Guidance for precision landing on asteroid using active hopping trajectory
In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after a collision. To achieve a precision landing, a guidance method using an active hopping trajectory is proposed. In contrast to passive hopping...
Gespeichert in:
| Veröffentlicht in: | Acta astronautica Jg. 198; S. 320 - 328 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2022
|
| Schlagworte: | |
| ISSN: | 0094-5765, 1879-2030 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after a collision. To achieve a precision landing, a guidance method using an active hopping trajectory is proposed. In contrast to passive hopping, the active hopping strategy can reduce the landing errors by controlling the collision attitude sequence of the probe. The collision attitude sequence is determined by dynamically planning the hopping trajectory which consists of an active hopping phase and a braking phase. The active hopping phase achieves an expected range with a small number of hops, and the braking phase eliminates the probe's horizontal velocity and provides feedback for the range adjustment of the active hopping phase. The guidance method based on the hopping trajectory planning is then verified in a simulated asteroid landing scenario. The results show that the method is effective in reducing the landing errors, robust to the environmental parameter perturbations, and applicable to landings on inclined surfaces.
•A guidance method using active hopping trajectory is developed for the precision landing on the surface of asteroids.•The guidance method is effective in reducing the landing errors by controlling the collision attitude sequence of the probe.•The guidance method can reduce the effect of environment parameter perturbations by dynamically planning the hopping trajectory.•The guidance method is applicable to landing on asteroids with inclined surfaces. |
|---|---|
| AbstractList | In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after a collision. To achieve a precision landing, a guidance method using an active hopping trajectory is proposed. In contrast to passive hopping, the active hopping strategy can reduce the landing errors by controlling the collision attitude sequence of the probe. The collision attitude sequence is determined by dynamically planning the hopping trajectory which consists of an active hopping phase and a braking phase. The active hopping phase achieves an expected range with a small number of hops, and the braking phase eliminates the probe's horizontal velocity and provides feedback for the range adjustment of the active hopping phase. The guidance method based on the hopping trajectory planning is then verified in a simulated asteroid landing scenario. The results show that the method is effective in reducing the landing errors, robust to the environmental parameter perturbations, and applicable to landings on inclined surfaces.
•A guidance method using active hopping trajectory is developed for the precision landing on the surface of asteroids.•The guidance method is effective in reducing the landing errors by controlling the collision attitude sequence of the probe.•The guidance method can reduce the effect of environment parameter perturbations by dynamically planning the hopping trajectory.•The guidance method is applicable to landing on asteroids with inclined surfaces. |
| Author | Ge, Dantong Liang, Zixuan Lv, Chang Zhu, Shengying |
| Author_xml | – sequence: 1 givenname: Zixuan surname: Liang fullname: Liang, Zixuan organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 2 givenname: Chang surname: Lv fullname: Lv, Chang organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Shengying orcidid: 0000-0003-1414-4948 surname: Zhu fullname: Zhu, Shengying organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 4 givenname: Dantong surname: Ge fullname: Ge, Dantong email: gedt@bit.edu.cn organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China |
| BookMark | eNqNkM1OAyEURompiW31GZwXmPEOMDAsXDSNv2niRteEAqNM6jAB2qRvL5MaF250xeUm57v5zgLNBj9YhK5rqGqo2U1fKZ2Uiin4CgPGFbAKgJyhed1yUWIgMENzAEHLhrPmAi1i7AGA41bM0fPD3hk1aFt0PhRjsNpF54dipwbjhvcijznaBu9MsY_TJl9zB1t8-HGcvimo3urkw_ESnXdqF-3V97tEb_d3r-vHcvPy8LRebUpN2jqVxIIwmG4F56apCaeWs44aMMZ0hBCqLGmoaLVWVlHBGVHY0I4Y1gmOWbMlS8RPuTr4GIPt5BjcpwpHWYOclMhe_iiRkxIJTGYlmbz9RWqXVMp9cwu3-we_OvE21zs4G2TUzmZ5xmVxSRrv_sz4AuuahtY |
| CitedBy_id | crossref_primary_10_1016_j_asr_2023_06_043 crossref_primary_10_1007_s42064_024_0244_2 crossref_primary_10_1016_j_asr_2025_08_008 crossref_primary_10_1016_j_cja_2024_08_010 crossref_primary_10_3389_frobt_2024_1452997 crossref_primary_10_1016_j_ast_2024_108869 |
| Cites_doi | 10.2514/1.58246 10.1016/j.ast.2017.07.014 10.1016/j.paerosci.2019.06.002 10.1115/1.3140698 10.2514/1.G002170 10.1016/j.jfranklin.2011.07.007 10.1016/S0094-5765(02)00186-8 10.1006/jsvi.1997.1040 10.1007/s11431-012-4759-z 10.1016/j.actaastro.2015.12.042 10.2514/1.58099 10.2514/1.A33832 10.1016/j.asr.2017.04.001 10.1016/j.actaastro.2017.04.033 10.1002/rob.21656 10.1016/j.actaastro.2018.11.044 10.1016/j.actaastro.2020.02.035 10.1007/s11214-016-0251-6 10.1016/j.asr.2020.02.029 |
| ContentType | Journal Article |
| Copyright | 2022 IAA |
| Copyright_xml | – notice: 2022 IAA |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.actaastro.2022.06.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2030 |
| EndPage | 328 |
| ExternalDocumentID | 10_1016_j_actaastro_2022_06_003 S009457652200282X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c381t-3e09d24b977d51374e76f4d0dddf3334ae35498ccaea49763a2d4f3d6f97265b3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817075200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-5765 |
| IngestDate | Tue Nov 18 21:58:21 EST 2025 Sat Nov 29 07:24:26 EST 2025 Fri Feb 23 02:39:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Active hopping Trajectory planning Precision guidance Asteroid landing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-3e09d24b977d51374e76f4d0dddf3334ae35498ccaea49763a2d4f3d6f97265b3 |
| ORCID | 0000-0003-1414-4948 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_actaastro_2022_06_003 crossref_citationtrail_10_1016_j_actaastro_2022_06_003 elsevier_sciencedirect_doi_10_1016_j_actaastro_2022_06_003 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Acta astronautica |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hockman, Pavone (bib20) 2017 Marghitu (bib23) 1997; 205 Ho, Baturkin (bib16) 2017; 208 Ge, Cui, Zhu (bib3) 2019; 110 Liu, Zhu (bib12) 2017; 60 Wei, Shang (bib19) 2021 Wilburn, Asphang, Thangavelautham (bib11) 2018 Tian, Yu (bib2) 2017; 70 Yang, Bai, Baoyin (bib6) 2017; 40 Allen, Pavone, McQuin (bib13) 2013 Yu, Zhu, Cui (bib8) 2017; 4 Yoshimitsu, Kubota, Nakatani (bib15) 2003; 52 Cui, Liu, Yu (bib10) 2017; 137 Karnopp (bib24) 1985; 107 Guo, Hawkins, Wie (bib5) 2013; 36 Wu, Liu, Qiao (bib1) 2012; 55 Zhang, Wang, Li (bib7) 2012; 349 Tsuda, Saiki, Terui (bib14) 2020; 171 Van Wal, Tardivel, Scheeres (bib18) 2017; 54 Hockman, Frick, Nesnas, Pavone (bib21) 2017; 34 Furfaro, Cersosimo, Wibben (bib4) 2013; 36 Zhang, Zeng, Circi (bib9) 2018; 163 Li, Sanyal, Warier (bib22) 2020; 65 Mège, Gurgurewicz, Grygorczuk (bib17) 2016; 121 Zhang (10.1016/j.actaastro.2022.06.003_bib7) 2012; 349 Liu (10.1016/j.actaastro.2022.06.003_bib12) 2017; 60 Guo (10.1016/j.actaastro.2022.06.003_bib5) 2013; 36 Yu (10.1016/j.actaastro.2022.06.003_bib8) 2017; 4 Tsuda (10.1016/j.actaastro.2022.06.003_bib14) 2020; 171 Mège (10.1016/j.actaastro.2022.06.003_bib17) 2016; 121 Cui (10.1016/j.actaastro.2022.06.003_bib10) 2017; 137 Hockman (10.1016/j.actaastro.2022.06.003_bib20) 2017 Hockman (10.1016/j.actaastro.2022.06.003_bib21) 2017; 34 Karnopp (10.1016/j.actaastro.2022.06.003_bib24) 1985; 107 Allen (10.1016/j.actaastro.2022.06.003_bib13) 2013 Furfaro (10.1016/j.actaastro.2022.06.003_bib4) 2013; 36 Wei (10.1016/j.actaastro.2022.06.003_bib19) 2021 Marghitu (10.1016/j.actaastro.2022.06.003_bib23) 1997; 205 Tian (10.1016/j.actaastro.2022.06.003_bib2) 2017; 70 Zhang (10.1016/j.actaastro.2022.06.003_bib9) 2018; 163 Van Wal (10.1016/j.actaastro.2022.06.003_bib18) 2017; 54 Ge (10.1016/j.actaastro.2022.06.003_bib3) 2019; 110 Wilburn (10.1016/j.actaastro.2022.06.003_bib11) 2018 Yoshimitsu (10.1016/j.actaastro.2022.06.003_bib15) 2003; 52 Wu (10.1016/j.actaastro.2022.06.003_bib1) 2012; 55 Li (10.1016/j.actaastro.2022.06.003_bib22) 2020; 65 Ho (10.1016/j.actaastro.2022.06.003_bib16) 2017; 208 Yang (10.1016/j.actaastro.2022.06.003_bib6) 2017; 40 |
| References_xml | – start-page: 5481 year: 2013 end-page: 5488 ident: bib13 article-title: Internally-actuated rovers for all-access surface mobility: theory and experimentation publication-title: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany – volume: 121 start-page: 200 year: 2016 end-page: 220 ident: bib17 article-title: The Highland Terrain Hopper (HOPTER): concept and use cases of a new locomotion system for the exploration of low gravity Solar System bodies publication-title: Acta Astronaut. – volume: 36 start-page: 1075 year: 2013 end-page: 1092 ident: bib4 article-title: Asteroid precision landing via multiple sliding surfaces guidance techniques publication-title: J. Guid. Control Dynam. – volume: 34 start-page: 5 year: 2017 end-page: 24 ident: bib21 article-title: Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies publication-title: J. Field Robot. – year: 2018 ident: bib11 article-title: A mili-Newton propulsion system for the asteroid mobile imager and geologic observer (AMIGO) publication-title: IEEE Aerospace Conference Proceedings, Big Sky, MT – volume: 205 start-page: 712 year: 1997 end-page: 720 ident: bib23 article-title: The impact of flexible links with solid lubrication publication-title: J. Sound Vib. – volume: 40 start-page: 628 year: 2017 end-page: 641 ident: bib6 article-title: Rapid Generation of time-optimal trajectories for asteroid landing via convex optimization publication-title: J. Guid. Control Dynam. – volume: 208 start-page: 339 year: 2017 end-page: 374 ident: bib16 article-title: MASCOT-the mobile asteroid surface scout onboard the Hayabusa2 mission publication-title: Space Sci. Rev. – volume: 70 start-page: 1 year: 2017 end-page: 9 ident: bib2 article-title: A novel crater recognition based visual navigation approach for asteroid precise pin-point landing publication-title: Aero. Sci. Technol. – year: 2017 ident: bib20 article-title: Stochastic motion planning for hopping rovers on small solar system bodies publication-title: The 18th International Symposium on Robotics Research (ISRR), Puerto Varas – volume: 4 start-page: 301 year: 2017 end-page: 309 ident: bib8 article-title: Research progress of small body surface motion technologies publication-title: Journal of Deep Space Exploration – volume: 54 start-page: 1330 year: 2017 end-page: 1355 ident: bib18 article-title: Parametric study of ballistic lander deployment to small bodies publication-title: J. Spacecraft Rockets – volume: 171 start-page: 42 year: 2020 end-page: 54 ident: bib14 article-title: Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu publication-title: Acta Astronaut. – volume: 52 start-page: 441 year: 2003 end-page: 446 ident: bib15 article-title: Micro-hopping robot for asteroid exploration publication-title: Acta Astronaut. – volume: 36 start-page: 810 year: 2013 end-page: 820 ident: bib5 article-title: Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm publication-title: J. Guid. Control Dynam. – volume: 55 start-page: 1086 year: 2012 end-page: 1091 ident: bib1 article-title: Investigation on the development of deep space exploration publication-title: Sci. China Technol. Sci. – volume: 60 start-page: 90 year: 2017 end-page: 102 ident: bib12 article-title: Hopping trajectory optimization for surface exploration on small bodies publication-title: Adv. Space Res. – volume: 107 start-page: 100 year: 1985 end-page: 103 ident: bib24 article-title: Computer simulation of stick-slip friction in mechanical dynamic systems publication-title: J. Dyn. Sys-t. asme. – volume: 163 start-page: 3 year: 2018 end-page: 10 ident: bib9 article-title: The motion of surface particles for the asteroid 101955 Bennu publication-title: Acta Astronaut. – volume: 349 start-page: 493 year: 2012 end-page: 509 ident: bib7 article-title: Robust sliding mode guidance and control for soft landing on small bodies publication-title: J. Franklin Inst. – volume: 137 start-page: 232 year: 2017 end-page: 242 ident: bib10 article-title: Intelligent landing strategy for the small bodies: from passive bounce to active trajectory control publication-title: Acta Astronaut. – volume: 110 year: 2019 ident: bib3 article-title: Recent development of autonomous GNC technologies for small celestial body descent and landing publication-title: Prog. Aero. Sci. – start-page: 1 year: 2021 end-page: 16 ident: bib19 article-title: Accurate contact law for surface motions of small-body exploration rovers publication-title: J. Guid. Control Dynam. – volume: 65 start-page: 2674 year: 2020 end-page: 2691 ident: bib22 article-title: Landing of hopping rovers on irregularly-shaped small bodies using attitude control publication-title: Adv. Space Res. – volume: 36 start-page: 1075 issue: 4 year: 2013 ident: 10.1016/j.actaastro.2022.06.003_bib4 article-title: Asteroid precision landing via multiple sliding surfaces guidance techniques publication-title: J. Guid. Control Dynam. doi: 10.2514/1.58246 – volume: 70 start-page: 1 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib2 article-title: A novel crater recognition based visual navigation approach for asteroid precise pin-point landing publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2017.07.014 – volume: 110 year: 2019 ident: 10.1016/j.actaastro.2022.06.003_bib3 article-title: Recent development of autonomous GNC technologies for small celestial body descent and landing publication-title: Prog. Aero. Sci. doi: 10.1016/j.paerosci.2019.06.002 – volume: 107 start-page: 100 issue: 1 year: 1985 ident: 10.1016/j.actaastro.2022.06.003_bib24 article-title: Computer simulation of stick-slip friction in mechanical dynamic systems publication-title: J. Dyn. Sys-t. asme. doi: 10.1115/1.3140698 – volume: 40 start-page: 628 issue: 3 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib6 article-title: Rapid Generation of time-optimal trajectories for asteroid landing via convex optimization publication-title: J. Guid. Control Dynam. doi: 10.2514/1.G002170 – volume: 349 start-page: 493 issue: 2 year: 2012 ident: 10.1016/j.actaastro.2022.06.003_bib7 article-title: Robust sliding mode guidance and control for soft landing on small bodies publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2011.07.007 – volume: 52 start-page: 441 issue: 2 year: 2003 ident: 10.1016/j.actaastro.2022.06.003_bib15 article-title: Micro-hopping robot for asteroid exploration publication-title: Acta Astronaut. doi: 10.1016/S0094-5765(02)00186-8 – volume: 205 start-page: 712 issue: 5 year: 1997 ident: 10.1016/j.actaastro.2022.06.003_bib23 article-title: The impact of flexible links with solid lubrication publication-title: J. Sound Vib. doi: 10.1006/jsvi.1997.1040 – volume: 55 start-page: 1086 issue: 4 year: 2012 ident: 10.1016/j.actaastro.2022.06.003_bib1 article-title: Investigation on the development of deep space exploration publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-012-4759-z – volume: 121 start-page: 200 year: 2016 ident: 10.1016/j.actaastro.2022.06.003_bib17 article-title: The Highland Terrain Hopper (HOPTER): concept and use cases of a new locomotion system for the exploration of low gravity Solar System bodies publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.12.042 – year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib20 article-title: Stochastic motion planning for hopping rovers on small solar system bodies – volume: 36 start-page: 810 issue: 3 year: 2013 ident: 10.1016/j.actaastro.2022.06.003_bib5 article-title: Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm publication-title: J. Guid. Control Dynam. doi: 10.2514/1.58099 – volume: 54 start-page: 1330 issue: 6 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib18 article-title: Parametric study of ballistic lander deployment to small bodies publication-title: J. Spacecraft Rockets doi: 10.2514/1.A33832 – start-page: 1 issue: 5 year: 2021 ident: 10.1016/j.actaastro.2022.06.003_bib19 article-title: Accurate contact law for surface motions of small-body exploration rovers publication-title: J. Guid. Control Dynam. – volume: 4 start-page: 301 issue: 4 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib8 article-title: Research progress of small body surface motion technologies publication-title: Journal of Deep Space Exploration – volume: 60 start-page: 90 issue: 1 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib12 article-title: Hopping trajectory optimization for surface exploration on small bodies publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.04.001 – volume: 137 start-page: 232 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib10 article-title: Intelligent landing strategy for the small bodies: from passive bounce to active trajectory control publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.04.033 – volume: 34 start-page: 5 issue: 1 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib21 article-title: Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies publication-title: J. Field Robot. doi: 10.1002/rob.21656 – volume: 163 start-page: 3 year: 2018 ident: 10.1016/j.actaastro.2022.06.003_bib9 article-title: The motion of surface particles for the asteroid 101955 Bennu publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.11.044 – year: 2018 ident: 10.1016/j.actaastro.2022.06.003_bib11 article-title: A mili-Newton propulsion system for the asteroid mobile imager and geologic observer (AMIGO) – volume: 171 start-page: 42 year: 2020 ident: 10.1016/j.actaastro.2022.06.003_bib14 article-title: Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.02.035 – volume: 208 start-page: 339 year: 2017 ident: 10.1016/j.actaastro.2022.06.003_bib16 article-title: MASCOT-the mobile asteroid surface scout onboard the Hayabusa2 mission publication-title: Space Sci. Rev. doi: 10.1007/s11214-016-0251-6 – volume: 65 start-page: 2674 issue: 11 year: 2020 ident: 10.1016/j.actaastro.2022.06.003_bib22 article-title: Landing of hopping rovers on irregularly-shaped small bodies using attitude control publication-title: Adv. Space Res. doi: 10.1016/j.asr.2020.02.029 – start-page: 5481 year: 2013 ident: 10.1016/j.actaastro.2022.06.003_bib13 article-title: Internally-actuated rovers for all-access surface mobility: theory and experimentation |
| SSID | ssj0007289 |
| Score | 2.351626 |
| Snippet | In the landing mission on low-gravity asteroids, the probe may have a large position error when touching the surface or hop away from the desired target after... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 320 |
| SubjectTerms | Active hopping Asteroid landing Precision guidance Trajectory planning |
| Title | Guidance for precision landing on asteroid using active hopping trajectory |
| URI | https://dx.doi.org/10.1016/j.actaastro.2022.06.003 |
| Volume | 198 |
| WOSCitedRecordID | wos000817075200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpof2UPqk6QsdegsutiRbUm9LSdOGEgpNYenF2JKceCles7HD9t939PAjNJCW0osxAu3Kmk-jb0YzGoTeCC3LhJo0MibJIqZjFhWqMBFXKi5LCZuGdInCn_nJiVit5JfgVbpw5QR404jdTrb_VdTQBsK2qbN_Ie7xR6EB3kHo8ASxw_OPBH_U19rlAdgAwnYbauhYx6TLX7HRx_ZyhE2tD3rnKCicyjs437RtKBqxdq78Kwe-S9UVtuMWmLvzf4-RPHXwOH-vd_0swOcyHOaHndH5pnvnaz03zdnPemo_MiHXHWjo2dwLAQbsEGYVXGNDeswUi-TUrWQRGDT-2Np4DSu4BHmFw5hBBftK1EGJUhLP9mPqk8d_U_Xe67AG2HWF-_y3dlzuMtaYTrvbGHP41Y7GDoYQZ2iubqM9wlMpFmhv-elwdTxu4JwIbzWF0V8JC7z2764nNTOicvoA3Q8WBl56ZDxEt0zzCN2b3Tv5GB0PGMGAETxiBAeMYHgdMIIdRrDHCA4YwRNGnqBvHw5P33-MQlGNSAE56yJqYqkJK4H36zShnBmeVbBGtdYVpZQVhqZMCljYpmDAVWlBNKuozirJSZaW9ClaNJvGPEM44QnNSpapTChWKaCypKpECSTXiBKY-j7KhlnJVbhx3hY--ZEPoYXrfJzO3E5n7oIs6T6Kx46tv3Tl5i7vhmnPA3f0nDAHvNzU-fm_dH6B7k4L4iVadNvevEJ31GVXX2xfB2z9Anh6mlc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+precision+landing+on+asteroid+using+active+hopping+trajectory&rft.jtitle=Acta+astronautica&rft.au=Liang%2C+Zixuan&rft.au=Lv%2C+Chang&rft.au=Zhu%2C+Shengying&rft.au=Ge%2C+Dantong&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=198&rft.spage=320&rft.epage=328&rft_id=info:doi/10.1016%2Fj.actaastro.2022.06.003&rft.externalDocID=S009457652200282X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |