Risley-prism-based multi-beam scanning LiDAR for high-resolution three-dimensional imaging
•Coherent light detection and ranging architecture for three-dimensional imaging.•Risley-prism-based multi-beam scanning enables high-resolution spatial sampling.•Multi-mode integrated point cloud filtering method for efficient outlier removal.•Coarse-fine coupled alignment strategy for multi-channe...
Gespeichert in:
| Veröffentlicht in: | Optics and lasers in engineering Jg. 150; S. 106836 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.03.2022
|
| Schlagworte: | |
| ISSN: | 0143-8166, 1873-0302 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Coherent light detection and ranging architecture for three-dimensional imaging.•Risley-prism-based multi-beam scanning enables high-resolution spatial sampling.•Multi-mode integrated point cloud filtering method for efficient outlier removal.•Coarse-fine coupled alignment strategy for multi-channel point cloud registration.
Light detection and ranging (LiDAR) as a significant approach to three-dimensional perception has increasingly suffered from challenges for compact structure, high resolution and strong adaptability. This paper presents a versatile LiDAR system that incorporates multi-beam scanning using Risley prisms and coherent detection based on triangular frequency modulation. By combining Risley-prism-based multi-beam steering model with simultaneous distance and velocity measurements, the LiDAR architecture for three-dimensional imaging is theoretically demonstrated. A unified LiDAR point cloud processing framework is developed, where the multi-mode integrated filtering method is proposed for outlier removal using point cloud characteristics. The coarse-fine coupled strategy is also formulated to combine statistical modeling with iterative optimization for multi-channel point cloud registration. It is experimentally validated that our LiDAR can achieve high-resolution three-dimensional information acquisition against long range, and the proposed point cloud processing technique can fully reconstruct the spatial form of object while preserving sufficient details. |
|---|---|
| AbstractList | •Coherent light detection and ranging architecture for three-dimensional imaging.•Risley-prism-based multi-beam scanning enables high-resolution spatial sampling.•Multi-mode integrated point cloud filtering method for efficient outlier removal.•Coarse-fine coupled alignment strategy for multi-channel point cloud registration.
Light detection and ranging (LiDAR) as a significant approach to three-dimensional perception has increasingly suffered from challenges for compact structure, high resolution and strong adaptability. This paper presents a versatile LiDAR system that incorporates multi-beam scanning using Risley prisms and coherent detection based on triangular frequency modulation. By combining Risley-prism-based multi-beam steering model with simultaneous distance and velocity measurements, the LiDAR architecture for three-dimensional imaging is theoretically demonstrated. A unified LiDAR point cloud processing framework is developed, where the multi-mode integrated filtering method is proposed for outlier removal using point cloud characteristics. The coarse-fine coupled strategy is also formulated to combine statistical modeling with iterative optimization for multi-channel point cloud registration. It is experimentally validated that our LiDAR can achieve high-resolution three-dimensional information acquisition against long range, and the proposed point cloud processing technique can fully reconstruct the spatial form of object while preserving sufficient details. |
| ArticleNumber | 106836 |
| Author | Liu, Xingsheng Lu, Zhiyong Sun, Jianfeng Li, Anhu |
| Author_xml | – sequence: 1 givenname: Anhu surname: Li fullname: Li, Anhu email: lah@tongji.edu.cn organization: School of Mechanical Engineering, Tongji University, Shanghai 201804, China – sequence: 2 givenname: Xingsheng surname: Liu fullname: Liu, Xingsheng organization: School of Mechanical Engineering, Tongji University, Shanghai 201804, China – sequence: 3 givenname: Jianfeng surname: Sun fullname: Sun, Jianfeng organization: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China – sequence: 4 givenname: Zhiyong surname: Lu fullname: Lu, Zhiyong organization: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
| BookMark | eNqNkMtqwzAQRUVpoUnab6h_QKlkOba86CKkTwgUQlbdiLE0ShRsOUhOIX9fhZQuumlXwx04l5kzJpe-90jIHWdTznh5v5v2-6GFiH4zzVnO07aUorwgIy4rQZlg-SUZMV4IKnlZXpNxjDuWyILzEflYudjike6Dix1tUo3JukM7ONogdFnU4L3zm2zpHuerzPYh27rNlgaMfXsYXO-zYRsQqXEd-pgytJnrYJOYG3JloY14-z0nZP38tF680uX7y9tivqRaSD7QmQEr66IBwSrNhbbWFBx41cjCSlPX1QwKQGEBTF4jcAFFw7WEmQBRgxAT8nCu1aGPMaBV2g1wOm0I4FrFmTp5Ujv140mdPKmzp8RXv_jkooNw_Ac5P5OYvvt0GFTUDr1G4wLqQZne_dnxBZuyjLk |
| CitedBy_id | crossref_primary_10_1016_j_optlaseng_2025_109030 crossref_primary_10_1002_qute_202300157 crossref_primary_10_1016_j_measurement_2024_116007 crossref_primary_10_3788_CJL250487 crossref_primary_10_3390_app12041972 crossref_primary_10_3390_app122111087 crossref_primary_10_3390_photonics10070808 crossref_primary_10_1088_1742_6596_2617_1_012004 crossref_primary_10_3390_app12115592 crossref_primary_10_1109_JLT_2024_3521367 crossref_primary_10_1364_AO_526161 crossref_primary_10_1364_AO_454308 crossref_primary_10_1016_j_optlaseng_2023_107493 crossref_primary_10_3390_photonics12060557 crossref_primary_10_1109_TIM_2023_3234088 crossref_primary_10_1016_j_patcog_2023_109727 crossref_primary_10_1016_j_measurement_2023_113445 crossref_primary_10_3788_CJL241184 crossref_primary_10_1016_j_precisioneng_2024_12_008 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_1364_AO_454312 crossref_primary_10_7717_peerj_cs_2628 crossref_primary_10_1117_1_OE_61_5_054104 crossref_primary_10_1016_j_optcom_2024_130915 crossref_primary_10_1364_PRJ_509710 crossref_primary_10_3390_photonics12030181 crossref_primary_10_1016_j_optlaseng_2022_107240 crossref_primary_10_1016_j_optlastec_2023_110371 crossref_primary_10_1016_j_precisioneng_2022_11_006 |
| Cites_doi | 10.1364/OL.401486 10.1117/12.850611 10.1364/OPTICA.389006 10.1109/MSP.2020.2973615 10.1364/AO.50.000679 10.1016/j.optlaseng.2021.106558 10.1016/j.apm.2018.11.001 10.1063/1.5130697 10.1364/JOSA.50.000521 10.1364/AO.57.010172 10.1109/34.121791 10.1364/OE.396707 10.1364/OE.24.023543 10.1016/j.robot.2008.08.005 10.1109/JSEN.2014.2368456 10.1109/JLT.2008.917323 10.1038/nphoton.2010.148 10.1364/OL.42.004091 10.1016/j.optlaseng.2020.106066 10.1016/j.isprsjprs.2020.07.020 10.1038/s41566-019-0548-6 10.1364/AO.51.000356 10.3788/COL201917.092801 10.1016/j.optcom.2020.126063 10.1038/nphoton.2010.297 10.1364/OE.24.012840 10.1364/AO.59.000028 10.1117/12.851831 10.1002/rob.20204 10.1038/srep28277 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2021.106836 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-0302 |
| ExternalDocumentID | 10_1016_j_optlaseng_2021_106836 S0143816621003067 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c381t-5daf894ba307c13cffd41a17b84f8d9975a4ae3faad29ea13a4b1c8a53a39a33 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709561100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Sat Nov 29 07:22:35 EST 2025 Tue Nov 18 22:36:35 EST 2025 Fri Feb 23 02:42:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Light detection and ranging Point cloud processing Multi-beam scanning Three-dimensional information acquisition Risley prisms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-5daf894ba307c13cffd41a17b84f8d9975a4ae3faad29ea13a4b1c8a53a39a33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_optlaseng_2021_106836 crossref_primary_10_1016_j_optlaseng_2021_106836 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2021_106836 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xue, Lu, Chen, Webster (bib0002) 2020; 167 Li (bib0025) 2011; 50 Li, Jiang, Sun, Wang, Li, Liu (bib0022) 2012; 51 Duma, Schitea (bib0026) 2018; 19 Halterman, Bruch (bib0011) 2010; 7692 Swatantran, Tang, Barrett, DeCola, Dubayah (bib0003) 2016; 6 Aull, Schuette, Young, Craig, Felton, Warner (bib0006) 2015; 15 Tian, Yang, Zhang, Cui, Bi (bib0007) 2021; 141 Yang, Hao, Wang, Wang (bib0008) 2020; 129 Dostart, Zhang, Khilo, Brand, Qubaisi, Onural, Feldkhun, Wagner, Popović (bib0017) 2020; 7 Schwarz (bib0001) 2010; 4 Yang (bib0024) 2008; 26 Rusu, Marton, Blodow, Dolha, Beetz (bib0032) 2008; 56 Magnusson, Lilienthal, Duckett (bib0033) 2007; 24 Lai, Lee (bib0030) 2018; 57 Clevenson, Spector, Benney, Moebius, Brown, Hare, Huang, Mlynarczyk, Poulton, Hosseini, Watts, Dawson, Laine, Lane (bib0016) 2020; 116 Besl, McKay (bib0034) 1992; 14 Lu, Zhou, Sun, Xu, Wang (bib0029) 2020; 474 Bifano (bib0013) 2011; 5 Rosell (bib0021) 1960; 50 Lu, Lu, Zhou, Sun, Xu, Wang (bib0028) 2019; 17 Cao, Qiu, Wu, Li, Chen (bib0018) 2020; 45 Duma (bib0012) 2019; 67 Marshall, Stutz (bib0010) 2011 Hellman, Gin, Smith, Kim, Chen, Winkler, Mccann, Takashima (bib0014) 2020; 59 Li, Sun, Yi, Zuo (bib0031) 2016; 24 Jiang, Karpf, Jalali (bib0019) 2020; 14 Stettner (bib0005) 2010; 7684 Raj, Hashim, Huddin, Ibrahim, Hussain (bib0009) 2020; 9 Li, Yi, Zuo, Sun (bib0023) 2016; 24 Poulton, Yaacobi, Cole, Byrd, Raval, Vermeulen, Watts (bib0015) 2017; 42 Li, Ibanez-Guzman (bib0004) 2020; 37 Church, Matheson, Cao, Roy (bib0027) 2017; 10197 Okano, Chong (bib0020) 2020; 28 Aull (10.1016/j.optlaseng.2021.106836_bib0006) 2015; 15 Schwarz (10.1016/j.optlaseng.2021.106836_bib0001) 2010; 4 Hellman (10.1016/j.optlaseng.2021.106836_bib0014) 2020; 59 Li (10.1016/j.optlaseng.2021.106836_bib0031) 2016; 24 Tian (10.1016/j.optlaseng.2021.106836_bib0007) 2021; 141 Li (10.1016/j.optlaseng.2021.106836_bib0022) 2012; 51 Lu (10.1016/j.optlaseng.2021.106836_bib0029) 2020; 474 Dostart (10.1016/j.optlaseng.2021.106836_bib0017) 2020; 7 Okano (10.1016/j.optlaseng.2021.106836_bib0020) 2020; 28 Duma (10.1016/j.optlaseng.2021.106836_bib0026) 2018; 19 Yang (10.1016/j.optlaseng.2021.106836_bib0008) 2020; 129 Jiang (10.1016/j.optlaseng.2021.106836_bib0019) 2020; 14 Halterman (10.1016/j.optlaseng.2021.106836_bib0011) 2010; 7692 Magnusson (10.1016/j.optlaseng.2021.106836_bib0033) 2007; 24 Rosell (10.1016/j.optlaseng.2021.106836_bib0021) 1960; 50 Li (10.1016/j.optlaseng.2021.106836_bib0023) 2016; 24 Stettner (10.1016/j.optlaseng.2021.106836_bib0005) 2010; 7684 Raj (10.1016/j.optlaseng.2021.106836_bib0009) 2020; 9 Yang (10.1016/j.optlaseng.2021.106836_bib0024) 2008; 26 Swatantran (10.1016/j.optlaseng.2021.106836_bib0003) 2016; 6 Church (10.1016/j.optlaseng.2021.106836_bib0027) 2017; 10197 Rusu (10.1016/j.optlaseng.2021.106836_bib0032) 2008; 56 Poulton (10.1016/j.optlaseng.2021.106836_bib0015) 2017; 42 Li (10.1016/j.optlaseng.2021.106836_bib0025) 2011; 50 Lu (10.1016/j.optlaseng.2021.106836_bib0028) 2019; 17 Besl (10.1016/j.optlaseng.2021.106836_bib0034) 1992; 14 Marshall (10.1016/j.optlaseng.2021.106836_bib0010) 2011 Duma (10.1016/j.optlaseng.2021.106836_bib0012) 2019; 67 Xue (10.1016/j.optlaseng.2021.106836_bib0002) 2020; 167 Cao (10.1016/j.optlaseng.2021.106836_bib0018) 2020; 45 Clevenson (10.1016/j.optlaseng.2021.106836_bib0016) 2020; 116 Li (10.1016/j.optlaseng.2021.106836_bib0004) 2020; 37 Lai (10.1016/j.optlaseng.2021.106836_bib0030) 2018; 57 Bifano (10.1016/j.optlaseng.2021.106836_bib0013) 2011; 5 |
| References_xml | – volume: 59 start-page: 28 year: 2020 end-page: 37 ident: bib0014 article-title: Wide-angle MEMS-based imaging lidar by decoupled scan axes publication-title: Appl Opt – volume: 7692 year: 2010 ident: bib0011 article-title: Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection publication-title: Proc. SPIE – volume: 15 start-page: 2123 year: 2015 end-page: 2132 ident: bib0006 article-title: A study of crosstalk in a 256×256 photon counting imager based on silicon Geiger-mode avalanche photodiodes publication-title: IEEE Sens J – volume: 24 start-page: 12840 year: 2016 end-page: 12850 ident: bib0031 article-title: Investigation of beam steering performances in rotation Risley-prism scanner publication-title: Opt Express – volume: 141 year: 2021 ident: bib0007 article-title: A range-gated imaging flash Lidar based on the adjacent frame difference method publication-title: Opt Lasers Eng – volume: 26 start-page: 3576 year: 2008 end-page: 3583 ident: bib0024 article-title: Analytic solution of free space optical beam steering using Risley prisms publication-title: J Lightwave Technol – volume: 6 start-page: 28277 year: 2016 ident: bib0003 article-title: Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar publication-title: Sci Rep – volume: 5 start-page: 21 year: 2011 end-page: 23 ident: bib0013 article-title: MEMS deformable mirrors publication-title: Nat Photonics – volume: 4 start-page: 429 year: 2010 end-page: 430 ident: bib0001 article-title: Lidar: mapping the world in 3D publication-title: Nat Photonics – volume: 167 start-page: 418 year: 2020 end-page: 431 ident: bib0002 article-title: From LiDAR point cloud towards digital twin city: clustering city objects based on Gestalt principles publication-title: ISPRS J Photogramm Remote Sens – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib0034 article-title: A method for registration of 3-D shapes publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 7684 year: 2010 ident: bib0005 article-title: Compact 3D flash lidar video cameras and applications publication-title: Proc. SPIE – volume: 24 start-page: 23543 year: 2016 end-page: 23556 ident: bib0023 article-title: Performance characterization of scanning beam steered by tilting double prisms publication-title: Opt Express – volume: 45 start-page: 5816 year: 2020 end-page: 5819 ident: bib0018 article-title: Lidar system based on lens assisted integrated beam steering publication-title: Opt Lett – volume: 116 year: 2020 ident: bib0016 article-title: Incoherent light imaging using an optical phased array publication-title: Appl Phys Lett – volume: 7 start-page: 726 year: 2020 end-page: 733 ident: bib0017 article-title: Serpentine optical phased arrays for scalable integrated photonic lidar beam steering publication-title: Optica – volume: 474 year: 2020 ident: bib0029 article-title: A real-time three-dimensional coherent ladar demonstration: system structure, imaging processing, and experiment result publication-title: Opt Comm – volume: 129 year: 2020 ident: bib0008 article-title: Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA publication-title: Opt Lasers Eng – volume: 10197 year: 2017 ident: bib0027 article-title: Evaluation of a steerable 3D laser scanner using a double Risley prism pair publication-title: Proc. SPIE – volume: 9 start-page: 741 year: 2020 ident: bib0009 article-title: A survey on LiDAR scanning mechanisms publication-title: Electronics (Basel) – volume: 51 start-page: 356 year: 2012 end-page: 364 ident: bib0022 article-title: Laser coarse–fine coupling scanning method by steering double prisms publication-title: Appl Opt – volume: 14 start-page: 14 year: 2020 end-page: 18 ident: bib0019 article-title: Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera publication-title: Nat Photonics – volume: 28 start-page: 23898 year: 2020 end-page: 23915 ident: bib0020 article-title: Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source publication-title: Opt Express – volume: 50 start-page: 521 year: 1960 end-page: 526 ident: bib0021 article-title: Prism scanner publication-title: J Opt Soc Am – volume: 57 start-page: 10172 year: 2018 end-page: 10182 ident: bib0030 article-title: Analytic inverse solutions for Risley prisms in four different configurations for positing and tracking systems publication-title: Appl Opt – volume: 56 start-page: 927 year: 2008 end-page: 941 ident: bib0032 article-title: Towards 3D point cloud based object maps for household environments publication-title: Robot Auton Syst – volume: 50 start-page: 679 year: 2011 end-page: 686 ident: bib0025 article-title: Third-order theory of the Risley-prism-based beam steering system publication-title: Appl Opt – volume: 42 start-page: 4091 year: 2017 end-page: 4094 ident: bib0015 article-title: Coherent solid-state LIDAR with silicon photonic optical phased arrays publication-title: Opt Lett – volume: 17 year: 2019 ident: bib0028 article-title: Three-dimensional coherent ladar based on FMCW and its flight demonstration publication-title: Chin Opt Lett – volume: 19 start-page: 53 year: 2018 end-page: 60 ident: bib0026 article-title: Laser scanners with rotational Risley prisms: exact scan patterns publication-title: Proc Romanian Acad Series A – volume: 24 start-page: 803 year: 2007 end-page: 827 ident: bib0033 article-title: Scan registration for autonomous mining vehicles using 3D-NDT publication-title: J Field Robot – year: 2011 ident: bib0010 article-title: Handbook of optical and laser scanning – volume: 67 start-page: 456 year: 2019 end-page: 476 ident: bib0012 article-title: Laser scanners with oscillatory elements: design and optimization of 1D and 2D scanning functions publication-title: Appl Math Model – volume: 37 start-page: 50 year: 2020 end-page: 61 ident: bib0004 article-title: Lidar for autonomous driving: the principles, challenges, and trends for automotive Lidar and perception systems publication-title: IEEE Signal Process Mag – volume: 45 start-page: 5816 issue: 20 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0018 article-title: Lidar system based on lens assisted integrated beam steering publication-title: Opt Lett doi: 10.1364/OL.401486 – volume: 7692 year: 2010 ident: 10.1016/j.optlaseng.2021.106836_bib0011 article-title: Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection doi: 10.1117/12.850611 – volume: 7 start-page: 726 issue: 6 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0017 article-title: Serpentine optical phased arrays for scalable integrated photonic lidar beam steering publication-title: Optica doi: 10.1364/OPTICA.389006 – volume: 37 start-page: 50 issue: 4 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0004 article-title: Lidar for autonomous driving: the principles, challenges, and trends for automotive Lidar and perception systems publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2020.2973615 – volume: 50 start-page: 679 issue: 5 year: 2011 ident: 10.1016/j.optlaseng.2021.106836_bib0025 article-title: Third-order theory of the Risley-prism-based beam steering system publication-title: Appl Opt doi: 10.1364/AO.50.000679 – volume: 141 year: 2021 ident: 10.1016/j.optlaseng.2021.106836_bib0007 article-title: A range-gated imaging flash Lidar based on the adjacent frame difference method publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2021.106558 – volume: 67 start-page: 456 year: 2019 ident: 10.1016/j.optlaseng.2021.106836_bib0012 article-title: Laser scanners with oscillatory elements: design and optimization of 1D and 2D scanning functions publication-title: Appl Math Model doi: 10.1016/j.apm.2018.11.001 – volume: 116 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0016 article-title: Incoherent light imaging using an optical phased array publication-title: Appl Phys Lett doi: 10.1063/1.5130697 – volume: 50 start-page: 521 issue: 6 year: 1960 ident: 10.1016/j.optlaseng.2021.106836_bib0021 article-title: Prism scanner publication-title: J Opt Soc Am doi: 10.1364/JOSA.50.000521 – volume: 57 start-page: 10172 issue: 35 year: 2018 ident: 10.1016/j.optlaseng.2021.106836_bib0030 article-title: Analytic inverse solutions for Risley prisms in four different configurations for positing and tracking systems publication-title: Appl Opt doi: 10.1364/AO.57.010172 – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.optlaseng.2021.106836_bib0034 article-title: A method for registration of 3-D shapes publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.121791 – volume: 28 start-page: 23898 issue: 16 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0020 article-title: Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source publication-title: Opt Express doi: 10.1364/OE.396707 – volume: 24 start-page: 23543 issue: 20 year: 2016 ident: 10.1016/j.optlaseng.2021.106836_bib0023 article-title: Performance characterization of scanning beam steered by tilting double prisms publication-title: Opt Express doi: 10.1364/OE.24.023543 – volume: 56 start-page: 927 year: 2008 ident: 10.1016/j.optlaseng.2021.106836_bib0032 article-title: Towards 3D point cloud based object maps for household environments publication-title: Robot Auton Syst doi: 10.1016/j.robot.2008.08.005 – volume: 15 start-page: 2123 issue: 4 year: 2015 ident: 10.1016/j.optlaseng.2021.106836_bib0006 article-title: A study of crosstalk in a 256×256 photon counting imager based on silicon Geiger-mode avalanche photodiodes publication-title: IEEE Sens J doi: 10.1109/JSEN.2014.2368456 – year: 2011 ident: 10.1016/j.optlaseng.2021.106836_bib0010 – volume: 26 start-page: 3576 issue: 21 year: 2008 ident: 10.1016/j.optlaseng.2021.106836_bib0024 article-title: Analytic solution of free space optical beam steering using Risley prisms publication-title: J Lightwave Technol doi: 10.1109/JLT.2008.917323 – volume: 9 start-page: 741 issue: 5 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0009 article-title: A survey on LiDAR scanning mechanisms publication-title: Electronics (Basel) – volume: 4 start-page: 429 issue: 7 year: 2010 ident: 10.1016/j.optlaseng.2021.106836_bib0001 article-title: Lidar: mapping the world in 3D publication-title: Nat Photonics doi: 10.1038/nphoton.2010.148 – volume: 42 start-page: 4091 issue: 20 year: 2017 ident: 10.1016/j.optlaseng.2021.106836_bib0015 article-title: Coherent solid-state LIDAR with silicon photonic optical phased arrays publication-title: Opt Lett doi: 10.1364/OL.42.004091 – volume: 129 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0008 article-title: Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2020.106066 – volume: 167 start-page: 418 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0002 article-title: From LiDAR point cloud towards digital twin city: clustering city objects based on Gestalt principles publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2020.07.020 – volume: 14 start-page: 14 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0019 article-title: Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera publication-title: Nat Photonics doi: 10.1038/s41566-019-0548-6 – volume: 51 start-page: 356 issue: 3 year: 2012 ident: 10.1016/j.optlaseng.2021.106836_bib0022 article-title: Laser coarse–fine coupling scanning method by steering double prisms publication-title: Appl Opt doi: 10.1364/AO.51.000356 – volume: 17 issue: 9 year: 2019 ident: 10.1016/j.optlaseng.2021.106836_bib0028 article-title: Three-dimensional coherent ladar based on FMCW and its flight demonstration publication-title: Chin Opt Lett doi: 10.3788/COL201917.092801 – volume: 474 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0029 article-title: A real-time three-dimensional coherent ladar demonstration: system structure, imaging processing, and experiment result publication-title: Opt Comm doi: 10.1016/j.optcom.2020.126063 – volume: 5 start-page: 21 year: 2011 ident: 10.1016/j.optlaseng.2021.106836_bib0013 article-title: MEMS deformable mirrors publication-title: Nat Photonics doi: 10.1038/nphoton.2010.297 – volume: 10197 year: 2017 ident: 10.1016/j.optlaseng.2021.106836_bib0027 article-title: Evaluation of a steerable 3D laser scanner using a double Risley prism pair – volume: 24 start-page: 12840 issue: 12 year: 2016 ident: 10.1016/j.optlaseng.2021.106836_bib0031 article-title: Investigation of beam steering performances in rotation Risley-prism scanner publication-title: Opt Express doi: 10.1364/OE.24.012840 – volume: 59 start-page: 28 issue: 1 year: 2020 ident: 10.1016/j.optlaseng.2021.106836_bib0014 article-title: Wide-angle MEMS-based imaging lidar by decoupled scan axes publication-title: Appl Opt doi: 10.1364/AO.59.000028 – volume: 7684 year: 2010 ident: 10.1016/j.optlaseng.2021.106836_bib0005 article-title: Compact 3D flash lidar video cameras and applications doi: 10.1117/12.851831 – volume: 24 start-page: 803 issue: 10 year: 2007 ident: 10.1016/j.optlaseng.2021.106836_bib0033 article-title: Scan registration for autonomous mining vehicles using 3D-NDT publication-title: J Field Robot doi: 10.1002/rob.20204 – volume: 19 start-page: 53 issue: 1 year: 2018 ident: 10.1016/j.optlaseng.2021.106836_bib0026 article-title: Laser scanners with rotational Risley prisms: exact scan patterns publication-title: Proc Romanian Acad Series A – volume: 6 start-page: 28277 year: 2016 ident: 10.1016/j.optlaseng.2021.106836_bib0003 article-title: Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar publication-title: Sci Rep doi: 10.1038/srep28277 |
| SSID | ssj0016411 |
| Score | 2.4805427 |
| Snippet | •Coherent light detection and ranging architecture for three-dimensional imaging.•Risley-prism-based multi-beam scanning enables high-resolution spatial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106836 |
| SubjectTerms | Light detection and ranging Multi-beam scanning Point cloud processing Risley prisms Three-dimensional information acquisition |
| Title | Risley-prism-based multi-beam scanning LiDAR for high-resolution three-dimensional imaging |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2021.106836 |
| Volume | 150 |
| WOSCitedRecordID | wos000709561100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKBhI8IBggBhvKA2-TUVw7sc1bxYYGQgONPlR7iRzHWTNtabU20_jvOf9I0q2TBkK8RNUpbhPfV_vufPcdQu9dfW6Rx5gxzTGTxOBcK4NVmidlYo8gZeGaTfCjIzGZyB-DQdPWwlyd87oW19dy_l9VDTJQti2d_Qt1d18KAvgMSocrqB2uf6T448rGobHjN8R2kyp81iDOjbrYW2jfpAic8f3RsUsytIzFGLzu8FS2dY8xuLC0_56yY6-6cL2MVg3Z7_OO3xnsb1sFbLlHenLDLtGn8mmT06aXNFY0sSH6qenv_Nn4MhHAa7ki_ubuPplWv2ZBGGIU4N52SVo-cNYWz_SZSj6WSbE9tvRbkV9_BYeRNL65QHtq2rXF3scdzj7M5kv7pvUpuPtDAvJU0Fv02m7Dtols7pwU3FznKj1Am0OeSFgMN0dfDiZfu-OnlBHfyDI84Y3EwDt_7m6zZsVUGT9DT4OPEY08Np6jgam30JMV5skt9Mhl_urFC3Syjpeox0vU4iVyeIkAL9EtvERreIkCXl6i8eeD8adDHBpuYA3zssRJoUohWa5g4deE6rIsGFGE54KVopCSJ4opQ0uliqE0ilDFcqKFSqiiUlH6Cm3Us9q8RhETScrT1FBwh1ka65wJzYkhcQn2LM_5Nkrb6cp0IKO3PVHOszbr8Czr5jmz85z5ed5GcTdw7vlY7h_ysdVHFsxKby5mAKT7Br_5l8Fv0eP-37CDNpaXjdlFD_XVslpcvgug-w1JWqNw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risley-prism-based+multi-beam+scanning+LiDAR+for+high-resolution+three-dimensional+imaging&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Li%2C+Anhu&rft.au=Liu%2C+Xingsheng&rft.au=Sun%2C+Jianfeng&rft.au=Lu%2C+Zhiyong&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=150&rft_id=info:doi/10.1016%2Fj.optlaseng.2021.106836&rft.externalDocID=S0143816621003067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |