The multiproximal linearization method for convex composite problems

Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solvin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 182; číslo 1-2; s. 1 - 36
Hlavní autoři: Bolte, Jérôme, Chen, Zheng, Pauwels, Edouard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g., constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method, we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form O ( 1 k ) involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss–Newton’s method, or the forward–backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries.
AbstractList Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g., constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method, we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form O(1k) involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss–Newton’s method, or the forward–backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries.
Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g., constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method, we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form O ( 1 k ) involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss–Newton’s method, or the forward–backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries.
Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g. constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form $O(\frac{1}{k})$ involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss-Newton's method, or the forward-backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries.
Author Bolte, Jérôme
Chen, Zheng
Pauwels, Edouard
Author_xml – sequence: 1
  givenname: Jérôme
  surname: Bolte
  fullname: Bolte, Jérôme
  organization: Toulouse School of Economics, Université Toulouse Capitole
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0002-3573-1546
  surname: Chen
  fullname: Chen, Zheng
  email: z_chen@zju.edu.cn
  organization: School of Aeronautics and Astronautics, Zhejiang University
– sequence: 3
  givenname: Edouard
  surname: Pauwels
  fullname: Pauwels, Edouard
  organization: IRIT, Université Paul Sabatier
BackLink https://hal.science/hal-01810977$$DView record in HAL
BookMark eNp9kEtLxDAUhYMoOD7-gKuCKxfVe5M0j6X4hgE34zqknYwTaZsx6Yj6681YUXAxgXBD-M49h3NAdvvQO0JOEM4RQF4kBARZAup8maIl2yET5EyUXHCxSyYAtCorgbBPDlJ6AdhgakKuZ0tXdOt28KsY3n1n26L1vbPRf9rBh77o3LAM82IRYtGE_s2959GtQvKDK7Kkbl2XjsjewrbJHf_MQ_J0ezO7ui-nj3cPV5fTsmEKh5IvWM1FPqquqZYwr4Vo0EJ-IOeaAlVWSl5JTWvaONFIqGpuVaWd00I17JCcjXuXtjWrmNPGDxOsN_eXU7P5A1QIWso3zOzpyOaQr2uXBvMS1rHP8QzlKBgqBdsp1JVkguoNRUeqiSGl6Ba_5ghm078Z-8_-2nz3b1gWqX-ixg_fnQ7R-na7lI3SlH36Zxf_Um1RfQGzqpmX
CitedBy_id crossref_primary_10_1287_moor_2022_0180
crossref_primary_10_1007_s10107_023_02020_9
crossref_primary_10_1137_21M1410063
crossref_primary_10_1137_22M1505827
crossref_primary_10_1007_s10107_025_02224_1
crossref_primary_10_1007_s11228_021_00580_6
crossref_primary_10_1137_20M1314057
crossref_primary_10_1007_s10589_023_00533_9
crossref_primary_10_1109_TIP_2020_3038535
crossref_primary_10_1137_20M1355380
Cites_doi 10.1007/s10107-016-1044-0
10.1007/s10107-015-0943-9
10.1287/moor.2017.0889
10.1007/s10107-016-1030-6
10.1137/110844805
10.1137/0716071
10.1007/s10107-012-0617-9
10.1016/0041-5553(66)90114-5
10.1137/11082381X
10.1002/9781118032701
10.1007/BF01585997
10.1016/0022-0396(77)90085-7
10.1007/978-3-319-48311-5
10.1137/130904160
10.1137/090763317
10.1287/moor.1.2.97
10.1007/s10589-012-9476-9
10.1007/BF01584377
10.1016/j.orl.2016.10.003
10.1016/0022-247X(79)90234-8
10.1007/s10107-007-0180-y
10.1007/s101070100249
10.1137/080716542
10.1137/S1052623403427823
10.1137/1.9780898719468
10.1080/02331938708843231
10.1007/s10107-015-0952-8
10.1007/BFb0120959
10.1007/978-3-642-02431-3
10.1137/0329006
10.1007/978-1-4419-8853-9
10.1137/0109044
10.1137/0108011
10.1137/1.9781611970791
10.1007/s10957-012-0145-z
10.1137/050626090
10.1137/06065622X
10.1287/moor.18.1.202
10.1007/0-387-29195-4_4
10.24033/bsmf.1625
10.1007/s10107-018-1311-3
10.1287/moor.2015.0735
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
– notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOI 10.1007/s10107-019-01382-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 36
ExternalDocumentID oai:HAL:hal-01810977v1
10_1007_s10107_019_01382_3
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-14-1-0500
  funderid: http://dx.doi.org/10.13039/100000181
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
ID FETCH-LOGICAL-c381t-4f3b466668bb2970db66c1a00db14492028a7745792b2ce6c705b4a859ee968c3
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542402700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Oct 25 06:45:14 EDT 2025
Thu Sep 25 00:37:39 EDT 2025
Thu Sep 25 00:38:44 EDT 2025
Tue Nov 18 22:24:31 EST 2025
Sat Nov 29 03:34:01 EST 2025
Fri Feb 21 02:32:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C30
Convex optimization
90C25
90C47
Composite optimization
First order methods
Proximal Gauss–Newton’s method
Prox-linear method
Complexity
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-4f3b466668bb2970db66c1a00db14492028a7745792b2ce6c705b4a859ee968c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3573-1546
0000-0002-1676-8407
0000-0002-8180-075X
PQID 2195736291
PQPubID 25307
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_01810977v1
proquest_journals_2416318801
proquest_journals_2195736291
crossref_primary_10_1007_s10107_019_01382_3
crossref_citationtrail_10_1007_s10107_019_01382_3
springer_journals_10_1007_s10107_019_01382_3
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Auslender, Shefi, Teboulle (CR2) 2010; 20
Eckstein (CR17) 1993; 18
Nesterov (CR33) 2004
Pauwels (CR38) 2016; 44
Bauschke, Combettes (CR4) 2017
CR31
Lewis, Wright (CR23) 2016; 158
Nesterov, Nemirovskii (CR32) 1994
Martinet (CR28) 1970; 4
Ortega, Rheinboldt (CR36) 2000
Burke, Ferris (CR8) 1995; 71
Combettes, Wajs (CR11) 2005; 4
Combettes (CR13) 2013; 23
Combettes, Pesquet (CR12) 2011
Ye (CR50) 1997
Li, Ng (CR24) 2007; 18
Cartis, Gould, Toint (CR9) 2011; 21
Rosen (CR42) 1960; 8
Levitin, Polyak (CR22) 1966; 6
Villa, Salzo, Baldassarre, Verri (CR49) 2013; 23
Drusvyatskiy, Lewis (CR15) 2018; 43
Cartis, Gould, Toint (CR10) 2014; 144
Li, Wang (CR25) 2002; 91
Schmidt, Le Roux, Bach (CR45) 2017; 162
Moreau (CR29) 1965; 93
Auslender (CR3) 2013; 156
Shefi, Teboulle (CR46) 2016; 159
Rockafellar (CR40) 1976; 1
CR18
Pshenichnyi (CR39) 1987; 18
CR16
Solodov (CR47) 2009; 118
Moreau (CR30) 1977; 26
Hiriart-Urruty, Lemarechal (CR19) 1993
Rockafellar, Wets (CR41) 1998
Beck A, Teboulle (CR5) 2009; 2
Lions, Mercier (CR26) 1979; 16
Nocedal, Wright (CR35) 2006
Salzo, Villa (CR44) 2012; 53
Bolte, Pauwels (CR6) 2016; 41
Passty (CR37) 1979; 72
Auslender, Teboulle (CR1) 2006; 16
Le Roux, Schmidt, Bach (CR21) 2012; 25
CR27
Rosen (CR43) 1961; 9
Burke (CR7) 1985; 33
CR20
Nemirovskii, Yudin (CR34) 1983
Tseng (CR48) 1991; 29
Combettes, Eckstein (CR14) 2018; 168
RT Rockafellar (1382_CR40) 1976; 1
C Cartis (1382_CR9) 2011; 21
A Nemirovskii (1382_CR34) 1983
GB Passty (1382_CR37) 1979; 72
J-B Hiriart-Urruty (1382_CR19) 1993
JM Ortega (1382_CR36) 2000
JV Burke (1382_CR7) 1985; 33
AS Lewis (1382_CR23) 2016; 158
J-J Moreau (1382_CR29) 1965; 93
J-J Moreau (1382_CR30) 1977; 26
RT Rockafellar (1382_CR41) 1998
JB Rosen (1382_CR42) 1960; 8
M Schmidt (1382_CR45) 2017; 162
B Martinet (1382_CR28) 1970; 4
HH Bauschke (1382_CR4) 2017
D Drusvyatskiy (1382_CR15) 2018; 43
P-L Lions (1382_CR26) 1979; 16
1382_CR31
A Auslender (1382_CR2) 2010; 20
PL Combettes (1382_CR12) 2011
PL Combettes (1382_CR11) 2005; 4
J Nocedal (1382_CR35) 2006
A Auslender (1382_CR3) 2013; 156
R Shefi (1382_CR46) 2016; 159
A Auslender (1382_CR1) 2006; 16
1382_CR27
S Salzo (1382_CR44) 2012; 53
1382_CR20
S Villa (1382_CR49) 2013; 23
N Le Roux (1382_CR21) 2012; 25
JB Rosen (1382_CR43) 1961; 9
ES Levitin (1382_CR22) 1966; 6
A Beck A (1382_CR5) 2009; 2
PL Combettes (1382_CR14) 2018; 168
P Tseng (1382_CR48) 1991; 29
J Bolte (1382_CR6) 2016; 41
JV Burke (1382_CR8) 1995; 71
C Li (1382_CR25) 2002; 91
C Cartis (1382_CR10) 2014; 144
Y Nesterov (1382_CR32) 1994
E Pauwels (1382_CR38) 2016; 44
Y Nesterov (1382_CR33) 2004
C Li (1382_CR24) 2007; 18
1382_CR18
1382_CR16
Y Ye (1382_CR50) 1997
BN Pshenichnyi (1382_CR39) 1987; 18
Solodov (1382_CR47) 2009; 118
J Eckstein (1382_CR17) 1993; 18
PL Combettes (1382_CR13) 2013; 23
References_xml – volume: 162
  start-page: 83
  issue: 1–2
  year: 2017
  end-page: 112
  ident: CR45
  article-title: Minimizing finite sums with the stochastic average gradient
  publication-title: Math. Program.
– year: 2006
  ident: CR35
  publication-title: Numerical Optimization
– volume: 118
  start-page: 1
  issue: 1
  year: 2009
  end-page: 12
  ident: CR47
  article-title: Global convergence of an SQP method without boundedness assumptions on any of the iterative sequences
  publication-title: Math. Program.
– ident: CR16
– volume: 4
  start-page: 154
  issue: 3
  year: 1970
  end-page: 158
  ident: CR28
  article-title: Revue française d’informatique et de recherche opérationnelle, série rouge
  publication-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives
– volume: 23
  start-page: 2420
  issue: 4
  year: 2013
  end-page: 2447
  ident: CR13
  article-title: Systems of structured monotone inclusions: duality, algorithms, and applications
  publication-title: SIAM J. Optim.
– volume: 71
  start-page: 179
  issue: 2
  year: 1995
  end-page: 194
  ident: CR8
  article-title: A Gauss–Newton method for convex composite optimization
  publication-title: Math. Program.
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  end-page: 979
  ident: CR26
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
– year: 1983
  ident: CR34
  publication-title: Problem Complexity and Method Efficiency in Optimization
– volume: 29
  start-page: 119
  issue: 1
  year: 1991
  end-page: 138
  ident: CR48
  article-title: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities
  publication-title: SIAM J. Control Optim.
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: CR29
  article-title: Proximité et dualité dans un espace hilbertien
  publication-title: Bulletin de la Société mathématique de France.
– volume: 1
  start-page: 97
  issue: 2
  year: 1976
  end-page: 116
  ident: CR40
  article-title: Augmented Lagrangians and applications of the proximal point algorithm in convex programming
  publication-title: Math. Oper. Res.
– volume: 18
  start-page: 613
  issue: 2
  year: 2007
  end-page: 642
  ident: CR24
  article-title: Majorizing functions and convergence of the Gauss–Newton method for convex composite optimization
  publication-title: SIAM J. Optim.
– volume: 168
  start-page: 645
  issue: 1–2
  year: 2018
  end-page: 672
  ident: CR14
  article-title: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1044-0
– volume: 53
  start-page: 557
  issue: 2
  year: 2012
  end-page: 589
  ident: CR44
  article-title: Convergence analysis of a proximal Gauss–Newton method
  publication-title: Comput. Optim. Appl.
– volume: 23
  start-page: 1607
  issue: 3
  year: 2013
  end-page: 1633
  ident: CR49
  article-title: Accelerated and inexact forward–backward algorithms
  publication-title: SIAM J. Optim.
– year: 2017
  ident: CR4
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– volume: 33
  start-page: 260
  issue: 3
  year: 1985
  end-page: 279
  ident: CR7
  article-title: Descent methods for composite nondifferentiable optimization problems
  publication-title: Math. Program.
– volume: 21
  start-page: 1721
  issue: 4
  year: 2011
  end-page: 1739
  ident: CR9
  article-title: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming
  publication-title: SIAM J. Optim.
– volume: 41
  start-page: 442
  issue: 2
  year: 2016
  end-page: 465
  ident: CR6
  article-title: Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs
  publication-title: Math. Oper. Res.
– volume: 158
  start-page: 501
  issue: 1–2
  year: 2016
  end-page: 546
  ident: CR23
  article-title: A proximal method for composite minimization
  publication-title: Mathe. Program. Math. Program.
  doi: 10.1007/s10107-015-0943-9
– volume: 26
  start-page: 347
  issue: 3
  year: 1977
  end-page: 374
  ident: CR30
  article-title: Evolution problem associated with a moving convex set in a Hilbert space
  publication-title: J. Differ. Equ.
– volume: 43
  start-page: 919
  issue: 3
  year: 2018
  end-page: 948
  ident: CR15
  article-title: Error bounds, quadratic growth, and linear convergence of proximal methods
  publication-title: Math. Op. Res.
  doi: 10.1287/moor.2017.0889
– volume: 156
  start-page: 183
  issue: 2
  year: 2013
  end-page: 212
  ident: CR3
  article-title: An extended sequential quadratically constrained quadratic programming algorithm for nonlinear, semidefinite, and second-order cone programming
  publication-title: J. Optim. Theory Appl.
– ident: CR18
– volume: 8
  start-page: 181
  issue: 1
  year: 1960
  end-page: 217
  ident: CR42
  article-title: The gradient projection method for nonlinear programming. Part I. Linear constraints
  publication-title: J. Soc. Ind. Appl. Math.
– year: 1998
  ident: CR41
  publication-title: Variational Analysis
– volume: 144
  start-page: 93
  issue: 1
  year: 2014
  end-page: 106
  ident: CR10
  article-title: On the complexity of finding first-order critical points in constrained nonlinear optimization
  publication-title: Math. Program.
– year: 2004
  ident: CR33
  publication-title: Introductory Lectures on Convex Programming, Volumne I: Basis Course
– volume: 159
  start-page: 137
  issue: 1–2
  year: 2016
  end-page: 164
  ident: CR46
  article-title: A dual method for minimizing a nonsmooth objective over one smooth inequality constraint
  publication-title: Math. Program.
– start-page: 185
  year: 2011
  end-page: 212
  ident: CR12
  publication-title: Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithm for Inverse Problems in Science and Engineering. Optimization and Its Applications
– volume: 25
  start-page: 2663
  year: 2012
  end-page: 2671
  ident: CR21
  article-title: A stochastic gradient method with an exponential convergence rate for finite training sets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  end-page: 2000
  ident: CR11
  article-title: Signal recovery by proximal forward–backward splitting
  publication-title: Multiscale Model. Simul.
– year: 1994
  ident: CR32
  publication-title: Interior-Point Polynomial Algorithms in Convex Programming
– volume: 72
  start-page: 383
  issue: 2
  year: 1979
  end-page: 390
  ident: CR37
  article-title: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space
  publication-title: J. Math. Anal. Appl.
– ident: CR27
– volume: 16
  start-page: 697
  issue: 3
  year: 2006
  end-page: 725
  ident: CR1
  article-title: Interior gradient and proximal methods for convex and conic optimization
  publication-title: SIAM J. Optim.
– volume: 9
  start-page: 514
  issue: 4
  year: 1961
  end-page: 532
  ident: CR43
  article-title: The gradient projection method for nonlinear programming. Part II. Nonlinear constraints
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 6
  start-page: 1
  issue: 5
  year: 1966
  end-page: 50
  ident: CR22
  article-title: Constrained minimization methods
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 18
  start-page: 179
  issue: 2
  year: 1987
  end-page: 196
  ident: CR39
  article-title: The linearization method
  publication-title: Optimization
– volume: 18
  start-page: 202
  issue: 1
  year: 1993
  end-page: 226
  ident: CR17
  article-title: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming
  publication-title: Math. Oper. Res.
– year: 1997
  ident: CR50
  publication-title: Interior Point Algorithms: Theory and Analysis
– volume: 44
  start-page: 790
  issue: 6
  year: 2016
  end-page: 795
  ident: CR38
  article-title: The value function approach to convergence analysis in composite optimization
  publication-title: Oper. Res. Lett.
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR5
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– ident: CR31
– year: 1993
  ident: CR19
  publication-title: Convex Analysis and Minimization Algorithm I
– year: 2000
  ident: CR36
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– volume: 91
  start-page: 349
  issue: 2
  year: 2002
  end-page: 356
  ident: CR25
  article-title: On convergence of the Gauss–Newton method for convex composite optimization
  publication-title: Math. Program.
– ident: CR20
– volume: 20
  start-page: 3232
  issue: 6
  year: 2010
  end-page: 3259
  ident: CR2
  article-title: A moving balls approximation method for a class of smooth constrained minimization problems
  publication-title: SIAM J. Optim.
– volume: 162
  start-page: 83
  issue: 1–2
  year: 2017
  ident: 1382_CR45
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1030-6
– ident: 1382_CR31
– volume: 23
  start-page: 1607
  issue: 3
  year: 2013
  ident: 1382_CR49
  publication-title: SIAM J. Optim.
  doi: 10.1137/110844805
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  ident: 1382_CR26
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 144
  start-page: 93
  issue: 1
  year: 2014
  ident: 1382_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0617-9
– volume: 6
  start-page: 1
  issue: 5
  year: 1966
  ident: 1382_CR22
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(66)90114-5
– volume: 21
  start-page: 1721
  issue: 4
  year: 2011
  ident: 1382_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/11082381X
– volume-title: Interior Point Algorithms: Theory and Analysis
  year: 1997
  ident: 1382_CR50
  doi: 10.1002/9781118032701
– volume-title: Convex Analysis and Minimization Algorithm I
  year: 1993
  ident: 1382_CR19
– volume: 71
  start-page: 179
  issue: 2
  year: 1995
  ident: 1382_CR8
  publication-title: Math. Program.
  doi: 10.1007/BF01585997
– volume: 26
  start-page: 347
  issue: 3
  year: 1977
  ident: 1382_CR30
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(77)90085-7
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2017
  ident: 1382_CR4
  doi: 10.1007/978-3-319-48311-5
– volume: 23
  start-page: 2420
  issue: 4
  year: 2013
  ident: 1382_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/130904160
– volume: 20
  start-page: 3232
  issue: 6
  year: 2010
  ident: 1382_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/090763317
– volume: 1
  start-page: 97
  issue: 2
  year: 1976
  ident: 1382_CR40
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1.2.97
– volume: 53
  start-page: 557
  issue: 2
  year: 2012
  ident: 1382_CR44
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9476-9
– volume: 33
  start-page: 260
  issue: 3
  year: 1985
  ident: 1382_CR7
  publication-title: Math. Program.
  doi: 10.1007/BF01584377
– volume: 44
  start-page: 790
  issue: 6
  year: 2016
  ident: 1382_CR38
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2016.10.003
– volume: 72
  start-page: 383
  issue: 2
  year: 1979
  ident: 1382_CR37
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90234-8
– volume: 118
  start-page: 1
  issue: 1
  year: 2009
  ident: 1382_CR47
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0180-y
– volume: 91
  start-page: 349
  issue: 2
  year: 2002
  ident: 1382_CR25
  publication-title: Math. Program.
  doi: 10.1007/s101070100249
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1382_CR5
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 16
  start-page: 697
  issue: 3
  year: 2006
  ident: 1382_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403427823
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: 1382_CR34
– volume-title: Iterative Solution of Nonlinear Equations in Several Variables
  year: 2000
  ident: 1382_CR36
  doi: 10.1137/1.9780898719468
– ident: 1382_CR27
– volume: 158
  start-page: 501
  issue: 1–2
  year: 2016
  ident: 1382_CR23
  publication-title: Mathe. Program. Math. Program.
  doi: 10.1007/s10107-015-0943-9
– volume: 18
  start-page: 179
  issue: 2
  year: 1987
  ident: 1382_CR39
  publication-title: Optimization
  doi: 10.1080/02331938708843231
– volume: 159
  start-page: 137
  issue: 1–2
  year: 2016
  ident: 1382_CR46
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0952-8
– volume: 43
  start-page: 919
  issue: 3
  year: 2018
  ident: 1382_CR15
  publication-title: Math. Op. Res.
  doi: 10.1287/moor.2017.0889
– ident: 1382_CR18
  doi: 10.1007/BFb0120959
– volume-title: Variational Analysis
  year: 1998
  ident: 1382_CR41
  doi: 10.1007/978-3-642-02431-3
– volume: 29
  start-page: 119
  issue: 1
  year: 1991
  ident: 1382_CR48
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0329006
– volume-title: Introductory Lectures on Convex Programming, Volumne I: Basis Course
  year: 2004
  ident: 1382_CR33
  doi: 10.1007/978-1-4419-8853-9
– volume: 168
  start-page: 645
  issue: 1–2
  year: 2018
  ident: 1382_CR14
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1044-0
– volume: 9
  start-page: 514
  issue: 4
  year: 1961
  ident: 1382_CR43
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0109044
– volume: 8
  start-page: 181
  issue: 1
  year: 1960
  ident: 1382_CR42
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0108011
– volume-title: Interior-Point Polynomial Algorithms in Convex Programming
  year: 1994
  ident: 1382_CR32
  doi: 10.1137/1.9781611970791
– volume: 156
  start-page: 183
  issue: 2
  year: 2013
  ident: 1382_CR3
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0145-z
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  ident: 1382_CR11
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– start-page: 185
  volume-title: Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithm for Inverse Problems in Science and Engineering. Optimization and Its Applications
  year: 2011
  ident: 1382_CR12
– volume: 18
  start-page: 613
  issue: 2
  year: 2007
  ident: 1382_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/06065622X
– volume: 18
  start-page: 202
  issue: 1
  year: 1993
  ident: 1382_CR17
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.202
– volume: 4
  start-page: 154
  issue: 3
  year: 1970
  ident: 1382_CR28
  publication-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives
– volume: 25
  start-page: 2663
  year: 2012
  ident: 1382_CR21
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Numerical Optimization
  year: 2006
  ident: 1382_CR35
– ident: 1382_CR20
  doi: 10.1007/0-387-29195-4_4
– volume: 93
  start-page: 273
  year: 1965
  ident: 1382_CR29
  publication-title: Bulletin de la Société mathématique de France.
  doi: 10.24033/bsmf.1625
– ident: 1382_CR16
  doi: 10.1007/s10107-018-1311-3
– volume: 41
  start-page: 442
  issue: 2
  year: 2016
  ident: 1382_CR6
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2015.0735
SSID ssj0001388
Score 2.3911326
Snippet Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Complexity
Constraints
Curvature
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Numerical Analysis
Operators (mathematics)
Optimization
Optimization and Control
Theoretical
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8EPejBbyOKZjHedHHtvtqTIX6EAxAOargta9dFEgVkSPjzfW_rAI1y8batXdbsvfb92v76e4RceirxAi9NbMcH-OahYiUXNLZDriEcASZPcrmml1bY6fBeT3TNgltmaJXlmJgP1MlQ4Rr5DfQsP4TRVtDb0YeNWaNwd9Wk0KiQdUA2FCldbdadj8TU5bxM2Yo4wRyaMUfnaE66RLaQC810vwWmyivSIpcw549t0jz6PO78t927ZNvgTqtROMoeWdODfbK1pEYId-25hGt2QO7BgayCbjgezvrv8DIiUphaFwc3rSL3tAWg18qp6zML6enIAdOWSVOTHZLnx4enu6ZtUi7YCkL3xPZSV3owowm4lEyETiKDQNHYgQuYeQkGaCQGwOiHgkmmdKBCx5dezH2htQi4co9IdTAc6GNi0VjGLsp_Mcm9mGnAoSyMHZVoiJZpmNYILf93pIweOabFeIsWSspoowhsFOU2itwauZq_MyrUOFbWvgAzziuikHaz0YrwGcqUOQB9p7RG6qXdItN9s2hhtN-LEcWikB0UX5eOsSj-u0Unqz92SjYZTudzx6yT6mT8qc_IhppO-tn4PPftL7aa-o0
  priority: 102
  providerName: ProQuest
Title The multiproximal linearization method for convex composite problems
URI https://link.springer.com/article/10.1007/s10107-019-01382-3
https://www.proquest.com/docview/2195736291
https://www.proquest.com/docview/2416318801
https://hal.science/hal-01810977
Volume 182
WOSCitedRecordID wos000542402700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD646YM-eBfnZRTxTQttekn66JWBc4xN5_SltGmKA91kncOf7zm9bFOcoC-h6UlCOLmcL-TkOwDHtoxs144j3XAQvtnEWCk8M9C5UGiOEJNHKV1Tp84bDdHtes38UVhSeLsXV5LpTj3z2M1M3STJv8fChq0SLKK5ExSwodXuTPZfFIoiUCuhg_ypzM9tfDFHpWdyhpxBmt8uR1Obc732v96uw2qOMbWzbFJswILqb8LKDPMg5m4ndK3JFlziZNEy18Lh4KP3ipUJfeIxOnukqWVxpjUEuFrqpv6hkSs6-XspLQ9Jk2zD_fXV3UVNz8Mr6BLN9Ei3Yyu08fTiijBkHjei0HWlGRj4gacsjyHyCBAcOtxjIZPKldxwQjsQjqeU5wpp7UC5P-irXdDMIAwsovpiobADphBzMh4YMlJoGWMeV8AstOzLnHucQmC8-FPWZNKXj_ryU335VgVOJnXeMuaNX0sf4eBNChJpdu2s7tM_oiQzEOaOzQocFGPr50s18XHLdjiacW-OmBArkdah-LQY6ql4fo_2_lZ8H5YZHeXTSXMA5dHwXR3CkhyPesmwCiX-8FiFxfOrRrOFuRuuY3prXFDKmpTyNqZN56maroZPWzT3pw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuNAEC2xSQMHtgERlqGF4MRY2O223T4ghFgURIg4MIhbT7vdEUiQQBy2n-IbqfKSAJrhxoFbnPaS2K-qnu3XrwDWhUlFKFqp4wZI3wQ5VsrY004kLZYj5ORpbtd03oiaTXlxEZ8OwUs1F4ZklVVOzBN12jH0jHwLIyuIMNvG3s7tnUNdo-jtatVCo4DFsX1-xFu2bPtoH6_vBueHB2d7dafsKuAYrE49R7T8RCBpD2WS8Dhy0yQMjadd_IA3FzHHgquREwVRzBNubGgiN0iElkFsbRxK4-N-h2FUkLMYSQX5aT_ze76UVYtY4iXlJJ1yqp6XizxJneTjafHfFcLhS5JhvuG4H17L5tXucOq7nadpmCx5NdstAmEGhmx7FibeuC3i0knfojb7CfsYIKyQU3Y7T1c3uDExbt0tJ6ayorc2Q1LPcmn-EyP5PWncLCvb8GRz8OdL_tQ8jLQ7bbsAzNOJ9snejCdSaG6RZ_NIuya1yAZaUasGXnV9lSn91qntx7UaOEUTJhRiQuWYUH4NNvvb3BZuI5-uvYaw6a9IRuH13Yai78iGzUVq_-DVYLnCiSrTU6YGIPn3MLF0MurD4d8VEAfD__9Fi58fbBV-1M9OGqpx1DxegnFOjy7yoFiGkV733q7AmHnoXWXdX3lcMfj71QB9BSW_VRc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64KaIP3sXp1CK-aVkv6e1xOMfEOQbq2Fto0xQHuo1tjv18z-ltVVQQ39omaUOS5nyHfOc7AJdMhMxmUahqFsI3RoqVrqf7quNKNEeIycNYrqnXdjodt9_3uoUo_pjtnh1JJjENpNI0nNXGYVQrBL7pMWWSuD4mfsQswSojIj3564-9fC_GQjdL2kpIIQ2b-f4dn0xT6YWIkQXU-eWgNLY_ze3_93wHtlLsqdSTxbILK3K4B5sFRUK8e8hlXKf70MBFpCSUw8loMXjDxoRK0b1OgjeVJP-0gsBXienrC4Uo6sQDk0qaqmZ6AM_N26eblpqmXVAFmu-ZyiIzYOjV2G4QGJ6jhYFtC93X8AK9L89AROIjaLQczwgMIW3haFbAfNfypPRsV5iHUB6OhvIIFN0PfJMkwIzAZb4hEYsajq-JUKLFjJyoAno24lykmuSUGuOVL9WUabw4jhePx4ubFbjK24wTRY5fa1_gROYVSUy7VW9zekZSZRrC37legWo2zzz9hacct3LLQfPu_VBMSJbE7LD4Opv2ZfHPPTr-W_VzWO82mrx917k_gQ2DvP14_VShPJu8y1NYE_PZYDo5ixf-B3y1_DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiproximal+linearization+method+for+convex+composite+problems&rft.jtitle=Mathematical+programming&rft.au=Bolte%2C+J%C3%A9r%C3%B4me&rft.au=Chen%2C+Zheng&rft.au=Pauwels%2C+Edouard&rft.date=2020-07-01&rft.pub=Springer+Verlag&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=182&rft.spage=1&rft.epage=36&rft_id=info:doi/10.1007%2Fs10107-019-01382-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01810977v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon