.1016/j.envpol.2010.09.019
10.1016/j.trac.2018.10.025
10.1016/j.watres.2019.04.060
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2020.141956
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2020_141956
S0048969720354851
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c381t-5e16fd1a4717a03663a6036e4122e8f685b477ad1ae300e4f58e4fea5b22dcdd3
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588243900102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sun Sep 28 09:14:07 EDT 2025
Wed Oct 01 13:54:50 EDT 2025
Tue Nov 18 22:24:08 EST 2025
Sat Nov 29 06:35:38 EST 2025
Sat Dec 14 16:15:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chemical speciation transformation
Microplastics
Diverse microenvironments
Diverse impact
Different heavy metals
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-5e16fd1a4717a03663a6036e4122e8f685b477ad1ae300e4f58e4fea5b22dcdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1055-1581
0000-0001-9896-7604
PQID 2440467311
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2986390257
proquest_miscellaneous_2440467311
crossref_primary_10_1016_j_scitotenv_2020_141956
crossref_citationtrail_10_1016_j_scitotenv_2020_141956
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_141956
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Horton, Walton, Spurgeon, Lahive, Svendsen (bb0080) 2017; 586
Alimi, Farner Budarz, Hernandez, Tufenkji (bb0005) 2018; 52
Zhang, Liu (bb0280) 2018; 642
Amery, Degryse, Degeling, Smolders, Merckx (bb0015) 2007; 41
Antoniadis, Alloway (bb0020) 2002; 117
Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Schaumann (bb0200) 2016; 550
Tessier, Campbell, Bisson (bb0225) 1979; 51
Chae, An (bb0025) 2018; 240
Qi, Jones, Li, Liu, Yang (bb0160) 2020; 703
Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, Van Der Ploeg, Besseling, Koelmans, Geissen (bb0085) 2016; 50
Qu, Chen, Hu, Cai, Chen, Yu, Huang (bb0165) 2019; 131
Wan, Wu, Xue, Hui (bb0240) 2019; 654
Yu, Hou, Dang, Cui, Xi, Tan (bb0270) 2020; 395
Zhang, Li, Zhou, Dou, Cai, Mo, You (bb0285) 2018; 235
Liu, Yang, Liu, Liang, Xue, Chen (bb0120) 2017; 185
Weithmann, Möller, Löder, Piehl, Laforsch, Freitag (bb0260) 2018; 4
Facchinelli, Sacchi, Mallen (bb0055) 2001; 114
Wang, Zhang, Zhang, Zhang, Sun (bb0255) 2020; 254
Olsen, Cole, Watanable (bb0145) 1954; 939
Plastics Europe (bb0155) 2019
Teng, Wu, Lu, Wang, Jiao, Song (bb0220) 2014; 69
Stevenson (bb0205) 1996
Trevor (bb0235) 2020
Holmes, Turner, Thompson (bb8000) 2012; 160
Rhoades (bb0175) 1996
Shen, Wang, Zhang, Zhang, Wang, Xie, Ji (bb0190) 2019; 135229
Cole, Lindeque, Halsband, Galloway (bb0035) 2011; 62
Yang, Li, Lu, Duan, Huang, Bi (bb0265) 2018; 642
Guo, Huang, Xiang, Wang, Li, Li, Cai, Mo, Wong (bb0070) 2020; 137
Nizzetto, Bussi, Futter, Butterfield, Whitehead (bb0140) 2016; 18
Thompson (bb0230) 2015
Sungur, Soylak, Ozcan (bb0215) 2014; 26
Wang, Ge, Yu, Li (bb0250) 2020; 708
García-Carmona, Romero-Freire, Aragón, Martín Peinado (bb0060) 2019; 338
Dris, Gasperi, Saad, Mirande, Tassin (bb0050) 2016; 104
Peng, Liu, Feng, Wang, Cheng, Liang, Zhang, Shi (bb0150) 2018; 224
Meng, Wang, Zhong, Liu, Brookes, Xu, Chen (bb0125) 2017; 180
Zhang, Han, Sun, Wang (bb0295) 2020; 388
Rillig (bb0180) 2012; 46
Zeng, Ali, Zhang, Ouyang, Qiu, Wu, Zhang (bb0275) 2011; 159
Corradini, Meza, Eguiluz, Casado, Huerta-Lwanga, Geissen (bb0040) 2019; 671
Amanullah, Wang, Ali, Awasthi, Lahori, Wang, Li, Zhang (bb0010) 2016; 126
Strungaru, Jijie, Nicoara, Plavan, Faggio (bb0210) 2019; 110
Ng, Huerta Lwanga, Eldridge, Johnston, Hu, Geissen, Chen (bb0135) 2018; 627
Li, Yang, He, Jilani, Sun, Chen (bb0105) 2007; 141
Meng, Tao, Wang, Liu, Xu (bb0130) 2018; 633
Rillig, Ingraffia, de Souza Machado (bb0185) 2017; 8
Fuentes, Lloréns, Sáez, Isabel Aguilar, Ortuño, Meseguer (bb9000) 2008; 99
Six, Paustian (bb0195) 2014; 68
De Souza Machado, Lau, Till, Kloas, Lehmann, Becker, Rillig (bb0045) 2018; 52
Jiang, Adebayo, Jia, Xing, Deng, Guo, Liang, Zhang (bb0090) 2018; 19684
Li, Zhang, Yu, Dang, Yu, Xi, Tan (bb0115) 2019; 16
Zhang, Ng, Hu, Wang, Galaviz, Yang, Sun, Li, Ma, Fu, Zhao, Zhang, Jin, Zhou, Du, Peng, Zhang, Xu, Xi, Liu, Sun, Cheng, Jiang, Wang, Gong, Kou, Li, Ma, Huang, Zhu, Yao, Lin, Qin, Zhou, He, Chen, Li, Zhai, Lei, Wu, Zhang, Pan, Gu, Liu (bb0290) 2020; 26
Li, Tan, Wang, Zhao, Dang, Yu, Xi (bb0110) 2019; 255
He, Chen, Shao, Zhang, Lü (bb0075) 2019; 159
Zhang (10.1016/j.scitotenv.2020.141956_bb0285) 2018; 235
Qu (10.1016/j.scitotenv.2020.141956_bb0165) 2019; 131
Yu (10.1016/j.scitotenv.2020.141956_bb0270) 2020; 395
Li (10.1016/j.scitotenv.2020.141956_bb0110) 2019; 255
Horton (10.1016/j.scitotenv.2020.141956_bb0080) 2017; 586
García-Carmona (10.1016/j.scitotenv.2020.141956_bb0060) 2019; 338
Meng (10.1016/j.scitotenv.2020.141956_bb0125) 2017; 180
Yang (10.1016/j.scitotenv.2020.141956_bb0265) 2018; 642
Zeng (10.1016/j.scitotenv.2020.141956_bb0275) 2011; 159
Plastics Europe (10.1016/j.scitotenv.2020.141956_bb0155) 2019
Stevenson (10.1016/j.scitotenv.2020.141956_bb0205) 1996
Fuentes (10.1016/j.scitotenv.2020.141956_bb9000) 2008; 99
Wang (10.1016/j.scitotenv.2020.141956_bb0250) 2020; 708
Tessier (10.1016/j.scitotenv.2020.141956_bb0225) 1979; 51
Zhang (10.1016/j.scitotenv.2020.141956_bb0295) 2020; 388
Jiang (10.1016/j.scitotenv.2020.141956_bb0090) 2018; 19684
Rhoades (10.1016/j.scitotenv.2020.141956_bb0175) 1996
Zhang (10.1016/j.scitotenv.2020.141956_bb0290) 2020; 26
Chae (10.1016/j.scitotenv.2020.141956_bb0025) 2018; 240
Facchinelli (10.1016/j.scitotenv.2020.141956_bb0055) 2001; 114
Rillig (10.1016/j.scitotenv.2020.141956_bb0180) 2012; 46
Cole (10.1016/j.scitotenv.2020.141956_bb0035) 2011; 62
Ng (10.1016/j.scitotenv.2020.141956_bb0135) 2018; 627
Qi (10.1016/j.scitotenv.2020.141956_bb0160) 2020; 703
De Souza Machado (10.1016/j.scitotenv.2020.141956_bb0045) 2018; 52
Li (10.1016/j.scitotenv.2020.141956_bb0105) 2007; 141
Rillig (10.1016/j.scitotenv.2020.141956_bb0185) 2017; 8
Corradini (10.1016/j.scitotenv.2020.141956_bb0040) 2019; 671
Antoniadis (10.1016/j.scitotenv.2020.141956_bb0020) 2002; 117
Trevor (10.1016/j.scitotenv.2020.141956_bb0235) 2020
Olsen (10.1016/j.scitotenv.2020.141956_bb0145) 1954; 939
Amery (10.1016/j.scitotenv.2020.141956_bb0015) 2007; 41
Sungur (10.1016/j.scitotenv.2020.141956_bb0215) 2014; 26
Shen (10.1016/j.scitotenv.2020.141956_bb0190) 2019; 135229
Liu (10.1016/j.scitotenv.2020.141956_bb0120) 2017; 185
Guo (10.1016/j.scitotenv.2020.141956_bb0070) 2020; 137
Zhang (10.1016/j.scitotenv.2020.141956_bb0280) 2018; 642
Amanullah (10.1016/j.scitotenv.2020.141956_bb0010) 2016; 126
Dris (10.1016/j.scitotenv.2020.141956_bb0050) 2016; 104
Alimi (10.1016/j.scitotenv.2020.141956_bb0005) 2018; 52
Teng (10.1016/j.scitotenv.2020.141956_bb0220) 2014; 69
Thompson (10.1016/j.scitotenv.2020.141956_bb0230) 2015
Peng (10.1016/j.scitotenv.2020.141956_bb0150) 2018; 224
Steinmetz (10.1016/j.scitotenv.2020.141956_bb0200) 2016; 550
Nizzetto (10.1016/j.scitotenv.2020.141956_bb0140) 2016; 18
Huerta Lwanga (10.1016/j.scitotenv.2020.141956_bb0085) 2016; 50
Wan (10.1016/j.scitotenv.2020.141956_bb0240) 2019; 654
Holmes (10.1016/j.scitotenv.2020.141956_bb8000) 2012; 160
He (10.1016/j.scitotenv.2020.141956_bb0075) 2019; 159
Six (10.1016/j.scitotenv.2020.141956_bb0195) 2014; 68
Wang (10.1016/j.scitotenv.2020.141956_bb0255) 2020; 254
Meng (10.1016/j.scitotenv.2020.141956_bb0130) 2018; 633
Li (10.1016/j.scitotenv.2020.141956_bb0115) 2019; 16
Strungaru (10.1016/j.scitotenv.2020.141956_bb0210) 2019; 110
Weithmann (10.1016/j.scitotenv.2020.141956_bb0260) 2018; 4
References_xml – year: 2019
  ident: bb0155
  article-title: Plastics - the Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data
– volume: 131
  year: 2019
  ident: bb0165
  article-title: Heavy metal behaviour at mineral-organo interfaces: mechanisms, modelling and influence factors
  publication-title: Environ. Int.
– year: 1996
  ident: bb0175
  article-title: Salinity: Electrical conductivity and total dissolved solids
  publication-title: In: Sparks DL, Editor. Methods of Soil Analysis, Part 3. Chemical Methods
– volume: 642
  start-page: 690
  year: 2018
  end-page: 700
  ident: bb0265
  article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment
  publication-title: Sci. Total Environ.
– volume: 703
  start-page: 134772
  year: 2020
  ident: bb0160
  article-title: Behavior of microplastics and plastic film residues in the soil environment: a critical review
  publication-title: Sci. Total Environ.
– volume: 159
  start-page: 38
  year: 2019
  end-page: 45
  ident: bb0075
  article-title: Municipal solid waste (MSW) landfill: a source of microplastics? -evidence of microplastics in landfill leachate
  publication-title: Water Res.
– volume: 110
  start-page: 116
  year: 2019
  end-page: 128
  ident: bb0210
  article-title: Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology
  publication-title: TrAC Trends Anal. Chem.
– volume: 104
  start-page: 290
  year: 2016
  end-page: 293
  ident: bb0050
  article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment?
  publication-title: Mar. Pollut. Bull.
– volume: 939
  start-page: 1
  year: 1954
  end-page: 19
  ident: bb0145
  article-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate
  publication-title: USDA Circular
– volume: 338
  start-page: 259
  year: 2019
  end-page: 268
  ident: bb0060
  article-title: Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils
  publication-title: Geoderma
– volume: 633
  start-page: 300
  year: 2018
  end-page: 307
  ident: bb0130
  article-title: Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure
  publication-title: Sci. Total Environ.
– volume: 550
  start-page: 690
  year: 2016
  end-page: 705
  ident: bb0200
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
– volume: 160
  start-page: 42
  year: 2012
  end-page: 48
  ident: bb8000
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
– volume: 68
  start-page: A4
  year: 2014
  end-page: A9
  ident: bb0195
  article-title: Aggregate-associated soil organic matter as an ecosystem property and a measurement tool
  publication-title: Soil Biol. Biochem.
– volume: 240
  start-page: 387
  year: 2018
  end-page: 395
  ident: bb0025
  article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review
  publication-title: Environ. Pollut.
– volume: 395
  year: 2020
  ident: bb0270
  article-title: Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels
  publication-title: J. Hazard. Mater.
– volume: 180
  start-page: 93
  year: 2017
  end-page: 99
  ident: bb0125
  article-title: Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure
  publication-title: Chemosphere
– volume: 235
  start-page: 710
  year: 2018
  end-page: 719
  ident: bb0285
  article-title: Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China
  publication-title: Environ. Pollut.
– volume: 642
  start-page: 12
  year: 2018
  end-page: 20
  ident: bb0280
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
– volume: 671
  start-page: 411
  year: 2019
  end-page: 420
  ident: bb0040
  article-title: Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal
  publication-title: Sci. Total Environ.
– volume: 388
  start-page: 121775
  year: 2020
  ident: bb0295
  article-title: Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil
  publication-title: J. Hazard. Mater.
– volume: 26
  start-page: 219
  year: 2014
  end-page: 230
  ident: bb0215
  article-title: Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability
  publication-title: Chem. Spec. Bioavailab.
– volume: 19684
  year: 2018
  ident: bb0090
  article-title: Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 3218
  year: 2019
  ident: bb0115
  article-title: Biouptake responses of trace metals to long-term irrigation with diverse wastewater in the wheat rhizosphere microenvironment
  publication-title: Inter. J. of Env. Res. Pub. Heal.
– start-page: 185
  year: 2015
  end-page: 200
  ident: bb0230
  article-title: Microplastics in the marine environment: sources
  publication-title: Consequences and Solutions. Marine Anthropogenic Litter
– start-page: 1185
  year: 1996
  end-page: 1200
  ident: bb0205
  article-title: Nitrogen—organic forms
  publication-title: Methods of Soil Analysis
– volume: 627
  start-page: 1377
  year: 2018
  end-page: 1388
  ident: bb0135
  article-title: An overview of microplastic and nanoplastic pollution in agroecosystems
  publication-title: Sci. Total Environ.
– volume: 4
  year: 2018
  ident: bb0260
  article-title: Organic fertilizer as a vehicle for the entry of microplastic into the environment
  publication-title: Sci. Adv.
– volume: 586
  start-page: 127
  year: 2017
  end-page: 141
  ident: bb0080
  article-title: Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
– volume: 254
  year: 2020
  ident: bb0255
  article-title: Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil
  publication-title: Chemosphere
– volume: 52
  start-page: 9656
  year: 2018
  end-page: 9665
  ident: bb0045
  article-title: Impacts of microplastics on the soil biophysical environment
  publication-title: Environ. Sci. Technol.
– volume: 117
  start-page: 515
  year: 2002
  end-page: 521
  ident: bb0020
  article-title: The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils
  publication-title: Environ. Pollut.
– volume: 126
  start-page: 111
  year: 2016
  end-page: 121
  ident: bb0010
  article-title: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 18
  start-page: 1050
  year: 2016
  end-page: 1059
  ident: bb0140
  article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments
  publication-title: Environ. Sci-Proc. Imp.
– volume: 50
  start-page: 2685
  year: 2016
  end-page: 2691
  ident: bb0085
  article-title: Microplastics in the terrestrial ecosystem: implications for lumbricus terrestris (Oligochaeta, Lumbricidae)
  publication-title: Environ. Sci. Technol.
– volume: 224
  start-page: 282
  year: 2018
  end-page: 300
  ident: bb0150
  article-title: Kinetics of heavy metal adsorption and desorption in soil: developing a unified model based on chemical speciation
  publication-title: Geochim. Cosmochim. Ac.
– volume: 52
  start-page: 1704
  year: 2018
  end-page: 1724
  ident: bb0005
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
– volume: 114
  start-page: 313
  year: 2001
  end-page: 324
  ident: bb0055
  article-title: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils
  publication-title: Environ. Pollut.
– volume: 26
  start-page: 3356
  year: 2020
  end-page: 3367
  ident: bb0290
  article-title: Plastic pollution in croplands threatens long-term food security
  publication-title: Glob. Chang. Biol.
– volume: 255
  year: 2019
  ident: bb0110
  article-title: Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level
  publication-title: Environ. Pollut.
– volume: 159
  start-page: 84
  year: 2011
  end-page: 91
  ident: bb0275
  article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants
  publication-title: Environ. Pollut.
– volume: 141
  start-page: 174
  year: 2007
  end-page: 180
  ident: bb0105
  article-title: Fractionation of lead in paddy soils and its bioavailability to rice plants
  publication-title: Geoderma
– volume: 69
  start-page: 177
  year: 2014
  end-page: 199
  ident: bb0220
  article-title: Soil and soil environmental quality monitoring in China: a review
  publication-title: Environ. Int.
– volume: 185
  start-page: 907
  year: 2017
  end-page: 917
  ident: bb0120
  article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil
  publication-title: Chemosphere
– volume: 137
  year: 2020
  ident: bb0070
  article-title: Source, migration and toxicology of microplastics in soil
  publication-title: Environ. Int.
– volume: 135229
  year: 2019
  ident: bb0190
  article-title: The optimum pH and eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 1805
  year: 2017
  ident: bb0185
  article-title: Microplastic incorporation into soil in agroecosystems
  publication-title: Front. Plant Sci.
– volume: 708
  year: 2020
  ident: bb0250
  article-title: Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective
  publication-title: Sci. Total Environ.
– volume: 62
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: bb0035
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
– start-page: 3
  year: 2020
  end-page: 12
  ident: bb0235
  article-title: Chapter 1 - Introduction to Plastic Waste and Recycling
– volume: 99
  start-page: 517
  year: 2008
  end-page: 525
  ident: bb9000
  article-title: Comparative study of six different sludges by sequential speciation of heavy metals
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 6453
  year: 2012
  end-page: 6454
  ident: bb0180
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 2277
  year: 2007
  end-page: 2281
  ident: bb0015
  article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 844
  year: 1979
  end-page: 851
  ident: bb0225
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
– volume: 654
  start-page: 576
  year: 2019
  end-page: 582
  ident: bb0240
  article-title: Effects of plastic contamination on water evaporation and desiccation cracking in soil
  publication-title: Sci. Total Environ.
– volume: 708
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0250
  article-title: Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134841
– volume: 642
  start-page: 690
  issue: 15
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0265
  article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.068
– volume: 62
  start-page: 2588
  year: 2011
  ident: 10.1016/j.scitotenv.2020.141956_bb0035
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.025
– volume: 68
  start-page: A4
  year: 2014
  ident: 10.1016/j.scitotenv.2020.141956_bb0195
  article-title: Aggregate-associated soil organic matter as an ecosystem property and a measurement tool
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.06.014
– volume: 52
  start-page: 9656
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0045
  article-title: Impacts of microplastics on the soil biophysical environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02212
– volume: 19684
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0090
  article-title: Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community
  publication-title: J. Hazard. Mater.
– volume: 51
  start-page: 844
  year: 1979
  ident: 10.1016/j.scitotenv.2020.141956_bb0225
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
  doi: 10.1021/ac50043a017
– volume: 117
  start-page: 515
  year: 2002
  ident: 10.1016/j.scitotenv.2020.141956_bb0020
  article-title: The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00172-5
– volume: 126
  start-page: 111
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141956_bb0010
  article-title: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.12.023
– volume: 180
  start-page: 93
  year: 2017
  ident: 10.1016/j.scitotenv.2020.141956_bb0125
  article-title: Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.04.009
– volume: 41
  start-page: 2277
  year: 2007
  ident: 10.1016/j.scitotenv.2020.141956_bb0015
  article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062166r
– volume: 137
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0070
  article-title: Source, migration and toxicology of microplastics in soil
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105263
– start-page: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0235
– volume: 104
  start-page: 290
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141956_bb0050
  article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment?
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.01.006
– volume: 50
  start-page: 2685
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141956_bb0085
  article-title: Microplastics in the terrestrial ecosystem: implications for lumbricus terrestris (Oligochaeta, Lumbricidae)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05478
– volume: 16
  start-page: 3218
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0115
  article-title: Biouptake responses of trace metals to long-term irrigation with diverse wastewater in the wheat rhizosphere microenvironment
  publication-title: Inter. J. of Env. Res. Pub. Heal.
  doi: 10.3390/ijerph16173218
– volume: 26
  start-page: 219
  year: 2014
  ident: 10.1016/j.scitotenv.2020.141956_bb0215
  article-title: Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability
  publication-title: Chem. Spec. Bioavailab.
  doi: 10.3184/095422914X14147781158674
– year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0155
– volume: 586
  start-page: 127
  year: 2017
  ident: 10.1016/j.scitotenv.2020.141956_bb0080
  article-title: Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.190
– volume: 135229
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0190
  article-title: The optimum pH and eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application
  publication-title: Sci. Total Environ.
– volume: 255
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0110
  article-title: Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113170
– volume: 627
  start-page: 1377
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0135
  article-title: An overview of microplastic and nanoplastic pollution in agroecosystems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.341
– volume: 224
  start-page: 282
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0150
  article-title: Kinetics of heavy metal adsorption and desorption in soil: developing a unified model based on chemical speciation
  publication-title: Geochim. Cosmochim. Ac.
  doi: 10.1016/j.gca.2018.01.014
– volume: 160
  start-page: 42
  year: 2012
  ident: 10.1016/j.scitotenv.2020.141956_bb8000
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.08.052
– volume: 8
  start-page: 1805
  year: 2017
  ident: 10.1016/j.scitotenv.2020.141956_bb0185
  article-title: Microplastic incorporation into soil in agroecosystems
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01805
– volume: 4
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0260
  article-title: Organic fertilizer as a vehicle for the entry of microplastic into the environment
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap8060
– volume: 633
  start-page: 300
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0130
  article-title: Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.199
– volume: 642
  start-page: 12
  issue: 15
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0280
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.004
– volume: 235
  start-page: 710
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0285
  article-title: Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.12.106
– volume: 114
  start-page: 313
  issue: 3
  year: 2001
  ident: 10.1016/j.scitotenv.2020.141956_bb0055
  article-title: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(00)00243-8
– volume: 703
  start-page: 134772
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0160
  article-title: Behavior of microplastics and plastic film residues in the soil environment: a critical review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134722
– start-page: 1185
  year: 1996
  ident: 10.1016/j.scitotenv.2020.141956_bb0205
  article-title: Nitrogen—organic forms
– volume: 395
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0270
  article-title: Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122690
– volume: 69
  start-page: 177
  year: 2014
  ident: 10.1016/j.scitotenv.2020.141956_bb0220
  article-title: Soil and soil environmental quality monitoring in China: a review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.04.014
– volume: 18
  start-page: 1050
  issue: 8
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141956_bb0140
  article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments
  publication-title: Environ. Sci-Proc. Imp.
– volume: 26
  start-page: 3356
  issue: 6
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0290
  article-title: Plastic pollution in croplands threatens long-term food security
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15043
– volume: 338
  start-page: 259
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0060
  article-title: Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.016
– volume: 185
  start-page: 907
  year: 2017
  ident: 10.1016/j.scitotenv.2020.141956_bb0120
  article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.064
– volume: 99
  start-page: 517
  year: 2008
  ident: 10.1016/j.scitotenv.2020.141956_bb9000
  article-title: Comparative study of six different sludges by sequential speciation of heavy metals
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.01.025
– volume: 131
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0165
  article-title: Heavy metal behaviour at mineral-organo interfaces: mechanisms, modelling and influence factors
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.104995
– volume: 141
  start-page: 174
  issue: 3–4
  year: 2007
  ident: 10.1016/j.scitotenv.2020.141956_bb0105
  article-title: Fractionation of lead in paddy soils and its bioavailability to rice plants
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.05.006
– volume: 939
  start-page: 1
  year: 1954
  ident: 10.1016/j.scitotenv.2020.141956_bb0145
  article-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate
  publication-title: USDA Circular
– volume: 654
  start-page: 576
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0240
  article-title: Effects of plastic contamination on water evaporation and desiccation cracking in soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.123
– volume: 240
  start-page: 387
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0025
  article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.05.008
– volume: 254
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0255
  article-title: Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126791
– volume: 388
  start-page: 121775
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141956_bb0295
  article-title: Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121775
– volume: 52
  start-page: 1704
  issue: 4
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141956_bb0005
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05559
– start-page: 185
  year: 2015
  ident: 10.1016/j.scitotenv.2020.141956_bb0230
  article-title: Microplastics in the marine environment: sources
  publication-title: Consequences and Solutions. Marine Anthropogenic Litter
  doi: 10.1007/978-3-319-16510-3_7
– volume: 671
  start-page: 411
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0040
  article-title: Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.368
– year: 1996
  ident: 10.1016/j.scitotenv.2020.141956_bb0175
  article-title: Salinity: Electrical conductivity and total dissolved solids
– volume: 46
  start-page: 6453
  issue: 12
  year: 2012
  ident: 10.1016/j.scitotenv.2020.141956_bb0180
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302011r
– volume: 550
  start-page: 690
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141956_bb0200
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.153
– volume: 159
  start-page: 84
  year: 2011
  ident: 10.1016/j.scitotenv.2020.141956_bb0275
  article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.09.019
– volume: 110
  start-page: 116
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0210
  article-title: Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.10.025
– volume: 159
  start-page: 38
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141956_bb0075
  article-title: Municipal solid waste (MSW) landfill: a source of microplastics? -evidence of microplastics in landfill leachate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.060
SSID ssj0000781
Score 2.6451247
Snippet Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141956
SubjectTerms adsorption
bioavailability
chemical speciation
Chemical speciation transformation
Different heavy metals
Diverse impact
Diverse microenvironments
environment
environmental quality
heavy metals
Microplastics
pollution
polyethylene
soil aggregates
soil separates
species
Title Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil
URI https://dx.doi.org/10.1016/j.scitotenv.2020.141956
https://www.proquest.com/docview/2440467311
https://www.proquest.com/docview/2986390257
Volume 752
WOSCitedRecordID wos000588243900102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKBxISQlCYGJfJSLxVmVLnYoe3CXUCJKZJDKnwEjmpM1qNpFrSavsjvPBnOceXpN0GAyFe0spNHEffF_vz6bkQ8iqA90flYexF2lqFKW8zrgrPL7iUYcESVUhdbIIfHorJJDnq9X64WJjVKS9LcX6eLP4r1NAGYGPo7F_A3XYKDfAdQIcjwA7HPwL-g8L4Rm1a1YlYT2BHjbay4Tf0vVsLbBue6Dq7xsnQuMqqoXOtRhFZ69r0miDNmr41CtNVVmlQa64usBQ1ZmIGKavvswBVrjNAz8phXVk_jnlHTTenWBeFpsJBrw2unY2WenGs7AK7buL-8lVd0_p51jUeGOvukWuy1g2Gpg3PxHcak9uVsBszjQOvktg49rppnJtMuFeWBGOdmO-BooBngQfZg_tAe4iRkt0q2PomfsTesXPmB7Cdw_D8LcajRPTJ1v678eR9t9BzYQoy2tFsuA9ee7tfiZ9LMkBrm-MH5L7dlNB9Q6aHpKfKAbljypReDMj2uMMFTrPQ1QNyzxh9qYlle0S-a-5R5B4F7tGWe_Qy96jhHgXsqeMeddyjVUE77tFN7uGPLfeo5h413KNNRTe4R2clRe49Jp8Oxsdv3nq28IeXg4BsvEiN4mI6kiCcuITpIw5kDB8qHDGmRBGLKAs5l3CGCnxfhUUk4KBklDE2zafTYJv0y6pUTwiFNUz6auRPcxWGmRRSqNjPfOiGSRFFaofEDpE0t1nxsTjLaercH-dpC2WKUKYGyh3itxcuTGKYmy957SBPrb41ujUFrt588UtHkhRWAPxbT5aqWtYpwxSfMYdZ9zfnJAK2IrC_4U__ZRDPyN3uJX1O-s3ZUr0gt_NVM6vPdsktPhG79i35CTo-8y0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+type+and+aggregate+microenvironment+govern+the+response+sequence+of+speciation+transformation+of+different+heavy+metals+to+microplastics+in+soil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Yu%2C+Hong&rft.au=Zhang%2C+Zheng&rft.au=Zhang%2C+Ying&rft.au=Fan%2C+Ping&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=752&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.141956&rft.externalDocID=S0048969720354851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon