Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil
Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incuba...
Uloženo v:
| Vydáno v: | The Science of the total environment Ročník 752; s. 141956 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.01.2021
|
| Témata: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types.
[Display omitted]
•Microplastics stimulated heavy metal (HM) transformation from bioavailable to organic bound.•The stimulation degree was different across HMs and soil aggregate fractions.•Microplastics affected HM speciation through direct adsorption and changing soil properties.•pH and DOC were significant factors affecting HM speciation in the presence of microplastics. |
|---|---|
| AbstractList | Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types.
[Display omitted]
•Microplastics stimulated heavy metal (HM) transformation from bioavailable to organic bound.•The stimulation degree was different across HMs and soil aggregate fractions.•Microplastics affected HM speciation through direct adsorption and changing soil properties.•pH and DOC were significant factors affecting HM speciation in the presence of microplastics. Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types. Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types.Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation in soil. Whether this influence mechanism differs between heavy metals is unknown on the soil aggregates level. In this study, 5 months incubation experiments and soil fractionation were conducted to evaluate the effect of microplastic addition on the chemical speciation of seven heavy metals (Zn, Cu, Ni, Cd, Cr, As, and Pb) in the three soil aggregate fractions. The results show that 28% concentration of polyethylene microplastics with size 100 μm reduces and increases the heavy metal content in the bioavailable and organic-bound fractions, respectively, indicating that microplastics promote the transformation from bioavailable to organic-bound species. The transformation in the larger-sized aggregate fractions is more dramatic than that of smaller-sized aggregate fractions within the incubation period. This indicates that the extent of the response of the different heavy metals to microplastics is significantly different in the three aggregate-size fractions. Soil physicochemical factors affected different heavy metals in different pathways, and microplastics have different adsorption or complexation effects on different heavy metals. These processes result in heterogeneous responses of different heavy metals to microplastic addition. In addition, the microplastics have different extents of influence on the different chemical speciation of the heavy metals, having the greatest influence on the exchangeable and carbonate-bound of Cu and Zn, FeMn oxide-bound of As, and organic-bound of Cr, Ni, Cd, and Pb. This phenomenon is relatively consistent among the three aggregate-size fractions. Our findings provide more accurate management information for soil environmental quality management with different heavy metal pollution and different soil types. |
| ArticleNumber | 141956 |
| Author | Zhang, Ying Xi, Beidou Fan, Ping Zhang, Zheng Yu, Hong Tan, Wenbing |
| Author_xml | – sequence: 1 givenname: Hong surname: Yu fullname: Yu, Hong organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China – sequence: 2 givenname: Zheng surname: Zhang fullname: Zhang, Zheng organization: Center for Soil Environmental Protection, Chinese Academy of Environmental Planning, Beijing 100012, China – sequence: 3 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China – sequence: 4 givenname: Ping surname: Fan fullname: Fan, Ping organization: College of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China – sequence: 5 givenname: Beidou orcidid: 0000-0002-1055-1581 surname: Xi fullname: Xi, Beidou email: xibeidou@yeah.net organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China – sequence: 6 givenname: Wenbing orcidid: 0000-0001-9896-7604 surname: Tan fullname: Tan, Wenbing organization: State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China |
| BookMark | eNqNUU1v3CAQRVUqdZP2N5RjL94CxmAfeoiifkmJemnPiOBhw8oGlyEr7R_p7w2uqx56STkwgnnvjea9S3IRUwRC3nK254yr98c9ulBSgXjaCybqr-RDp16QHe_10HAm1AXZMSb7ZlCDfkUuEY-sHt3zHfl1B8VOtJwXoDaO1B4OGQ62AJ2Dy6mKhpziDLHQQzpBjrQ8AM2AS4oIFOHnI0QHNHmKC7hgS0gVk21En_K8PWtzDN5DXmUewJ7OdF7HIi1pm7NMFktwSEOkmML0mrz0tQ9v_tQr8uPTx-83X5rbb5-_3lzfNq7teWk64MqP3ErNtWWtUq1VtYDkQkDvVd_dS61tRUDLGEjf9fUC290LMbpxbK_Iu013yalugsXMAR1Mk42QHtGIoVftwESnn4dKyaTSLecVqjdo3QwxgzdLDrPNZ8OZWUMzR_M3NLOGZrbQKvPDP8wK-21itTRM_8G_3vhQTTsFyCtuDWgMGVwxYwrPajwBp_y_8w |
| CitedBy_id | crossref_primary_10_1016_j_envpol_2023_122592 crossref_primary_10_1016_j_chemosphere_2021_130800 crossref_primary_10_1080_15226514_2023_2250464 crossref_primary_10_1016_j_apsoil_2024_105488 crossref_primary_10_1007_s11356_023_27002_4 crossref_primary_10_1007_s11368_023_03637_1 crossref_primary_10_1016_j_envres_2025_121128 crossref_primary_10_3390_app12020595 crossref_primary_10_1016_j_envpol_2023_122754 crossref_primary_10_1016_j_envres_2024_119960 crossref_primary_10_1007_s00128_022_03523_5 crossref_primary_10_1016_j_jhazmat_2024_135879 crossref_primary_10_1016_j_scitotenv_2022_158353 crossref_primary_10_1016_j_jhazmat_2023_132369 crossref_primary_10_1016_j_jhazmat_2022_130102 crossref_primary_10_1080_15320383_2025_2504599 crossref_primary_10_1016_j_scitotenv_2023_166012 crossref_primary_10_1016_j_jhazmat_2023_131716 crossref_primary_10_1111_sum_12808 crossref_primary_10_1016_j_ecoenv_2025_117956 crossref_primary_10_1016_j_scitotenv_2024_174206 crossref_primary_10_1016_j_watres_2022_118354 crossref_primary_10_1016_j_envpol_2024_124702 crossref_primary_10_3390_w14213586 crossref_primary_10_1016_j_jhazmat_2024_135221 crossref_primary_10_1016_j_jhazmat_2025_138078 crossref_primary_10_3390_toxics13080609 crossref_primary_10_48130_cas_0024_0008 crossref_primary_10_3390_earth3030053 crossref_primary_10_3390_pr11082241 crossref_primary_10_1016_j_scitotenv_2022_155619 crossref_primary_10_1007_s13762_021_03612_8 crossref_primary_10_1002_ep_14301 crossref_primary_10_1016_j_jhazmat_2022_129726 crossref_primary_10_1186_s43591_022_00044_0 crossref_primary_10_1016_j_scitotenv_2024_176831 crossref_primary_10_1371_journal_pone_0304811 crossref_primary_10_1007_s00128_021_03339_9 crossref_primary_10_1016_j_jhazmat_2024_136068 crossref_primary_10_1016_j_chemosphere_2021_129590 crossref_primary_10_1016_j_jhazmat_2024_135535 crossref_primary_10_1007_s11104_025_07704_z crossref_primary_10_1021_acs_jafc_5c03682 crossref_primary_10_1007_s11368_024_03813_x crossref_primary_10_1016_j_jhazmat_2022_128801 crossref_primary_10_1016_j_jhazmat_2021_127531 crossref_primary_10_1016_j_eti_2024_103607 crossref_primary_10_1016_j_gr_2022_01_017 crossref_primary_10_3390_agronomy15061319 crossref_primary_10_3390_ijerph20043106 crossref_primary_10_1080_15226514_2022_2033687 crossref_primary_10_1016_j_jhazmat_2023_132636 crossref_primary_10_1016_j_impact_2025_100541 crossref_primary_10_1016_j_envpol_2021_118104 crossref_primary_10_1080_26395940_2023_2263641 crossref_primary_10_1007_s11368_025_04102_x crossref_primary_10_1007_s11270_025_08222_5 crossref_primary_10_1016_j_ecoenv_2023_115100 crossref_primary_10_1016_j_scitotenv_2021_147133 crossref_primary_10_1016_j_ecoenv_2024_117248 crossref_primary_10_1016_j_plaphy_2025_110350 crossref_primary_10_1016_j_eti_2024_103538 crossref_primary_10_1016_j_envpol_2024_124299 crossref_primary_10_3390_toxics13040245 crossref_primary_10_1016_j_ecoenv_2022_113958 crossref_primary_10_3390_molecules30071464 crossref_primary_10_1016_j_trac_2024_117855 crossref_primary_10_3390_plants13172526 crossref_primary_10_1016_j_watres_2021_117637 crossref_primary_10_1007_s11270_023_06816_5 crossref_primary_10_1016_j_chemosphere_2022_136833 crossref_primary_10_1016_j_jhazmat_2021_127364 crossref_primary_10_1016_j_trac_2023_117294 crossref_primary_10_1016_j_jhazmat_2023_130788 crossref_primary_10_1016_j_jhazmat_2024_133934 crossref_primary_10_1016_j_scitotenv_2021_151487 crossref_primary_10_1007_s10653_025_02529_2 crossref_primary_10_1016_j_jhazmat_2024_134053 crossref_primary_10_1016_j_jhazmat_2025_137621 crossref_primary_10_3390_agronomy15051052 crossref_primary_10_1007_s11783_025_1926_6 crossref_primary_10_1016_j_scitotenv_2024_170281 crossref_primary_10_1016_j_jhazmat_2024_136592 crossref_primary_10_1080_15320383_2023_2286524 crossref_primary_10_1016_j_jhazmat_2025_137505 crossref_primary_10_1016_j_jhazmat_2024_135028 crossref_primary_10_1016_j_chemosphere_2022_134789 crossref_primary_10_1016_j_jhazmat_2024_133884 crossref_primary_10_1016_j_pedsph_2023_06_010 crossref_primary_10_1016_j_jhazmat_2022_129555 crossref_primary_10_1038_s41598_024_56973_8 crossref_primary_10_3390_su15054504 crossref_primary_10_3390_nano11112935 crossref_primary_10_1002_ldr_70049 crossref_primary_10_1016_j_jes_2025_04_061 crossref_primary_10_3390_app14114643 crossref_primary_10_1016_j_coesh_2021_100297 crossref_primary_10_1007_s13762_022_04339_w crossref_primary_10_1007_s11368_023_03689_3 crossref_primary_10_1016_j_ecoenv_2021_112217 crossref_primary_10_1016_j_scitotenv_2023_166434 crossref_primary_10_1002_ep_14230 crossref_primary_10_1016_j_jhazmat_2025_139813 crossref_primary_10_1016_j_scitotenv_2024_170541 crossref_primary_10_1016_j_chemosphere_2024_142107 crossref_primary_10_1016_j_scitotenv_2024_177610 crossref_primary_10_1080_15320383_2023_2258413 crossref_primary_10_1016_j_coesh_2023_100482 crossref_primary_10_1016_j_envpol_2022_120357 crossref_primary_10_1016_j_jhazmat_2022_130079 crossref_primary_10_1016_j_envres_2025_121631 crossref_primary_10_1016_j_chemosphere_2023_138223 crossref_primary_10_3390_molecules30112370 crossref_primary_10_1016_j_jhazmat_2022_130638 |
| Cites_doi | 10.1016/j.scitotenv.2019.134841 10.1016/j.scitotenv.2018.06.068 10.1016/j.marpolbul.2011.09.025 10.1016/j.soilbio.2013.06.014 10.1021/acs.est.8b02212 10.1021/ac50043a017 10.1016/S0269-7491(01)00172-5 10.1016/j.ecoenv.2015.12.023 10.1016/j.chemosphere.2017.04.009 10.1021/es062166r 10.1016/j.envint.2019.105263 10.1016/j.marpolbul.2016.01.006 10.1021/acs.est.5b05478 10.3390/ijerph16173218 10.3184/095422914X14147781158674 10.1016/j.scitotenv.2017.01.190 10.1016/j.envpol.2019.113170 10.1016/j.scitotenv.2018.01.341 10.1016/j.gca.2018.01.014 10.1016/j.envpol.2011.08.052 10.3389/fpls.2017.01805 10.1126/sciadv.aap8060 10.1016/j.scitotenv.2018.03.199 10.1016/j.scitotenv.2018.06.004 10.1016/j.envpol.2017.12.106 10.1016/S0269-7491(00)00243-8 10.1016/j.scitotenv.2019.134722 10.1016/j.jhazmat.2020.122690 10.1016/j.envint.2014.04.014 10.1111/gcb.15043 10.1016/j.geoderma.2018.12.016 10.1016/j.chemosphere.2017.07.064 10.1016/j.biortech.2007.01.025 10.1016/j.envint.2019.104995 10.1016/j.geoderma.2007.05.006 10.1016/j.scitotenv.2018.11.123 10.1016/j.envpol.2018.05.008 10.1016/j.chemosphere.2020.126791 10.1016/j.jhazmat.2019.121775 10.1021/acs.est.7b05559 10.1007/978-3-319-16510-3_7 10.1016/j.scitotenv.2019.03.368 10.1021/es302011r 10.1016/j.scitotenv.2016.01.153 10.1016/j.envpol.2010.09.019 10.1016/j.trac.2018.10.025 10.1016/j.watres.2019.04.060 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2020.141956 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 10_1016_j_scitotenv_2020_141956 S0048969720354851 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c381t-5e16fd1a4717a03663a6036e4122e8f685b477ad1ae300e4f58e4fea5b22dcdd3 |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588243900102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Sep 28 09:14:07 EDT 2025 Wed Oct 01 13:54:50 EDT 2025 Tue Nov 18 22:24:08 EST 2025 Sat Nov 29 06:35:38 EST 2025 Sat Dec 14 16:15:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chemical speciation transformation Microplastics Diverse microenvironments Diverse impact Different heavy metals |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-5e16fd1a4717a03663a6036e4122e8f685b477ad1ae300e4f58e4fea5b22dcdd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1055-1581 0000-0001-9896-7604 |
| PQID | 2440467311 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2986390257 proquest_miscellaneous_2440467311 crossref_primary_10_1016_j_scitotenv_2020_141956 crossref_citationtrail_10_1016_j_scitotenv_2020_141956 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_141956 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-15 |
| PublicationDateYYYYMMDD | 2021-01-15 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – sequence: 0 name: Elsevier B.V |
| References | Horton, Walton, Spurgeon, Lahive, Svendsen (bb0080) 2017; 586 Alimi, Farner Budarz, Hernandez, Tufenkji (bb0005) 2018; 52 Zhang, Liu (bb0280) 2018; 642 Amery, Degryse, Degeling, Smolders, Merckx (bb0015) 2007; 41 Antoniadis, Alloway (bb0020) 2002; 117 Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Schaumann (bb0200) 2016; 550 Tessier, Campbell, Bisson (bb0225) 1979; 51 Chae, An (bb0025) 2018; 240 Qi, Jones, Li, Liu, Yang (bb0160) 2020; 703 Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, Van Der Ploeg, Besseling, Koelmans, Geissen (bb0085) 2016; 50 Qu, Chen, Hu, Cai, Chen, Yu, Huang (bb0165) 2019; 131 Wan, Wu, Xue, Hui (bb0240) 2019; 654 Yu, Hou, Dang, Cui, Xi, Tan (bb0270) 2020; 395 Zhang, Li, Zhou, Dou, Cai, Mo, You (bb0285) 2018; 235 Liu, Yang, Liu, Liang, Xue, Chen (bb0120) 2017; 185 Weithmann, Möller, Löder, Piehl, Laforsch, Freitag (bb0260) 2018; 4 Facchinelli, Sacchi, Mallen (bb0055) 2001; 114 Wang, Zhang, Zhang, Zhang, Sun (bb0255) 2020; 254 Olsen, Cole, Watanable (bb0145) 1954; 939 Plastics Europe (bb0155) 2019 Teng, Wu, Lu, Wang, Jiao, Song (bb0220) 2014; 69 Stevenson (bb0205) 1996 Trevor (bb0235) 2020 Holmes, Turner, Thompson (bb8000) 2012; 160 Rhoades (bb0175) 1996 Shen, Wang, Zhang, Zhang, Wang, Xie, Ji (bb0190) 2019; 135229 Cole, Lindeque, Halsband, Galloway (bb0035) 2011; 62 Yang, Li, Lu, Duan, Huang, Bi (bb0265) 2018; 642 Guo, Huang, Xiang, Wang, Li, Li, Cai, Mo, Wong (bb0070) 2020; 137 Nizzetto, Bussi, Futter, Butterfield, Whitehead (bb0140) 2016; 18 Thompson (bb0230) 2015 Sungur, Soylak, Ozcan (bb0215) 2014; 26 Wang, Ge, Yu, Li (bb0250) 2020; 708 García-Carmona, Romero-Freire, Aragón, Martín Peinado (bb0060) 2019; 338 Dris, Gasperi, Saad, Mirande, Tassin (bb0050) 2016; 104 Peng, Liu, Feng, Wang, Cheng, Liang, Zhang, Shi (bb0150) 2018; 224 Meng, Wang, Zhong, Liu, Brookes, Xu, Chen (bb0125) 2017; 180 Zhang, Han, Sun, Wang (bb0295) 2020; 388 Rillig (bb0180) 2012; 46 Zeng, Ali, Zhang, Ouyang, Qiu, Wu, Zhang (bb0275) 2011; 159 Corradini, Meza, Eguiluz, Casado, Huerta-Lwanga, Geissen (bb0040) 2019; 671 Amanullah, Wang, Ali, Awasthi, Lahori, Wang, Li, Zhang (bb0010) 2016; 126 Strungaru, Jijie, Nicoara, Plavan, Faggio (bb0210) 2019; 110 Ng, Huerta Lwanga, Eldridge, Johnston, Hu, Geissen, Chen (bb0135) 2018; 627 Li, Yang, He, Jilani, Sun, Chen (bb0105) 2007; 141 Meng, Tao, Wang, Liu, Xu (bb0130) 2018; 633 Rillig, Ingraffia, de Souza Machado (bb0185) 2017; 8 Fuentes, Lloréns, Sáez, Isabel Aguilar, Ortuño, Meseguer (bb9000) 2008; 99 Six, Paustian (bb0195) 2014; 68 De Souza Machado, Lau, Till, Kloas, Lehmann, Becker, Rillig (bb0045) 2018; 52 Jiang, Adebayo, Jia, Xing, Deng, Guo, Liang, Zhang (bb0090) 2018; 19684 Li, Zhang, Yu, Dang, Yu, Xi, Tan (bb0115) 2019; 16 Zhang, Ng, Hu, Wang, Galaviz, Yang, Sun, Li, Ma, Fu, Zhao, Zhang, Jin, Zhou, Du, Peng, Zhang, Xu, Xi, Liu, Sun, Cheng, Jiang, Wang, Gong, Kou, Li, Ma, Huang, Zhu, Yao, Lin, Qin, Zhou, He, Chen, Li, Zhai, Lei, Wu, Zhang, Pan, Gu, Liu (bb0290) 2020; 26 Li, Tan, Wang, Zhao, Dang, Yu, Xi (bb0110) 2019; 255 He, Chen, Shao, Zhang, Lü (bb0075) 2019; 159 Zhang (10.1016/j.scitotenv.2020.141956_bb0285) 2018; 235 Qu (10.1016/j.scitotenv.2020.141956_bb0165) 2019; 131 Yu (10.1016/j.scitotenv.2020.141956_bb0270) 2020; 395 Li (10.1016/j.scitotenv.2020.141956_bb0110) 2019; 255 Horton (10.1016/j.scitotenv.2020.141956_bb0080) 2017; 586 García-Carmona (10.1016/j.scitotenv.2020.141956_bb0060) 2019; 338 Meng (10.1016/j.scitotenv.2020.141956_bb0125) 2017; 180 Yang (10.1016/j.scitotenv.2020.141956_bb0265) 2018; 642 Zeng (10.1016/j.scitotenv.2020.141956_bb0275) 2011; 159 Plastics Europe (10.1016/j.scitotenv.2020.141956_bb0155) 2019 Stevenson (10.1016/j.scitotenv.2020.141956_bb0205) 1996 Fuentes (10.1016/j.scitotenv.2020.141956_bb9000) 2008; 99 Wang (10.1016/j.scitotenv.2020.141956_bb0250) 2020; 708 Tessier (10.1016/j.scitotenv.2020.141956_bb0225) 1979; 51 Zhang (10.1016/j.scitotenv.2020.141956_bb0295) 2020; 388 Jiang (10.1016/j.scitotenv.2020.141956_bb0090) 2018; 19684 Rhoades (10.1016/j.scitotenv.2020.141956_bb0175) 1996 Zhang (10.1016/j.scitotenv.2020.141956_bb0290) 2020; 26 Chae (10.1016/j.scitotenv.2020.141956_bb0025) 2018; 240 Facchinelli (10.1016/j.scitotenv.2020.141956_bb0055) 2001; 114 Rillig (10.1016/j.scitotenv.2020.141956_bb0180) 2012; 46 Cole (10.1016/j.scitotenv.2020.141956_bb0035) 2011; 62 Ng (10.1016/j.scitotenv.2020.141956_bb0135) 2018; 627 Qi (10.1016/j.scitotenv.2020.141956_bb0160) 2020; 703 De Souza Machado (10.1016/j.scitotenv.2020.141956_bb0045) 2018; 52 Li (10.1016/j.scitotenv.2020.141956_bb0105) 2007; 141 Rillig (10.1016/j.scitotenv.2020.141956_bb0185) 2017; 8 Corradini (10.1016/j.scitotenv.2020.141956_bb0040) 2019; 671 Antoniadis (10.1016/j.scitotenv.2020.141956_bb0020) 2002; 117 Trevor (10.1016/j.scitotenv.2020.141956_bb0235) 2020 Olsen (10.1016/j.scitotenv.2020.141956_bb0145) 1954; 939 Amery (10.1016/j.scitotenv.2020.141956_bb0015) 2007; 41 Sungur (10.1016/j.scitotenv.2020.141956_bb0215) 2014; 26 Shen (10.1016/j.scitotenv.2020.141956_bb0190) 2019; 135229 Liu (10.1016/j.scitotenv.2020.141956_bb0120) 2017; 185 Guo (10.1016/j.scitotenv.2020.141956_bb0070) 2020; 137 Zhang (10.1016/j.scitotenv.2020.141956_bb0280) 2018; 642 Amanullah (10.1016/j.scitotenv.2020.141956_bb0010) 2016; 126 Dris (10.1016/j.scitotenv.2020.141956_bb0050) 2016; 104 Alimi (10.1016/j.scitotenv.2020.141956_bb0005) 2018; 52 Teng (10.1016/j.scitotenv.2020.141956_bb0220) 2014; 69 Thompson (10.1016/j.scitotenv.2020.141956_bb0230) 2015 Peng (10.1016/j.scitotenv.2020.141956_bb0150) 2018; 224 Steinmetz (10.1016/j.scitotenv.2020.141956_bb0200) 2016; 550 Nizzetto (10.1016/j.scitotenv.2020.141956_bb0140) 2016; 18 Huerta Lwanga (10.1016/j.scitotenv.2020.141956_bb0085) 2016; 50 Wan (10.1016/j.scitotenv.2020.141956_bb0240) 2019; 654 Holmes (10.1016/j.scitotenv.2020.141956_bb8000) 2012; 160 He (10.1016/j.scitotenv.2020.141956_bb0075) 2019; 159 Six (10.1016/j.scitotenv.2020.141956_bb0195) 2014; 68 Wang (10.1016/j.scitotenv.2020.141956_bb0255) 2020; 254 Meng (10.1016/j.scitotenv.2020.141956_bb0130) 2018; 633 Li (10.1016/j.scitotenv.2020.141956_bb0115) 2019; 16 Strungaru (10.1016/j.scitotenv.2020.141956_bb0210) 2019; 110 Weithmann (10.1016/j.scitotenv.2020.141956_bb0260) 2018; 4 |
| References_xml | – year: 2019 ident: bb0155 article-title: Plastics - the Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data – volume: 131 year: 2019 ident: bb0165 article-title: Heavy metal behaviour at mineral-organo interfaces: mechanisms, modelling and influence factors publication-title: Environ. Int. – year: 1996 ident: bb0175 article-title: Salinity: Electrical conductivity and total dissolved solids publication-title: In: Sparks DL, Editor. Methods of Soil Analysis, Part 3. Chemical Methods – volume: 642 start-page: 690 year: 2018 end-page: 700 ident: bb0265 article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment publication-title: Sci. Total Environ. – volume: 703 start-page: 134772 year: 2020 ident: bb0160 article-title: Behavior of microplastics and plastic film residues in the soil environment: a critical review publication-title: Sci. Total Environ. – volume: 159 start-page: 38 year: 2019 end-page: 45 ident: bb0075 article-title: Municipal solid waste (MSW) landfill: a source of microplastics? -evidence of microplastics in landfill leachate publication-title: Water Res. – volume: 110 start-page: 116 year: 2019 end-page: 128 ident: bb0210 article-title: Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology publication-title: TrAC Trends Anal. Chem. – volume: 104 start-page: 290 year: 2016 end-page: 293 ident: bb0050 article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? publication-title: Mar. Pollut. Bull. – volume: 939 start-page: 1 year: 1954 end-page: 19 ident: bb0145 article-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate publication-title: USDA Circular – volume: 338 start-page: 259 year: 2019 end-page: 268 ident: bb0060 article-title: Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils publication-title: Geoderma – volume: 633 start-page: 300 year: 2018 end-page: 307 ident: bb0130 article-title: Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure publication-title: Sci. Total Environ. – volume: 550 start-page: 690 year: 2016 end-page: 705 ident: bb0200 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. – volume: 160 start-page: 42 year: 2012 end-page: 48 ident: bb8000 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. – volume: 68 start-page: A4 year: 2014 end-page: A9 ident: bb0195 article-title: Aggregate-associated soil organic matter as an ecosystem property and a measurement tool publication-title: Soil Biol. Biochem. – volume: 240 start-page: 387 year: 2018 end-page: 395 ident: bb0025 article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review publication-title: Environ. Pollut. – volume: 395 year: 2020 ident: bb0270 article-title: Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels publication-title: J. Hazard. Mater. – volume: 180 start-page: 93 year: 2017 end-page: 99 ident: bb0125 article-title: Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure publication-title: Chemosphere – volume: 235 start-page: 710 year: 2018 end-page: 719 ident: bb0285 article-title: Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China publication-title: Environ. Pollut. – volume: 642 start-page: 12 year: 2018 end-page: 20 ident: bb0280 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. – volume: 671 start-page: 411 year: 2019 end-page: 420 ident: bb0040 article-title: Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal publication-title: Sci. Total Environ. – volume: 388 start-page: 121775 year: 2020 ident: bb0295 article-title: Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil publication-title: J. Hazard. Mater. – volume: 26 start-page: 219 year: 2014 end-page: 230 ident: bb0215 article-title: Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability publication-title: Chem. Spec. Bioavailab. – volume: 19684 year: 2018 ident: bb0090 article-title: Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community publication-title: J. Hazard. Mater. – volume: 16 start-page: 3218 year: 2019 ident: bb0115 article-title: Biouptake responses of trace metals to long-term irrigation with diverse wastewater in the wheat rhizosphere microenvironment publication-title: Inter. J. of Env. Res. Pub. Heal. – start-page: 185 year: 2015 end-page: 200 ident: bb0230 article-title: Microplastics in the marine environment: sources publication-title: Consequences and Solutions. Marine Anthropogenic Litter – start-page: 1185 year: 1996 end-page: 1200 ident: bb0205 article-title: Nitrogen—organic forms publication-title: Methods of Soil Analysis – volume: 627 start-page: 1377 year: 2018 end-page: 1388 ident: bb0135 article-title: An overview of microplastic and nanoplastic pollution in agroecosystems publication-title: Sci. Total Environ. – volume: 4 year: 2018 ident: bb0260 article-title: Organic fertilizer as a vehicle for the entry of microplastic into the environment publication-title: Sci. Adv. – volume: 586 start-page: 127 year: 2017 end-page: 141 ident: bb0080 article-title: Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. – volume: 254 year: 2020 ident: bb0255 article-title: Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil publication-title: Chemosphere – volume: 52 start-page: 9656 year: 2018 end-page: 9665 ident: bb0045 article-title: Impacts of microplastics on the soil biophysical environment publication-title: Environ. Sci. Technol. – volume: 117 start-page: 515 year: 2002 end-page: 521 ident: bb0020 article-title: The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils publication-title: Environ. Pollut. – volume: 126 start-page: 111 year: 2016 end-page: 121 ident: bb0010 article-title: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review publication-title: Ecotoxicol. Environ. Saf. – volume: 18 start-page: 1050 year: 2016 end-page: 1059 ident: bb0140 article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments publication-title: Environ. Sci-Proc. Imp. – volume: 50 start-page: 2685 year: 2016 end-page: 2691 ident: bb0085 article-title: Microplastics in the terrestrial ecosystem: implications for lumbricus terrestris (Oligochaeta, Lumbricidae) publication-title: Environ. Sci. Technol. – volume: 224 start-page: 282 year: 2018 end-page: 300 ident: bb0150 article-title: Kinetics of heavy metal adsorption and desorption in soil: developing a unified model based on chemical speciation publication-title: Geochim. Cosmochim. Ac. – volume: 52 start-page: 1704 year: 2018 end-page: 1724 ident: bb0005 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. – volume: 114 start-page: 313 year: 2001 end-page: 324 ident: bb0055 article-title: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils publication-title: Environ. Pollut. – volume: 26 start-page: 3356 year: 2020 end-page: 3367 ident: bb0290 article-title: Plastic pollution in croplands threatens long-term food security publication-title: Glob. Chang. Biol. – volume: 255 year: 2019 ident: bb0110 article-title: Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level publication-title: Environ. Pollut. – volume: 159 start-page: 84 year: 2011 end-page: 91 ident: bb0275 article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants publication-title: Environ. Pollut. – volume: 141 start-page: 174 year: 2007 end-page: 180 ident: bb0105 article-title: Fractionation of lead in paddy soils and its bioavailability to rice plants publication-title: Geoderma – volume: 69 start-page: 177 year: 2014 end-page: 199 ident: bb0220 article-title: Soil and soil environmental quality monitoring in China: a review publication-title: Environ. Int. – volume: 185 start-page: 907 year: 2017 end-page: 917 ident: bb0120 article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil publication-title: Chemosphere – volume: 137 year: 2020 ident: bb0070 article-title: Source, migration and toxicology of microplastics in soil publication-title: Environ. Int. – volume: 135229 year: 2019 ident: bb0190 article-title: The optimum pH and eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application publication-title: Sci. Total Environ. – volume: 8 start-page: 1805 year: 2017 ident: bb0185 article-title: Microplastic incorporation into soil in agroecosystems publication-title: Front. Plant Sci. – volume: 708 year: 2020 ident: bb0250 article-title: Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective publication-title: Sci. Total Environ. – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: bb0035 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – start-page: 3 year: 2020 end-page: 12 ident: bb0235 article-title: Chapter 1 - Introduction to Plastic Waste and Recycling – volume: 99 start-page: 517 year: 2008 end-page: 525 ident: bb9000 article-title: Comparative study of six different sludges by sequential speciation of heavy metals publication-title: Bioresour. Technol. – volume: 46 start-page: 6453 year: 2012 end-page: 6454 ident: bb0180 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. – volume: 41 start-page: 2277 year: 2007 end-page: 2281 ident: bb0015 article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures publication-title: Environ. Sci. Technol. – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: bb0225 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. – volume: 654 start-page: 576 year: 2019 end-page: 582 ident: bb0240 article-title: Effects of plastic contamination on water evaporation and desiccation cracking in soil publication-title: Sci. Total Environ. – volume: 708 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0250 article-title: Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134841 – volume: 642 start-page: 690 issue: 15 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0265 article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.068 – volume: 62 start-page: 2588 year: 2011 ident: 10.1016/j.scitotenv.2020.141956_bb0035 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 68 start-page: A4 year: 2014 ident: 10.1016/j.scitotenv.2020.141956_bb0195 article-title: Aggregate-associated soil organic matter as an ecosystem property and a measurement tool publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.06.014 – volume: 52 start-page: 9656 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0045 article-title: Impacts of microplastics on the soil biophysical environment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02212 – volume: 19684 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0090 article-title: Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community publication-title: J. Hazard. Mater. – volume: 51 start-page: 844 year: 1979 ident: 10.1016/j.scitotenv.2020.141956_bb0225 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. doi: 10.1021/ac50043a017 – volume: 117 start-page: 515 year: 2002 ident: 10.1016/j.scitotenv.2020.141956_bb0020 article-title: The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(01)00172-5 – volume: 126 start-page: 111 year: 2016 ident: 10.1016/j.scitotenv.2020.141956_bb0010 article-title: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.12.023 – volume: 180 start-page: 93 year: 2017 ident: 10.1016/j.scitotenv.2020.141956_bb0125 article-title: Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.009 – volume: 41 start-page: 2277 year: 2007 ident: 10.1016/j.scitotenv.2020.141956_bb0015 article-title: The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures publication-title: Environ. Sci. Technol. doi: 10.1021/es062166r – volume: 137 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0070 article-title: Source, migration and toxicology of microplastics in soil publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105263 – start-page: 3 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0235 – volume: 104 start-page: 290 year: 2016 ident: 10.1016/j.scitotenv.2020.141956_bb0050 article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.01.006 – volume: 50 start-page: 2685 year: 2016 ident: 10.1016/j.scitotenv.2020.141956_bb0085 article-title: Microplastics in the terrestrial ecosystem: implications for lumbricus terrestris (Oligochaeta, Lumbricidae) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05478 – volume: 16 start-page: 3218 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0115 article-title: Biouptake responses of trace metals to long-term irrigation with diverse wastewater in the wheat rhizosphere microenvironment publication-title: Inter. J. of Env. Res. Pub. Heal. doi: 10.3390/ijerph16173218 – volume: 26 start-page: 219 year: 2014 ident: 10.1016/j.scitotenv.2020.141956_bb0215 article-title: Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability publication-title: Chem. Spec. Bioavailab. doi: 10.3184/095422914X14147781158674 – year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0155 – volume: 586 start-page: 127 year: 2017 ident: 10.1016/j.scitotenv.2020.141956_bb0080 article-title: Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.190 – volume: 135229 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0190 article-title: The optimum pH and eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application publication-title: Sci. Total Environ. – volume: 255 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0110 article-title: Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113170 – volume: 627 start-page: 1377 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0135 article-title: An overview of microplastic and nanoplastic pollution in agroecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.341 – volume: 224 start-page: 282 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0150 article-title: Kinetics of heavy metal adsorption and desorption in soil: developing a unified model based on chemical speciation publication-title: Geochim. Cosmochim. Ac. doi: 10.1016/j.gca.2018.01.014 – volume: 160 start-page: 42 year: 2012 ident: 10.1016/j.scitotenv.2020.141956_bb8000 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.08.052 – volume: 8 start-page: 1805 year: 2017 ident: 10.1016/j.scitotenv.2020.141956_bb0185 article-title: Microplastic incorporation into soil in agroecosystems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01805 – volume: 4 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0260 article-title: Organic fertilizer as a vehicle for the entry of microplastic into the environment publication-title: Sci. Adv. doi: 10.1126/sciadv.aap8060 – volume: 633 start-page: 300 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0130 article-title: Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.199 – volume: 642 start-page: 12 issue: 15 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0280 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.004 – volume: 235 start-page: 710 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0285 article-title: Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.12.106 – volume: 114 start-page: 313 issue: 3 year: 2001 ident: 10.1016/j.scitotenv.2020.141956_bb0055 article-title: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(00)00243-8 – volume: 703 start-page: 134772 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0160 article-title: Behavior of microplastics and plastic film residues in the soil environment: a critical review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134722 – start-page: 1185 year: 1996 ident: 10.1016/j.scitotenv.2020.141956_bb0205 article-title: Nitrogen—organic forms – volume: 395 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0270 article-title: Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122690 – volume: 69 start-page: 177 year: 2014 ident: 10.1016/j.scitotenv.2020.141956_bb0220 article-title: Soil and soil environmental quality monitoring in China: a review publication-title: Environ. Int. doi: 10.1016/j.envint.2014.04.014 – volume: 18 start-page: 1050 issue: 8 year: 2016 ident: 10.1016/j.scitotenv.2020.141956_bb0140 article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments publication-title: Environ. Sci-Proc. Imp. – volume: 26 start-page: 3356 issue: 6 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0290 article-title: Plastic pollution in croplands threatens long-term food security publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15043 – volume: 338 start-page: 259 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0060 article-title: Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.016 – volume: 185 start-page: 907 year: 2017 ident: 10.1016/j.scitotenv.2020.141956_bb0120 article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.064 – volume: 99 start-page: 517 year: 2008 ident: 10.1016/j.scitotenv.2020.141956_bb9000 article-title: Comparative study of six different sludges by sequential speciation of heavy metals publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.01.025 – volume: 131 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0165 article-title: Heavy metal behaviour at mineral-organo interfaces: mechanisms, modelling and influence factors publication-title: Environ. Int. doi: 10.1016/j.envint.2019.104995 – volume: 141 start-page: 174 issue: 3–4 year: 2007 ident: 10.1016/j.scitotenv.2020.141956_bb0105 article-title: Fractionation of lead in paddy soils and its bioavailability to rice plants publication-title: Geoderma doi: 10.1016/j.geoderma.2007.05.006 – volume: 939 start-page: 1 year: 1954 ident: 10.1016/j.scitotenv.2020.141956_bb0145 article-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate publication-title: USDA Circular – volume: 654 start-page: 576 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0240 article-title: Effects of plastic contamination on water evaporation and desiccation cracking in soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.123 – volume: 240 start-page: 387 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0025 article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.05.008 – volume: 254 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0255 article-title: Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126791 – volume: 388 start-page: 121775 year: 2020 ident: 10.1016/j.scitotenv.2020.141956_bb0295 article-title: Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121775 – volume: 52 start-page: 1704 issue: 4 year: 2018 ident: 10.1016/j.scitotenv.2020.141956_bb0005 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05559 – start-page: 185 year: 2015 ident: 10.1016/j.scitotenv.2020.141956_bb0230 article-title: Microplastics in the marine environment: sources publication-title: Consequences and Solutions. Marine Anthropogenic Litter doi: 10.1007/978-3-319-16510-3_7 – volume: 671 start-page: 411 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0040 article-title: Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.368 – year: 1996 ident: 10.1016/j.scitotenv.2020.141956_bb0175 article-title: Salinity: Electrical conductivity and total dissolved solids – volume: 46 start-page: 6453 issue: 12 year: 2012 ident: 10.1016/j.scitotenv.2020.141956_bb0180 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. doi: 10.1021/es302011r – volume: 550 start-page: 690 year: 2016 ident: 10.1016/j.scitotenv.2020.141956_bb0200 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.153 – volume: 159 start-page: 84 year: 2011 ident: 10.1016/j.scitotenv.2020.141956_bb0275 article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.09.019 – volume: 110 start-page: 116 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0210 article-title: Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2018.10.025 – volume: 159 start-page: 38 year: 2019 ident: 10.1016/j.scitotenv.2020.141956_bb0075 article-title: Municipal solid waste (MSW) landfill: a source of microplastics? -evidence of microplastics in landfill leachate publication-title: Water Res. doi: 10.1016/j.watres.2019.04.060 |
| SSID | ssj0000781 |
| Score | 2.6451247 |
| Snippet | Microplastics change the physical, chemical, and biological processes in soil, and these changes further affect the transformations of heavy metal speciation... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 141956 |
| SubjectTerms | adsorption bioavailability chemical speciation Chemical speciation transformation Different heavy metals Diverse impact Diverse microenvironments environment environmental quality heavy metals Microplastics pollution polyethylene soil aggregates soil separates species |
| Title | Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2020.141956 https://www.proquest.com/docview/2440467311 https://www.proquest.com/docview/2986390257 |
| Volume | 752 |
| WOSCitedRecordID | wos000588243900102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtMwGLa6DiQkhKAwsQGTkRA3VabGTWKHuwm1AlTKLjqpcGPl4IxWI-mWtNpehGfh8fh9StqpsHHBTVo5cQ76vtif__wHhN5kqeiFScocmP5ggUIEhVcqih3RJyBus4xmkUJ6RMdjNp2GJ63WLxsLszqnec6ursLFf4Ua2gBsGTr7D3DXJ4UG-A-gwxZgh-2dgP8sZHyjMq2qRKxnsKKWtrLuD-l7txbY1j1TdXa1k6F2lRVd61otRWSpatMrglRr-lYrTFtZpZJac3UtS1HLTMwgZdV1FqDKVQboWd4tC-PHMW-oaccU46JQFfKm126uHo2WanIszAS7buL-9l1saf06axqH2rp7YpuMdYNI04aj4zvNgMxoCFMFMemyt7SZUZzqRLhmHHY9GQe5dYrQ1or5ESgMeDZ4sCO4LrTXPTaTco-_8OHpaMQng-nk7eLCkfXK5Hd9U7xlB-0S6oesjXaPPw6mnxoVQFWB3PpeN3wLt177T8rohkZQwmfyGD0yKxZ8rJn2BLVE3kH3dQ3T6w7aGzSgwWEG17KDHmqLMNaBbk_RT0VMLImJgZi4Jia-SUysiYmBGNgSE1ti4iLDDTHxJjHlzpqYWBETa2LiqsAbxMSzHEtiPkOnw8Hk_QfHVAVxElCXleMLN8hSNwJVRSPQX0E_CuBHeC4hgmUB82OP0giOEP1eT3iZz2AjIj8mJE3StL-H2nmRi-cI-yRNvSgWNARRLTICq_sQzu1lccqChJF9FFhEeGJS5svKLefc-kbOeQ0ll1ByDeU-6tUdFzprzO1d3lnIuRG_WtRyIO7tnV9bknCYHuQ3vygXxbLkROb_DGjfdf9yTMhgnQKLH3pwh_O8QA-aF_UlaleXS_EK3UtW1ay8PEQ7dMoOzcvwG9RD9bI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+type+and+aggregate+microenvironment+govern+the+response+sequence+of+speciation+transformation+of+different+heavy+metals+to+microplastics+in+soil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Yu%2C+Hong&rft.au=Zhang%2C+Zheng&rft.au=Zhang%2C+Ying&rft.au=Fan%2C+Ping&rft.date=2021-01-15&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=752&rft.spage=141956&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.141956&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |