The multiproximal linearization method for convex composite problems
Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solvin...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 182; H. 1-2; S. 1 - 36 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2020
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g., constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method, we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form
O
(
1
k
)
involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss–Newton’s method, or the forward–backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries. |
|---|---|
| AbstractList | Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g., constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method, we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form O(1k) involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss–Newton’s method, or the forward–backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries. Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g., constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method, we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form O ( 1 k ) involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss–Newton’s method, or the forward–backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries. Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g. constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method we are led to prove a new type of qualification condition and to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form $O(\frac{1}{k})$ involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss-Newton's method, or the forward-backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries. |
| Author | Bolte, Jérôme Chen, Zheng Pauwels, Edouard |
| Author_xml | – sequence: 1 givenname: Jérôme surname: Bolte fullname: Bolte, Jérôme organization: Toulouse School of Economics, Université Toulouse Capitole – sequence: 2 givenname: Zheng orcidid: 0000-0002-3573-1546 surname: Chen fullname: Chen, Zheng email: z_chen@zju.edu.cn organization: School of Aeronautics and Astronautics, Zhejiang University – sequence: 3 givenname: Edouard surname: Pauwels fullname: Pauwels, Edouard organization: IRIT, Université Paul Sabatier |
| BackLink | https://hal.science/hal-01810977$$DView record in HAL |
| BookMark | eNp9kEtLxDAUhYMoOD7-gKuCKxfVe5M0j6X4hgE34zqknYwTaZsx6Yj6681YUXAxgXBD-M49h3NAdvvQO0JOEM4RQF4kBARZAup8maIl2yET5EyUXHCxSyYAtCorgbBPDlJ6AdhgakKuZ0tXdOt28KsY3n1n26L1vbPRf9rBh77o3LAM82IRYtGE_s2959GtQvKDK7Kkbl2XjsjewrbJHf_MQ_J0ezO7ui-nj3cPV5fTsmEKh5IvWM1FPqquqZYwr4Vo0EJ-IOeaAlVWSl5JTWvaONFIqGpuVaWd00I17JCcjXuXtjWrmNPGDxOsN_eXU7P5A1QIWso3zOzpyOaQr2uXBvMS1rHP8QzlKBgqBdsp1JVkguoNRUeqiSGl6Ba_5ghm078Z-8_-2nz3b1gWqX-ixg_fnQ7R-na7lI3SlH36Zxf_Um1RfQGzqpmX |
| CitedBy_id | crossref_primary_10_1287_moor_2022_0180 crossref_primary_10_1007_s10107_023_02020_9 crossref_primary_10_1137_21M1410063 crossref_primary_10_1137_22M1505827 crossref_primary_10_1007_s10107_025_02224_1 crossref_primary_10_1007_s11228_021_00580_6 crossref_primary_10_1137_20M1314057 crossref_primary_10_1007_s10589_023_00533_9 crossref_primary_10_1109_TIP_2020_3038535 crossref_primary_10_1137_20M1355380 |
| Cites_doi | 10.1007/s10107-016-1044-0 10.1007/s10107-015-0943-9 10.1287/moor.2017.0889 10.1007/s10107-016-1030-6 10.1137/110844805 10.1137/0716071 10.1007/s10107-012-0617-9 10.1016/0041-5553(66)90114-5 10.1137/11082381X 10.1002/9781118032701 10.1007/BF01585997 10.1016/0022-0396(77)90085-7 10.1007/978-3-319-48311-5 10.1137/130904160 10.1137/090763317 10.1287/moor.1.2.97 10.1007/s10589-012-9476-9 10.1007/BF01584377 10.1016/j.orl.2016.10.003 10.1016/0022-247X(79)90234-8 10.1007/s10107-007-0180-y 10.1007/s101070100249 10.1137/080716542 10.1137/S1052623403427823 10.1137/1.9780898719468 10.1080/02331938708843231 10.1007/s10107-015-0952-8 10.1007/BFb0120959 10.1007/978-3-642-02431-3 10.1137/0329006 10.1007/978-1-4419-8853-9 10.1137/0109044 10.1137/0108011 10.1137/1.9781611970791 10.1007/s10957-012-0145-z 10.1137/050626090 10.1137/06065622X 10.1287/moor.18.1.202 10.1007/0-387-29195-4_4 10.24033/bsmf.1625 10.1007/s10107-018-1311-3 10.1287/moor.2015.0735 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 – notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC |
| DOI | 10.1007/s10107-019-01382-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 36 |
| ExternalDocumentID | oai:HAL:hal-01810977v1 10_1007_s10107_019_01382_3 |
| GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-14-1-0500 funderid: http://dx.doi.org/10.13039/100000181 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 1XC |
| ID | FETCH-LOGICAL-c381t-4f3b466668bb2970db66c1a00db14492028a7745792b2ce6c705b4a859ee968c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542402700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Oct 25 06:45:14 EDT 2025 Thu Sep 25 00:37:39 EDT 2025 Thu Sep 25 00:38:44 EDT 2025 Tue Nov 18 22:24:31 EST 2025 Sat Nov 29 03:34:01 EST 2025 Fri Feb 21 02:32:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90C30 Convex optimization 90C25 90C47 Composite optimization First order methods Proximal Gauss–Newton’s method Prox-linear method Complexity |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-4f3b466668bb2970db66c1a00db14492028a7745792b2ce6c705b4a859ee968c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3573-1546 0000-0002-1676-8407 0000-0002-8180-075X |
| PQID | 2195736291 |
| PQPubID | 25307 |
| PageCount | 36 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01810977v1 proquest_journals_2416318801 proquest_journals_2195736291 crossref_primary_10_1007_s10107_019_01382_3 crossref_citationtrail_10_1007_s10107_019_01382_3 springer_journals_10_1007_s10107_019_01382_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Auslender, Shefi, Teboulle (CR2) 2010; 20 Eckstein (CR17) 1993; 18 Nesterov (CR33) 2004 Pauwels (CR38) 2016; 44 Bauschke, Combettes (CR4) 2017 CR31 Lewis, Wright (CR23) 2016; 158 Nesterov, Nemirovskii (CR32) 1994 Martinet (CR28) 1970; 4 Ortega, Rheinboldt (CR36) 2000 Burke, Ferris (CR8) 1995; 71 Combettes, Wajs (CR11) 2005; 4 Combettes (CR13) 2013; 23 Combettes, Pesquet (CR12) 2011 Ye (CR50) 1997 Li, Ng (CR24) 2007; 18 Cartis, Gould, Toint (CR9) 2011; 21 Rosen (CR42) 1960; 8 Levitin, Polyak (CR22) 1966; 6 Villa, Salzo, Baldassarre, Verri (CR49) 2013; 23 Drusvyatskiy, Lewis (CR15) 2018; 43 Cartis, Gould, Toint (CR10) 2014; 144 Li, Wang (CR25) 2002; 91 Schmidt, Le Roux, Bach (CR45) 2017; 162 Moreau (CR29) 1965; 93 Auslender (CR3) 2013; 156 Shefi, Teboulle (CR46) 2016; 159 Rockafellar (CR40) 1976; 1 CR18 Pshenichnyi (CR39) 1987; 18 CR16 Solodov (CR47) 2009; 118 Moreau (CR30) 1977; 26 Hiriart-Urruty, Lemarechal (CR19) 1993 Rockafellar, Wets (CR41) 1998 Beck A, Teboulle (CR5) 2009; 2 Lions, Mercier (CR26) 1979; 16 Nocedal, Wright (CR35) 2006 Salzo, Villa (CR44) 2012; 53 Bolte, Pauwels (CR6) 2016; 41 Passty (CR37) 1979; 72 Auslender, Teboulle (CR1) 2006; 16 Le Roux, Schmidt, Bach (CR21) 2012; 25 CR27 Rosen (CR43) 1961; 9 Burke (CR7) 1985; 33 CR20 Nemirovskii, Yudin (CR34) 1983 Tseng (CR48) 1991; 29 Combettes, Eckstein (CR14) 2018; 168 RT Rockafellar (1382_CR40) 1976; 1 C Cartis (1382_CR9) 2011; 21 A Nemirovskii (1382_CR34) 1983 GB Passty (1382_CR37) 1979; 72 J-B Hiriart-Urruty (1382_CR19) 1993 JM Ortega (1382_CR36) 2000 JV Burke (1382_CR7) 1985; 33 AS Lewis (1382_CR23) 2016; 158 J-J Moreau (1382_CR29) 1965; 93 J-J Moreau (1382_CR30) 1977; 26 RT Rockafellar (1382_CR41) 1998 JB Rosen (1382_CR42) 1960; 8 M Schmidt (1382_CR45) 2017; 162 B Martinet (1382_CR28) 1970; 4 HH Bauschke (1382_CR4) 2017 D Drusvyatskiy (1382_CR15) 2018; 43 P-L Lions (1382_CR26) 1979; 16 1382_CR31 A Auslender (1382_CR2) 2010; 20 PL Combettes (1382_CR12) 2011 PL Combettes (1382_CR11) 2005; 4 J Nocedal (1382_CR35) 2006 A Auslender (1382_CR3) 2013; 156 R Shefi (1382_CR46) 2016; 159 A Auslender (1382_CR1) 2006; 16 1382_CR27 S Salzo (1382_CR44) 2012; 53 1382_CR20 S Villa (1382_CR49) 2013; 23 N Le Roux (1382_CR21) 2012; 25 JB Rosen (1382_CR43) 1961; 9 ES Levitin (1382_CR22) 1966; 6 A Beck A (1382_CR5) 2009; 2 PL Combettes (1382_CR14) 2018; 168 P Tseng (1382_CR48) 1991; 29 J Bolte (1382_CR6) 2016; 41 JV Burke (1382_CR8) 1995; 71 C Li (1382_CR25) 2002; 91 C Cartis (1382_CR10) 2014; 144 Y Nesterov (1382_CR32) 1994 E Pauwels (1382_CR38) 2016; 44 Y Nesterov (1382_CR33) 2004 C Li (1382_CR24) 2007; 18 1382_CR18 1382_CR16 Y Ye (1382_CR50) 1997 BN Pshenichnyi (1382_CR39) 1987; 18 Solodov (1382_CR47) 2009; 118 J Eckstein (1382_CR17) 1993; 18 PL Combettes (1382_CR13) 2013; 23 |
| References_xml | – volume: 162 start-page: 83 issue: 1–2 year: 2017 end-page: 112 ident: CR45 article-title: Minimizing finite sums with the stochastic average gradient publication-title: Math. Program. – year: 2006 ident: CR35 publication-title: Numerical Optimization – volume: 118 start-page: 1 issue: 1 year: 2009 end-page: 12 ident: CR47 article-title: Global convergence of an SQP method without boundedness assumptions on any of the iterative sequences publication-title: Math. Program. – ident: CR16 – volume: 4 start-page: 154 issue: 3 year: 1970 end-page: 158 ident: CR28 article-title: Revue française d’informatique et de recherche opérationnelle, série rouge publication-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives – volume: 23 start-page: 2420 issue: 4 year: 2013 end-page: 2447 ident: CR13 article-title: Systems of structured monotone inclusions: duality, algorithms, and applications publication-title: SIAM J. Optim. – volume: 71 start-page: 179 issue: 2 year: 1995 end-page: 194 ident: CR8 article-title: A Gauss–Newton method for convex composite optimization publication-title: Math. Program. – volume: 16 start-page: 964 issue: 6 year: 1979 end-page: 979 ident: CR26 article-title: Splitting algorithms for the sum of two nonlinear operators publication-title: SIAM J. Numer. Anal. – year: 1983 ident: CR34 publication-title: Problem Complexity and Method Efficiency in Optimization – volume: 29 start-page: 119 issue: 1 year: 1991 end-page: 138 ident: CR48 article-title: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities publication-title: SIAM J. Control Optim. – volume: 93 start-page: 273 year: 1965 end-page: 299 ident: CR29 article-title: Proximité et dualité dans un espace hilbertien publication-title: Bulletin de la Société mathématique de France. – volume: 1 start-page: 97 issue: 2 year: 1976 end-page: 116 ident: CR40 article-title: Augmented Lagrangians and applications of the proximal point algorithm in convex programming publication-title: Math. Oper. Res. – volume: 18 start-page: 613 issue: 2 year: 2007 end-page: 642 ident: CR24 article-title: Majorizing functions and convergence of the Gauss–Newton method for convex composite optimization publication-title: SIAM J. Optim. – volume: 168 start-page: 645 issue: 1–2 year: 2018 end-page: 672 ident: CR14 article-title: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions publication-title: Math. Program. doi: 10.1007/s10107-016-1044-0 – volume: 53 start-page: 557 issue: 2 year: 2012 end-page: 589 ident: CR44 article-title: Convergence analysis of a proximal Gauss–Newton method publication-title: Comput. Optim. Appl. – volume: 23 start-page: 1607 issue: 3 year: 2013 end-page: 1633 ident: CR49 article-title: Accelerated and inexact forward–backward algorithms publication-title: SIAM J. Optim. – year: 2017 ident: CR4 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces – volume: 33 start-page: 260 issue: 3 year: 1985 end-page: 279 ident: CR7 article-title: Descent methods for composite nondifferentiable optimization problems publication-title: Math. Program. – volume: 21 start-page: 1721 issue: 4 year: 2011 end-page: 1739 ident: CR9 article-title: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming publication-title: SIAM J. Optim. – volume: 41 start-page: 442 issue: 2 year: 2016 end-page: 465 ident: CR6 article-title: Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs publication-title: Math. Oper. Res. – volume: 158 start-page: 501 issue: 1–2 year: 2016 end-page: 546 ident: CR23 article-title: A proximal method for composite minimization publication-title: Mathe. Program. Math. Program. doi: 10.1007/s10107-015-0943-9 – volume: 26 start-page: 347 issue: 3 year: 1977 end-page: 374 ident: CR30 article-title: Evolution problem associated with a moving convex set in a Hilbert space publication-title: J. Differ. Equ. – volume: 43 start-page: 919 issue: 3 year: 2018 end-page: 948 ident: CR15 article-title: Error bounds, quadratic growth, and linear convergence of proximal methods publication-title: Math. Op. Res. doi: 10.1287/moor.2017.0889 – volume: 156 start-page: 183 issue: 2 year: 2013 end-page: 212 ident: CR3 article-title: An extended sequential quadratically constrained quadratic programming algorithm for nonlinear, semidefinite, and second-order cone programming publication-title: J. Optim. Theory Appl. – ident: CR18 – volume: 8 start-page: 181 issue: 1 year: 1960 end-page: 217 ident: CR42 article-title: The gradient projection method for nonlinear programming. Part I. Linear constraints publication-title: J. Soc. Ind. Appl. Math. – year: 1998 ident: CR41 publication-title: Variational Analysis – volume: 144 start-page: 93 issue: 1 year: 2014 end-page: 106 ident: CR10 article-title: On the complexity of finding first-order critical points in constrained nonlinear optimization publication-title: Math. Program. – year: 2004 ident: CR33 publication-title: Introductory Lectures on Convex Programming, Volumne I: Basis Course – volume: 159 start-page: 137 issue: 1–2 year: 2016 end-page: 164 ident: CR46 article-title: A dual method for minimizing a nonsmooth objective over one smooth inequality constraint publication-title: Math. Program. – start-page: 185 year: 2011 end-page: 212 ident: CR12 publication-title: Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithm for Inverse Problems in Science and Engineering. Optimization and Its Applications – volume: 25 start-page: 2663 year: 2012 end-page: 2671 ident: CR21 article-title: A stochastic gradient method with an exponential convergence rate for finite training sets publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 1168 issue: 4 year: 2005 end-page: 2000 ident: CR11 article-title: Signal recovery by proximal forward–backward splitting publication-title: Multiscale Model. Simul. – year: 1994 ident: CR32 publication-title: Interior-Point Polynomial Algorithms in Convex Programming – volume: 72 start-page: 383 issue: 2 year: 1979 end-page: 390 ident: CR37 article-title: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space publication-title: J. Math. Anal. Appl. – ident: CR27 – volume: 16 start-page: 697 issue: 3 year: 2006 end-page: 725 ident: CR1 article-title: Interior gradient and proximal methods for convex and conic optimization publication-title: SIAM J. Optim. – volume: 9 start-page: 514 issue: 4 year: 1961 end-page: 532 ident: CR43 article-title: The gradient projection method for nonlinear programming. Part II. Nonlinear constraints publication-title: J. Soc. Ind. Appl. Math. – volume: 6 start-page: 1 issue: 5 year: 1966 end-page: 50 ident: CR22 article-title: Constrained minimization methods publication-title: USSR Comput. Math. Math. Phys. – volume: 18 start-page: 179 issue: 2 year: 1987 end-page: 196 ident: CR39 article-title: The linearization method publication-title: Optimization – volume: 18 start-page: 202 issue: 1 year: 1993 end-page: 226 ident: CR17 article-title: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming publication-title: Math. Oper. Res. – year: 1997 ident: CR50 publication-title: Interior Point Algorithms: Theory and Analysis – volume: 44 start-page: 790 issue: 6 year: 2016 end-page: 795 ident: CR38 article-title: The value function approach to convergence analysis in composite optimization publication-title: Oper. Res. Lett. – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR5 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – ident: CR31 – year: 1993 ident: CR19 publication-title: Convex Analysis and Minimization Algorithm I – year: 2000 ident: CR36 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – volume: 91 start-page: 349 issue: 2 year: 2002 end-page: 356 ident: CR25 article-title: On convergence of the Gauss–Newton method for convex composite optimization publication-title: Math. Program. – ident: CR20 – volume: 20 start-page: 3232 issue: 6 year: 2010 end-page: 3259 ident: CR2 article-title: A moving balls approximation method for a class of smooth constrained minimization problems publication-title: SIAM J. Optim. – volume: 162 start-page: 83 issue: 1–2 year: 2017 ident: 1382_CR45 publication-title: Math. Program. doi: 10.1007/s10107-016-1030-6 – ident: 1382_CR31 – volume: 23 start-page: 1607 issue: 3 year: 2013 ident: 1382_CR49 publication-title: SIAM J. Optim. doi: 10.1137/110844805 – volume: 16 start-page: 964 issue: 6 year: 1979 ident: 1382_CR26 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – volume: 144 start-page: 93 issue: 1 year: 2014 ident: 1382_CR10 publication-title: Math. Program. doi: 10.1007/s10107-012-0617-9 – volume: 6 start-page: 1 issue: 5 year: 1966 ident: 1382_CR22 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(66)90114-5 – volume: 21 start-page: 1721 issue: 4 year: 2011 ident: 1382_CR9 publication-title: SIAM J. Optim. doi: 10.1137/11082381X – volume-title: Interior Point Algorithms: Theory and Analysis year: 1997 ident: 1382_CR50 doi: 10.1002/9781118032701 – volume-title: Convex Analysis and Minimization Algorithm I year: 1993 ident: 1382_CR19 – volume: 71 start-page: 179 issue: 2 year: 1995 ident: 1382_CR8 publication-title: Math. Program. doi: 10.1007/BF01585997 – volume: 26 start-page: 347 issue: 3 year: 1977 ident: 1382_CR30 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(77)90085-7 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2017 ident: 1382_CR4 doi: 10.1007/978-3-319-48311-5 – volume: 23 start-page: 2420 issue: 4 year: 2013 ident: 1382_CR13 publication-title: SIAM J. Optim. doi: 10.1137/130904160 – volume: 20 start-page: 3232 issue: 6 year: 2010 ident: 1382_CR2 publication-title: SIAM J. Optim. doi: 10.1137/090763317 – volume: 1 start-page: 97 issue: 2 year: 1976 ident: 1382_CR40 publication-title: Math. Oper. Res. doi: 10.1287/moor.1.2.97 – volume: 53 start-page: 557 issue: 2 year: 2012 ident: 1382_CR44 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9476-9 – volume: 33 start-page: 260 issue: 3 year: 1985 ident: 1382_CR7 publication-title: Math. Program. doi: 10.1007/BF01584377 – volume: 44 start-page: 790 issue: 6 year: 2016 ident: 1382_CR38 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2016.10.003 – volume: 72 start-page: 383 issue: 2 year: 1979 ident: 1382_CR37 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(79)90234-8 – volume: 118 start-page: 1 issue: 1 year: 2009 ident: 1382_CR47 publication-title: Math. Program. doi: 10.1007/s10107-007-0180-y – volume: 91 start-page: 349 issue: 2 year: 2002 ident: 1382_CR25 publication-title: Math. Program. doi: 10.1007/s101070100249 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1382_CR5 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 16 start-page: 697 issue: 3 year: 2006 ident: 1382_CR1 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403427823 – volume-title: Problem Complexity and Method Efficiency in Optimization year: 1983 ident: 1382_CR34 – volume-title: Iterative Solution of Nonlinear Equations in Several Variables year: 2000 ident: 1382_CR36 doi: 10.1137/1.9780898719468 – ident: 1382_CR27 – volume: 158 start-page: 501 issue: 1–2 year: 2016 ident: 1382_CR23 publication-title: Mathe. Program. Math. Program. doi: 10.1007/s10107-015-0943-9 – volume: 18 start-page: 179 issue: 2 year: 1987 ident: 1382_CR39 publication-title: Optimization doi: 10.1080/02331938708843231 – volume: 159 start-page: 137 issue: 1–2 year: 2016 ident: 1382_CR46 publication-title: Math. Program. doi: 10.1007/s10107-015-0952-8 – volume: 43 start-page: 919 issue: 3 year: 2018 ident: 1382_CR15 publication-title: Math. Op. Res. doi: 10.1287/moor.2017.0889 – ident: 1382_CR18 doi: 10.1007/BFb0120959 – volume-title: Variational Analysis year: 1998 ident: 1382_CR41 doi: 10.1007/978-3-642-02431-3 – volume: 29 start-page: 119 issue: 1 year: 1991 ident: 1382_CR48 publication-title: SIAM J. Control Optim. doi: 10.1137/0329006 – volume-title: Introductory Lectures on Convex Programming, Volumne I: Basis Course year: 2004 ident: 1382_CR33 doi: 10.1007/978-1-4419-8853-9 – volume: 168 start-page: 645 issue: 1–2 year: 2018 ident: 1382_CR14 publication-title: Math. Program. doi: 10.1007/s10107-016-1044-0 – volume: 9 start-page: 514 issue: 4 year: 1961 ident: 1382_CR43 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0109044 – volume: 8 start-page: 181 issue: 1 year: 1960 ident: 1382_CR42 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0108011 – volume-title: Interior-Point Polynomial Algorithms in Convex Programming year: 1994 ident: 1382_CR32 doi: 10.1137/1.9781611970791 – volume: 156 start-page: 183 issue: 2 year: 2013 ident: 1382_CR3 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0145-z – volume: 4 start-page: 1168 issue: 4 year: 2005 ident: 1382_CR11 publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – start-page: 185 volume-title: Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithm for Inverse Problems in Science and Engineering. Optimization and Its Applications year: 2011 ident: 1382_CR12 – volume: 18 start-page: 613 issue: 2 year: 2007 ident: 1382_CR24 publication-title: SIAM J. Optim. doi: 10.1137/06065622X – volume: 18 start-page: 202 issue: 1 year: 1993 ident: 1382_CR17 publication-title: Math. Oper. Res. doi: 10.1287/moor.18.1.202 – volume: 4 start-page: 154 issue: 3 year: 1970 ident: 1382_CR28 publication-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives – volume: 25 start-page: 2663 year: 2012 ident: 1382_CR21 publication-title: Adv. Neural Inf. Process. Syst. – volume-title: Numerical Optimization year: 2006 ident: 1382_CR35 – ident: 1382_CR20 doi: 10.1007/0-387-29195-4_4 – volume: 93 start-page: 273 year: 1965 ident: 1382_CR29 publication-title: Bulletin de la Société mathématique de France. doi: 10.24033/bsmf.1625 – ident: 1382_CR16 doi: 10.1007/s10107-018-1311-3 – volume: 41 start-page: 442 issue: 2 year: 2016 ident: 1382_CR6 publication-title: Math. Oper. Res. doi: 10.1287/moor.2015.0735 |
| SSID | ssj0001388 |
| Score | 2.3911326 |
| Snippet | Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Approximation Calculus of Variations and Optimal Control; Optimization Combinatorics Complexity Constraints Curvature Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Methods Numerical Analysis Operators (mathematics) Optimization Optimization and Control Theoretical |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8EPejBbyOKZjHedHHrPnsyxI9wAMJBDbem7UokUUCGhD_f97ZuoFEu3ra1y5q91_b32l9_j5DLRPcBdzNlu9pTEKAE2mZCU1sloaReICInW9N9aUWdTtzrsa5ZcEsNrbIYE7OBOhkpXCO_gZ4VRDDaMvd2_GFj1ijcXTUpNCpkHZCNi5SuNu2WI7HrxXGRshVxgjk0Y47OuRnpEtlCHqBM79vEVHlFWuQS5vyxTZrNPo87_233Ltk2uNNq5I6yR9b0cJ9sLakRwl27lHBND8g9OJCV0w0no_ngHV5GRAqhdX5w08pzT1sAeq2Muj63kJ6OHDBtmTQ16SF5fnx4umvaJuWCrWDqntp-35M-RDRhLCVlkZPIMFSucOACIi9GAY0IAIxBxKikSocqcgLpizhgWrMwVt4RqQ5HQ31MrBjAT5goPwiS0Bd9AEaREEwkOpYASSWtEbf431wZPXJMi_HGF0rKaCMONuKZjbhXI1flO-NcjWNl7QswY1kRhbSbjRbHZyhT5gD0nbk1Ui_sxk33TfnCaL8XI4pFITsovi4cY1H8d4tOVn_slGxSDOczx6yT6nTyqc_IhppNB-nkPPPtL3K_-8E priority: 102 providerName: ProQuest |
| Title | The multiproximal linearization method for convex composite problems |
| URI | https://link.springer.com/article/10.1007/s10107-019-01382-3 https://www.proquest.com/docview/2195736291 https://www.proquest.com/docview/2416318801 https://hal.science/hal-01810977 |
| Volume | 182 |
| WOSCitedRecordID | wos000542402700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT8MwDLbY4AEeuBHjmCrEG1Rq06ZpHjmFBEwTN7xUSZoJJBhoHRM_H7vHGAiQ4MVq6qSKnMOfG8cG2ExtB3G3NK5vA4MGCreuVJa5Jo00C7gSXv5P9-pEtFrxzY1sl5fCssrbvTqSzHfqkctufu4mSf49AeLCoAbjqO5iSthwdn413H-RGVeJWgkdlFdlvv_GJ3VUuydnyBGk-eVwNNc5hzP_6-0sTJcY09kpJsUcjNnuPEyNRB7E0ukwXGu2APs4WZzCtbD3_PbwhI0JfaIZXVzSdIo80w4CXCd3U39zyBWd_L2sU6akyRbh8vDgYu_ILdMruAbVdN8NO4EO0XqJYq2ZFF6qo8j4ysMHtLIkQ-ShEBxyIZlmxkZGeFyHKubSWhnFJliCeve5a5fBiRHoRKkJOU-jUHUQBAmlpEptrBF-atYAv5JyYsrY45QC4zH5iJpM8kpQXkkuryRowNawzUsReePX2hs4eMOKFDT7aOckoXcUksxDmDvwG7BWjW1SLtUswS2bC1Tj8gc2IVYKWofs7WqoP9g_92jlb9VXYZKRKZ9PmjWo93uvdh0mzKD_kPWaUBPXt00Y3z1otc-wdCxcpKfeHlHWJirOkbb5XTNfDe9Jqfjb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2FUKlwKPQDNTS0K9SeWqv2-nMPCEUEFESIONCK23Z3vRFINIE4hPCn-I3M-CMJVcuNQ2-O146d-M3s2_XbNwCfU9tH3i2M41nf4AAltI5QljsmjTT3QxW7-Zzuz27c6yVnZ-KkBvfVWhiSVVY5MU_U6dDQHPl3jKwwxmwrvN2ra4eqRtHb1aqERgGLI3t3i0O2bOewjc_3C-cH-6d7HaesKuAY7J3GTtD3dYCkPUq05iJ2Ux1FxlMubuDgQnDscBVyojAWXHNjIxO7oQ5UEgprRZQYH793CZYDchYjqSA_mWV-z0-SqkQs8ZJykU65VM_LRZ6kTvKR1fqPOsKlc5JhLnDcP17L5r3dwdr_9j-tw6uSV7NWEQivoWYHb2B1wW0RPx3PLGqzt9DGAGGFnHI0nF78xpOJcatRuTCVFbW1GZJ6lkvzp4zk96Rxs6wsw5O9gx_P8qM2oD4YDux7YAmSuyg1QRimUaD6SPxipYRKbaKRcmveAK96vtKUfutU9uNSzp2iCRMSMSFzTEi_AV9n51wVbiNPHr2NsJkdSEbhnVZX0j6yYXOR2k-8BjQrnMgyPWVyDpK_NxNLJ6M-bP5WAXHe_O872nz6Yp_gZef0uCu7h72jD7DCaeoiD4om1MejG7sFL8xkfJGNPuZxxeDXcwP0AVx_Vks |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5uiuCDd3E6tYhvWtZ7m8fhHBPnGKhjbyFJUxzoNtY59vM9p5etihPEt7YnKSFJm-8k3_kOIVehigB3U6mbypbgoLhKp1xZugw9Ydku941kT7fX9judoN-n3UIUf8J2z48k05gGVGkaTmvjMKoVAt_MhDKJXB8bMKJdIusOEunRX3_qLf7FYAzypK2IFLKwmZ_f8WVpKr0iMbKAOr8dlCbrT3Pn_y3fJdsZ9tTq6WTZI2tquE-2CoqEcPe4kHGND0gDJpGWUg4no_ngHSojKgX3Og3e1NL80xoAXy2hr881pKgjD0xpWaqa-JC8NO-eb1t6lnZBl7B8T3UnsoUDXo0XCGFR3wiF50mTG3AB3he1AJFwAI2uTy1hSeVJ33CFwwOXKkW9QNpHpDwcDdUx0QIAQF4oHdcNPYdHAI58zikPVSAAlgqrQsy8x5nMNMkxNcYbW6opY38x6C-W9BezK-R6UWecKnL8WvoSBnJREMW0W_U2w2coVWYA_J2ZFVLNx5lln3DM4Ffu-rC80xVmRLIoZgfmm3zYl-bVLTr5W_ELstltNFn7vvNwipsKuPuD86dKytPJhzojG3I2HcST82TifwJdV_1l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiproximal+linearization+method+for+convex+composite+problems&rft.jtitle=Mathematical+programming&rft.au=Bolte%2C+J%C3%A9r%C3%B4me&rft.au=Chen%2C+Zheng&rft.au=Pauwels%2C+Edouard&rft.date=2020-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=182&rft.issue=1-2&rft.spage=1&rft.epage=36&rft_id=info:doi/10.1007%2Fs10107-019-01382-3&rft.externalDocID=10_1007_s10107_019_01382_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |