Guidance for precision landing on asteroid using active hopping trajectory

In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after a collision. To achieve a precision landing, a guidance method using an active hopping trajectory is proposed. In contrast to passive hopping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica Jg. 198; S. 320 - 328
Hauptverfasser: Liang, Zixuan, Lv, Chang, Zhu, Shengying, Ge, Dantong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2022
Schlagworte:
ISSN:0094-5765, 1879-2030
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after a collision. To achieve a precision landing, a guidance method using an active hopping trajectory is proposed. In contrast to passive hopping, the active hopping strategy can reduce the landing errors by controlling the collision attitude sequence of the probe. The collision attitude sequence is determined by dynamically planning the hopping trajectory which consists of an active hopping phase and a braking phase. The active hopping phase achieves an expected range with a small number of hops, and the braking phase eliminates the probe's horizontal velocity and provides feedback for the range adjustment of the active hopping phase. The guidance method based on the hopping trajectory planning is then verified in a simulated asteroid landing scenario. The results show that the method is effective in reducing the landing errors, robust to the environmental parameter perturbations, and applicable to landings on inclined surfaces. •A guidance method using active hopping trajectory is developed for the precision landing on the surface of asteroids.•The guidance method is effective in reducing the landing errors by controlling the collision attitude sequence of the probe.•The guidance method can reduce the effect of environment parameter perturbations by dynamically planning the hopping trajectory.•The guidance method is applicable to landing on asteroids with inclined surfaces.
AbstractList In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after a collision. To achieve a precision landing, a guidance method using an active hopping trajectory is proposed. In contrast to passive hopping, the active hopping strategy can reduce the landing errors by controlling the collision attitude sequence of the probe. The collision attitude sequence is determined by dynamically planning the hopping trajectory which consists of an active hopping phase and a braking phase. The active hopping phase achieves an expected range with a small number of hops, and the braking phase eliminates the probe's horizontal velocity and provides feedback for the range adjustment of the active hopping phase. The guidance method based on the hopping trajectory planning is then verified in a simulated asteroid landing scenario. The results show that the method is effective in reducing the landing errors, robust to the environmental parameter perturbations, and applicable to landings on inclined surfaces. •A guidance method using active hopping trajectory is developed for the precision landing on the surface of asteroids.•The guidance method is effective in reducing the landing errors by controlling the collision attitude sequence of the probe.•The guidance method can reduce the effect of environment parameter perturbations by dynamically planning the hopping trajectory.•The guidance method is applicable to landing on asteroids with inclined surfaces.
Author Ge, Dantong
Liang, Zixuan
Lv, Chang
Zhu, Shengying
Author_xml – sequence: 1
  givenname: Zixuan
  surname: Liang
  fullname: Liang, Zixuan
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 2
  givenname: Chang
  surname: Lv
  fullname: Lv, Chang
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 3
  givenname: Shengying
  orcidid: 0000-0003-1414-4948
  surname: Zhu
  fullname: Zhu, Shengying
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 4
  givenname: Dantong
  surname: Ge
  fullname: Ge, Dantong
  email: gedt@bit.edu.cn
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
BookMark eNqNkM1OAyEURompiW31GZwXmPEOMDAsXDSNv2niRteEAqNM6jAB2qRvL5MaF250xeUm57v5zgLNBj9YhK5rqGqo2U1fKZ2Uiin4CgPGFbAKgJyhed1yUWIgMENzAEHLhrPmAi1i7AGA41bM0fPD3hk1aFt0PhRjsNpF54dipwbjhvcijznaBu9MsY_TJl9zB1t8-HGcvimo3urkw_ESnXdqF-3V97tEb_d3r-vHcvPy8LRebUpN2jqVxIIwmG4F56apCaeWs44aMMZ0hBCqLGmoaLVWVlHBGVHY0I4Y1gmOWbMlS8RPuTr4GIPt5BjcpwpHWYOclMhe_iiRkxIJTGYlmbz9RWqXVMp9cwu3-we_OvE21zs4G2TUzmZ5xmVxSRrv_sz4AuuahtY
CitedBy_id crossref_primary_10_1016_j_asr_2023_06_043
crossref_primary_10_1007_s42064_024_0244_2
crossref_primary_10_1016_j_asr_2025_08_008
crossref_primary_10_1016_j_cja_2024_08_010
crossref_primary_10_3389_frobt_2024_1452997
crossref_primary_10_1016_j_ast_2024_108869
Cites_doi 10.2514/1.58246
10.1016/j.ast.2017.07.014
10.1016/j.paerosci.2019.06.002
10.1115/1.3140698
10.2514/1.G002170
10.1016/j.jfranklin.2011.07.007
10.1016/S0094-5765(02)00186-8
10.1006/jsvi.1997.1040
10.1007/s11431-012-4759-z
10.1016/j.actaastro.2015.12.042
10.2514/1.58099
10.2514/1.A33832
10.1016/j.asr.2017.04.001
10.1016/j.actaastro.2017.04.033
10.1002/rob.21656
10.1016/j.actaastro.2018.11.044
10.1016/j.actaastro.2020.02.035
10.1007/s11214-016-0251-6
10.1016/j.asr.2020.02.029
ContentType Journal Article
Copyright 2022 IAA
Copyright_xml – notice: 2022 IAA
DBID AAYXX
CITATION
DOI 10.1016/j.actaastro.2022.06.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 328
ExternalDocumentID 10_1016_j_actaastro_2022_06_003
S009457652200282X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c381t-3e09d24b977d51374e76f4d0dddf3334ae35498ccaea49763a2d4f3d6f97265b3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817075200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Tue Nov 18 21:58:21 EST 2025
Sat Nov 29 07:24:26 EST 2025
Fri Feb 23 02:39:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Active hopping
Trajectory planning
Precision guidance
Asteroid landing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-3e09d24b977d51374e76f4d0dddf3334ae35498ccaea49763a2d4f3d6f97265b3
ORCID 0000-0003-1414-4948
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_actaastro_2022_06_003
crossref_citationtrail_10_1016_j_actaastro_2022_06_003
elsevier_sciencedirect_doi_10_1016_j_actaastro_2022_06_003
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Acta astronautica
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hockman, Pavone (bib20) 2017
Marghitu (bib23) 1997; 205
Ho, Baturkin (bib16) 2017; 208
Ge, Cui, Zhu (bib3) 2019; 110
Liu, Zhu (bib12) 2017; 60
Wei, Shang (bib19) 2021
Wilburn, Asphang, Thangavelautham (bib11) 2018
Tian, Yu (bib2) 2017; 70
Yang, Bai, Baoyin (bib6) 2017; 40
Allen, Pavone, McQuin (bib13) 2013
Yu, Zhu, Cui (bib8) 2017; 4
Yoshimitsu, Kubota, Nakatani (bib15) 2003; 52
Cui, Liu, Yu (bib10) 2017; 137
Karnopp (bib24) 1985; 107
Guo, Hawkins, Wie (bib5) 2013; 36
Wu, Liu, Qiao (bib1) 2012; 55
Zhang, Wang, Li (bib7) 2012; 349
Tsuda, Saiki, Terui (bib14) 2020; 171
Van Wal, Tardivel, Scheeres (bib18) 2017; 54
Hockman, Frick, Nesnas, Pavone (bib21) 2017; 34
Furfaro, Cersosimo, Wibben (bib4) 2013; 36
Zhang, Zeng, Circi (bib9) 2018; 163
Li, Sanyal, Warier (bib22) 2020; 65
Mège, Gurgurewicz, Grygorczuk (bib17) 2016; 121
Zhang (10.1016/j.actaastro.2022.06.003_bib7) 2012; 349
Liu (10.1016/j.actaastro.2022.06.003_bib12) 2017; 60
Guo (10.1016/j.actaastro.2022.06.003_bib5) 2013; 36
Yu (10.1016/j.actaastro.2022.06.003_bib8) 2017; 4
Tsuda (10.1016/j.actaastro.2022.06.003_bib14) 2020; 171
Mège (10.1016/j.actaastro.2022.06.003_bib17) 2016; 121
Cui (10.1016/j.actaastro.2022.06.003_bib10) 2017; 137
Hockman (10.1016/j.actaastro.2022.06.003_bib20) 2017
Hockman (10.1016/j.actaastro.2022.06.003_bib21) 2017; 34
Karnopp (10.1016/j.actaastro.2022.06.003_bib24) 1985; 107
Allen (10.1016/j.actaastro.2022.06.003_bib13) 2013
Furfaro (10.1016/j.actaastro.2022.06.003_bib4) 2013; 36
Wei (10.1016/j.actaastro.2022.06.003_bib19) 2021
Marghitu (10.1016/j.actaastro.2022.06.003_bib23) 1997; 205
Tian (10.1016/j.actaastro.2022.06.003_bib2) 2017; 70
Zhang (10.1016/j.actaastro.2022.06.003_bib9) 2018; 163
Van Wal (10.1016/j.actaastro.2022.06.003_bib18) 2017; 54
Ge (10.1016/j.actaastro.2022.06.003_bib3) 2019; 110
Wilburn (10.1016/j.actaastro.2022.06.003_bib11) 2018
Yoshimitsu (10.1016/j.actaastro.2022.06.003_bib15) 2003; 52
Wu (10.1016/j.actaastro.2022.06.003_bib1) 2012; 55
Li (10.1016/j.actaastro.2022.06.003_bib22) 2020; 65
Ho (10.1016/j.actaastro.2022.06.003_bib16) 2017; 208
Yang (10.1016/j.actaastro.2022.06.003_bib6) 2017; 40
References_xml – start-page: 5481
  year: 2013
  end-page: 5488
  ident: bib13
  article-title: Internally-actuated rovers for all-access surface mobility: theory and experimentation
  publication-title: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany
– volume: 121
  start-page: 200
  year: 2016
  end-page: 220
  ident: bib17
  article-title: The Highland Terrain Hopper (HOPTER): concept and use cases of a new locomotion system for the exploration of low gravity Solar System bodies
  publication-title: Acta Astronaut.
– volume: 36
  start-page: 1075
  year: 2013
  end-page: 1092
  ident: bib4
  article-title: Asteroid precision landing via multiple sliding surfaces guidance techniques
  publication-title: J. Guid. Control Dynam.
– volume: 34
  start-page: 5
  year: 2017
  end-page: 24
  ident: bib21
  article-title: Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies
  publication-title: J. Field Robot.
– year: 2018
  ident: bib11
  article-title: A mili-Newton propulsion system for the asteroid mobile imager and geologic observer (AMIGO)
  publication-title: IEEE Aerospace Conference Proceedings, Big Sky, MT
– volume: 205
  start-page: 712
  year: 1997
  end-page: 720
  ident: bib23
  article-title: The impact of flexible links with solid lubrication
  publication-title: J. Sound Vib.
– volume: 40
  start-page: 628
  year: 2017
  end-page: 641
  ident: bib6
  article-title: Rapid Generation of time-optimal trajectories for asteroid landing via convex optimization
  publication-title: J. Guid. Control Dynam.
– volume: 208
  start-page: 339
  year: 2017
  end-page: 374
  ident: bib16
  article-title: MASCOT-the mobile asteroid surface scout onboard the Hayabusa2 mission
  publication-title: Space Sci. Rev.
– volume: 70
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib2
  article-title: A novel crater recognition based visual navigation approach for asteroid precise pin-point landing
  publication-title: Aero. Sci. Technol.
– year: 2017
  ident: bib20
  article-title: Stochastic motion planning for hopping rovers on small solar system bodies
  publication-title: The 18th International Symposium on Robotics Research (ISRR), Puerto Varas
– volume: 4
  start-page: 301
  year: 2017
  end-page: 309
  ident: bib8
  article-title: Research progress of small body surface motion technologies
  publication-title: Journal of Deep Space Exploration
– volume: 54
  start-page: 1330
  year: 2017
  end-page: 1355
  ident: bib18
  article-title: Parametric study of ballistic lander deployment to small bodies
  publication-title: J. Spacecraft Rockets
– volume: 171
  start-page: 42
  year: 2020
  end-page: 54
  ident: bib14
  article-title: Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu
  publication-title: Acta Astronaut.
– volume: 52
  start-page: 441
  year: 2003
  end-page: 446
  ident: bib15
  article-title: Micro-hopping robot for asteroid exploration
  publication-title: Acta Astronaut.
– volume: 36
  start-page: 810
  year: 2013
  end-page: 820
  ident: bib5
  article-title: Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm
  publication-title: J. Guid. Control Dynam.
– volume: 55
  start-page: 1086
  year: 2012
  end-page: 1091
  ident: bib1
  article-title: Investigation on the development of deep space exploration
  publication-title: Sci. China Technol. Sci.
– volume: 60
  start-page: 90
  year: 2017
  end-page: 102
  ident: bib12
  article-title: Hopping trajectory optimization for surface exploration on small bodies
  publication-title: Adv. Space Res.
– volume: 107
  start-page: 100
  year: 1985
  end-page: 103
  ident: bib24
  article-title: Computer simulation of stick-slip friction in mechanical dynamic systems
  publication-title: J. Dyn. Sys-t. asme.
– volume: 163
  start-page: 3
  year: 2018
  end-page: 10
  ident: bib9
  article-title: The motion of surface particles for the asteroid 101955 Bennu
  publication-title: Acta Astronaut.
– volume: 349
  start-page: 493
  year: 2012
  end-page: 509
  ident: bib7
  article-title: Robust sliding mode guidance and control for soft landing on small bodies
  publication-title: J. Franklin Inst.
– volume: 137
  start-page: 232
  year: 2017
  end-page: 242
  ident: bib10
  article-title: Intelligent landing strategy for the small bodies: from passive bounce to active trajectory control
  publication-title: Acta Astronaut.
– volume: 110
  year: 2019
  ident: bib3
  article-title: Recent development of autonomous GNC technologies for small celestial body descent and landing
  publication-title: Prog. Aero. Sci.
– start-page: 1
  year: 2021
  end-page: 16
  ident: bib19
  article-title: Accurate contact law for surface motions of small-body exploration rovers
  publication-title: J. Guid. Control Dynam.
– volume: 65
  start-page: 2674
  year: 2020
  end-page: 2691
  ident: bib22
  article-title: Landing of hopping rovers on irregularly-shaped small bodies using attitude control
  publication-title: Adv. Space Res.
– volume: 36
  start-page: 1075
  issue: 4
  year: 2013
  ident: 10.1016/j.actaastro.2022.06.003_bib4
  article-title: Asteroid precision landing via multiple sliding surfaces guidance techniques
  publication-title: J. Guid. Control Dynam.
  doi: 10.2514/1.58246
– volume: 70
  start-page: 1
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib2
  article-title: A novel crater recognition based visual navigation approach for asteroid precise pin-point landing
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2017.07.014
– volume: 110
  year: 2019
  ident: 10.1016/j.actaastro.2022.06.003_bib3
  article-title: Recent development of autonomous GNC technologies for small celestial body descent and landing
  publication-title: Prog. Aero. Sci.
  doi: 10.1016/j.paerosci.2019.06.002
– volume: 107
  start-page: 100
  issue: 1
  year: 1985
  ident: 10.1016/j.actaastro.2022.06.003_bib24
  article-title: Computer simulation of stick-slip friction in mechanical dynamic systems
  publication-title: J. Dyn. Sys-t. asme.
  doi: 10.1115/1.3140698
– volume: 40
  start-page: 628
  issue: 3
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib6
  article-title: Rapid Generation of time-optimal trajectories for asteroid landing via convex optimization
  publication-title: J. Guid. Control Dynam.
  doi: 10.2514/1.G002170
– volume: 349
  start-page: 493
  issue: 2
  year: 2012
  ident: 10.1016/j.actaastro.2022.06.003_bib7
  article-title: Robust sliding mode guidance and control for soft landing on small bodies
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2011.07.007
– volume: 52
  start-page: 441
  issue: 2
  year: 2003
  ident: 10.1016/j.actaastro.2022.06.003_bib15
  article-title: Micro-hopping robot for asteroid exploration
  publication-title: Acta Astronaut.
  doi: 10.1016/S0094-5765(02)00186-8
– volume: 205
  start-page: 712
  issue: 5
  year: 1997
  ident: 10.1016/j.actaastro.2022.06.003_bib23
  article-title: The impact of flexible links with solid lubrication
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1997.1040
– volume: 55
  start-page: 1086
  issue: 4
  year: 2012
  ident: 10.1016/j.actaastro.2022.06.003_bib1
  article-title: Investigation on the development of deep space exploration
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-012-4759-z
– volume: 121
  start-page: 200
  year: 2016
  ident: 10.1016/j.actaastro.2022.06.003_bib17
  article-title: The Highland Terrain Hopper (HOPTER): concept and use cases of a new locomotion system for the exploration of low gravity Solar System bodies
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.12.042
– year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib20
  article-title: Stochastic motion planning for hopping rovers on small solar system bodies
– volume: 36
  start-page: 810
  issue: 3
  year: 2013
  ident: 10.1016/j.actaastro.2022.06.003_bib5
  article-title: Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm
  publication-title: J. Guid. Control Dynam.
  doi: 10.2514/1.58099
– volume: 54
  start-page: 1330
  issue: 6
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib18
  article-title: Parametric study of ballistic lander deployment to small bodies
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A33832
– start-page: 1
  issue: 5
  year: 2021
  ident: 10.1016/j.actaastro.2022.06.003_bib19
  article-title: Accurate contact law for surface motions of small-body exploration rovers
  publication-title: J. Guid. Control Dynam.
– volume: 4
  start-page: 301
  issue: 4
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib8
  article-title: Research progress of small body surface motion technologies
  publication-title: Journal of Deep Space Exploration
– volume: 60
  start-page: 90
  issue: 1
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib12
  article-title: Hopping trajectory optimization for surface exploration on small bodies
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.04.001
– volume: 137
  start-page: 232
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib10
  article-title: Intelligent landing strategy for the small bodies: from passive bounce to active trajectory control
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.04.033
– volume: 34
  start-page: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib21
  article-title: Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21656
– volume: 163
  start-page: 3
  year: 2018
  ident: 10.1016/j.actaastro.2022.06.003_bib9
  article-title: The motion of surface particles for the asteroid 101955 Bennu
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.11.044
– year: 2018
  ident: 10.1016/j.actaastro.2022.06.003_bib11
  article-title: A mili-Newton propulsion system for the asteroid mobile imager and geologic observer (AMIGO)
– volume: 171
  start-page: 42
  year: 2020
  ident: 10.1016/j.actaastro.2022.06.003_bib14
  article-title: Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.02.035
– volume: 208
  start-page: 339
  year: 2017
  ident: 10.1016/j.actaastro.2022.06.003_bib16
  article-title: MASCOT-the mobile asteroid surface scout onboard the Hayabusa2 mission
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-016-0251-6
– volume: 65
  start-page: 2674
  issue: 11
  year: 2020
  ident: 10.1016/j.actaastro.2022.06.003_bib22
  article-title: Landing of hopping rovers on irregularly-shaped small bodies using attitude control
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2020.02.029
– start-page: 5481
  year: 2013
  ident: 10.1016/j.actaastro.2022.06.003_bib13
  article-title: Internally-actuated rovers for all-access surface mobility: theory and experimentation
SSID ssj0007289
Score 2.351626
Snippet In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 320
SubjectTerms Active hopping
Asteroid landing
Precision guidance
Trajectory planning
Title Guidance for precision landing on asteroid using active hopping trajectory
URI https://dx.doi.org/10.1016/j.actaastro.2022.06.003
Volume 198
WOSCitedRecordID wos000817075200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpof2UPqk6QsdegsutiRbUm9LSdOGEgpNYenF2JKceCles7HD9t939PAjNJCW0osxAu3Kmk-jb0YzGoTeCC3LhJo0MibJIqZjFhWqMBFXKi5LCZuGdInCn_nJiVit5JfgVbpw5QR404jdTrb_VdTQBsK2qbN_Ie7xR6EB3kHo8ASxw_OPBH_U19rlAdgAwnYbauhYx6TLX7HRx_ZyhE2tD3rnKCicyjs437RtKBqxdq78Kwe-S9UVtuMWmLvzf4-RPHXwOH-vd_0swOcyHOaHndH5pnvnaz03zdnPemo_MiHXHWjo2dwLAQbsEGYVXGNDeswUi-TUrWQRGDT-2Np4DSu4BHmFw5hBBftK1EGJUhLP9mPqk8d_U_Xe67AG2HWF-_y3dlzuMtaYTrvbGHP41Y7GDoYQZ2iubqM9wlMpFmhv-elwdTxu4JwIbzWF0V8JC7z2764nNTOicvoA3Q8WBl56ZDxEt0zzCN2b3Tv5GB0PGMGAETxiBAeMYHgdMIIdRrDHCA4YwRNGnqBvHw5P33-MQlGNSAE56yJqYqkJK4H36zShnBmeVbBGtdYVpZQVhqZMCljYpmDAVWlBNKuozirJSZaW9ClaNJvGPEM44QnNSpapTChWKaCypKpECSTXiBKY-j7KhlnJVbhx3hY--ZEPoYXrfJzO3E5n7oIs6T6Kx46tv3Tl5i7vhmnPA3f0nDAHvNzU-fm_dH6B7k4L4iVadNvevEJ31GVXX2xfB2z9Anh6mlc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+precision+landing+on+asteroid+using+active+hopping+trajectory&rft.jtitle=Acta+astronautica&rft.au=Liang%2C+Zixuan&rft.au=Lv%2C+Chang&rft.au=Zhu%2C+Shengying&rft.au=Ge%2C+Dantong&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=198&rft.spage=320&rft.epage=328&rft_id=info:doi/10.1016%2Fj.actaastro.2022.06.003&rft.externalDocID=S009457652200282X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon