Privacy Risk Assessment of Medical Big Data Based on Information Entropy and FCM Algorithm
With the rapid development of information technology and the advancement of medical informatization, medical big data plays an increasingly important role in diagnosis, treatment, health management, and other aspects. However, the high sensitivity and privacy of medical data also bring serious secur...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 12; S. 148190 - 148200 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2024
|
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the rapid development of information technology and the advancement of medical informatization, medical big data plays an increasingly important role in diagnosis, treatment, health management, and other aspects. However, the high sensitivity and privacy of medical data also bring serious security challenges. A privacy risk assessment model combining information entropy and fuzzy C-means clustering algorithm is proposed to address this issue. This model is based on information entropy to construct an access control model and quantify the privacy risks of user access behavior. Cluster analysis is conducted on users using the fuzzy C-means clustering algorithm, and different permissions are assigned based on their access habits. The experimental results show that when the iteration number is 120, the root mean square error value of the improved fuzzy C-means clustering model is 0.08, and the accuracy is 0.98. When the dataset is 100, it can be seen that each model can learn the information in the dataset relatively completely. When the dataset reaches 800, the judgment time of the improved fuzzy C-means clustering model is 0.6 seconds. When the number of users reaches 100, the judgment time of the improved fuzzy C-means clustering model is 1.8 seconds. The research results indicate that the proposed medical big data privacy risk assessment model, which combines information entropy and improved fuzzy C-means clustering algorithm, has excellent performance and can provide new technical means for medical data privacy protection, enhancing the security and reliability of medical information systems. |
|---|---|
| AbstractList | With the rapid development of information technology and the advancement of medical informatization, medical big data plays an increasingly important role in diagnosis, treatment, health management, and other aspects. However, the high sensitivity and privacy of medical data also bring serious security challenges. A privacy risk assessment model combining information entropy and fuzzy C-means clustering algorithm is proposed to address this issue. This model is based on information entropy to construct an access control model and quantify the privacy risks of user access behavior. Cluster analysis is conducted on users using the fuzzy C-means clustering algorithm, and different permissions are assigned based on their access habits. The experimental results show that when the iteration number is 120, the root mean square error value of the improved fuzzy C-means clustering model is 0.08, and the accuracy is 0.98. When the dataset is 100, it can be seen that each model can learn the information in the dataset relatively completely. When the dataset reaches 800, the judgment time of the improved fuzzy C-means clustering model is 0.6 seconds. When the number of users reaches 100, the judgment time of the improved fuzzy C-means clustering model is 1.8 seconds. The research results indicate that the proposed medical big data privacy risk assessment model, which combines information entropy and improved fuzzy C-means clustering algorithm, has excellent performance and can provide new technical means for medical data privacy protection, enhancing the security and reliability of medical information systems. |
| Author | Zhang, Xiaoliang Guo, Tianwei |
| Author_xml | – sequence: 1 givenname: Xiaoliang surname: Zhang fullname: Zhang, Xiaoliang organization: School of Cyber Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Tianwei orcidid: 0009-0002-2418-8960 surname: Guo fullname: Guo, Tianwei email: gtw92002@sina.com organization: Information Statistics Centre, Huai'an Second People's Hospital, Huaian, China |
| BookMark | eNqFkEtPGzEUha0qSKXAL4CF_0BSP2bGnmWYhhIJBOKxYWNdv4LpZIxsq1L-fScJQhGb3s09OtI5R_p-oMkQB4fQOSUzSkn7c951i8fHGSOsmvFKMMLFN3TMaNNOec2byYH-js5yfiPjydGqxTF6uU_hL5gNfgj5D57n7HJeu6Hg6PGts8FAjy_DCv-CAvgSsrM4Dng5-JjWUMKoF0NJ8X2DYbD4qrvF834VUyiv61N05KHP7uzjn6Dnq8VTdz29ufu97OY3U8MlLVOuG2i8N5rzpm6glawS0tdMWm61ZZ4axoRnrDHaGtZq67UkRtqKmdpbTvkJWu57bYQ39Z7CGtJGRQhqZ8S0UpBKML1T1jIqatOC1rIydTVu2bY23IJuhTAwdvF9l0kx5-T8Zx8laktb7WmrLW31QXtMtV9SJpQdnZIg9P_JXuyzwTl3sCYIJ5Xk_wBfZ4_C |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_sym17060820 |
| Cites_doi | 10.1016/j.asoc.2023.110268 10.1016/j.talanta.2022.123448 10.1016/j.tcs.2021.06.041 10.15244/pjoes/168940 10.1088/1742-6596/1909/1/012010 10.1016/j.suscom.2019.06.002 10.1016/j.cose.2019.05.003 10.1007/s00521-023-09115-6 10.1016/j.engappai.2022.104672 10.1007/s11235-022-00937-8 10.1007/s12145-023-01108-2 10.1016/j.neucom.2023.126326 10.1177/1550147719875653 10.1016/j.jnca.2020.102631 10.1109/ACCESS.2019.2917532 10.1007/s10916-019-1374-6 10.1007/s00521-020-04873-z 10.1109/TGRS.2020.2988982 10.1007/s12040-023-02059-4 10.1016/j.eswa.2024.123406 10.3233/JIFS-179517 10.1051/jnwpu/20203820341 10.47852/bonviewAIA2202293 10.1016/j.asoc.2022.108423 10.1016/j.molliq.2022.119987 10.1007/s00500-023-08211-y 10.1016/j.advengsoft.2022.103369 10.1007/978-981-16-9576-6_24 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/ACCESS.2024.3472037 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 148200 |
| ExternalDocumentID | oai_doaj_org_article_dd2175c9abb84c54824d95c3dab977ca 10_1109_ACCESS_2024_3472037 10703048 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c381t-3b6a6ffcb33656a982478f528d3dbd2f1c227f226cbdc29bdfb80c8d42c5fd313 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339049200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:29 EDT 2025 Tue Nov 18 22:21:02 EST 2025 Sat Nov 29 04:27:07 EST 2025 Wed Aug 27 02:18:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-3b6a6ffcb33656a982478f528d3dbd2f1c227f226cbdc29bdfb80c8d42c5fd313 |
| ORCID | 0009-0002-2418-8960 |
| OpenAccessLink | https://doaj.org/article/dd2175c9abb84c54824d95c3dab977ca |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2024_3472037 ieee_primary_10703048 doaj_primary_oai_doaj_org_article_dd2175c9abb84c54824d95c3dab977ca crossref_primary_10_1109_ACCESS_2024_3472037 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref15 doi: 10.1016/j.asoc.2023.110268 – ident: ref10 doi: 10.1016/j.talanta.2022.123448 – ident: ref22 doi: 10.1016/j.tcs.2021.06.041 – ident: ref2 doi: 10.15244/pjoes/168940 – ident: ref23 doi: 10.1088/1742-6596/1909/1/012010 – ident: ref25 doi: 10.1016/j.suscom.2019.06.002 – ident: ref27 doi: 10.1016/j.cose.2019.05.003 – ident: ref16 doi: 10.1007/s00521-023-09115-6 – ident: ref13 doi: 10.1016/j.engappai.2022.104672 – ident: ref9 doi: 10.1007/s11235-022-00937-8 – ident: ref17 doi: 10.1007/s12145-023-01108-2 – ident: ref18 doi: 10.1016/j.neucom.2023.126326 – ident: ref5 doi: 10.1177/1550147719875653 – ident: ref19 doi: 10.1016/j.jnca.2020.102631 – ident: ref20 doi: 10.1109/ACCESS.2019.2917532 – ident: ref6 doi: 10.1007/s10916-019-1374-6 – ident: ref4 doi: 10.1007/s00521-020-04873-z – ident: ref24 doi: 10.1109/TGRS.2020.2988982 – ident: ref12 doi: 10.1007/s12040-023-02059-4 – ident: ref14 doi: 10.1016/j.eswa.2024.123406 – ident: ref7 doi: 10.3233/JIFS-179517 – ident: ref21 doi: 10.1051/jnwpu/20203820341 – ident: ref28 doi: 10.47852/bonviewAIA2202293 – ident: ref3 doi: 10.1016/j.asoc.2022.108423 – ident: ref11 doi: 10.1016/j.molliq.2022.119987 – ident: ref1 doi: 10.1007/s00500-023-08211-y – ident: ref8 doi: 10.1016/j.advengsoft.2022.103369 – ident: ref26 doi: 10.1007/978-981-16-9576-6_24 |
| SSID | ssj0000816957 |
| Score | 2.319874 |
| Snippet | With the rapid development of information technology and the advancement of medical informatization, medical big data plays an increasingly important role in... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 148190 |
| SubjectTerms | Access control Big Data Bioinformatics Data models Data privacy FCM Information entropy Mathematical models Medical care Medical diagnostic imaging Medical information systems Medical services Privacy privacy protection risk assessment Risk management Security |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxQxFA-2eNCDnxVXq-Tg0akz-dgkx921iwctRRSKlyF5L6mDdaZsp4X-9yaZdGkPCt5CyJBkfgnvK-_3CHknsKlRcl_5hmElmhoqKzSvZKhrx4EraXKi8Gd1dKRPTsxxSVbPuTDe-_z4zB-kZo7l4wCXyVUWb3g6n0LvkB2l5lOy1tahkipIGKkKs1BTmw-L1SpuItqATBxwkeKN6o70yST9d6qqZKGyfvyfy3lCHhXtkS4muJ-Se75_Rh7e4hR8Tn4cb7orC9f0a3fxiy62xJt0CLREZeiyO6Uf7WjpMsowpENPS1ZSQokepsfr59fU9kjXqy90cXY6bLrx5-898n19-G31qSoFFCqIgnisuJvbeQjgOI9qmzWaCaWDZBo5OmShAcZUiAoYOARmHAana9AoGMiAvOEvyG4_9P4loSwC6LhUNpggGh9NcBFYnEV70RgMOCPs5se2UNjFU5GLszZbGbVpJzTahEZb0JiR99uPzidyjX8PXybEtkMTM3buiKi05aK1iNHIkmCsc1pAtMeYQCOBo3VR1QU7I3sJyVvzTSC--kv_a_IgrWHyuuyT3XFz6d-Q-3A1dhebt_kI_gHuZdk4 priority: 102 providerName: IEEE |
| Title | Privacy Risk Assessment of Medical Big Data Based on Information Entropy and FCM Algorithm |
| URI | https://ieeexplore.ieee.org/document/10703048 https://doaj.org/article/dd2175c9abb84c54824d95c3dab977ca |
| Volume | 12 |
| WOSCitedRecordID | wos001339049200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MBOJXY49tacUACCGQEEtk-2KIgBSVgMTCb8d2QlUWWFgyRE7sfHfyfRfb3yF0wIGkIFiRFIRCwklqE80lS4RLU8Msy4SKB4XPsosLeXurLmdKfYU9YY08cAPcMYAnzcIqbYzk1vNrykEJy0AbT11spEZppmaSqTgHS9JVImtlhkiqjnuDgf8inxBSfsR4WHzMfoSiqNj_o8RKjDCjFbTcUkPca4a0iuaKag0tzQgGrqO7y0n5ru0HvipfH3FvqqqJxw63Sy64X97jE11r3PcBCvC4wu2Ro2ACPAw7018-sK4AjwbnuPd0P56U9cPzBroZDa8Hp0lbHSGxPsrWCTNd3XXOGsY8J9PKA5NJJ6gEBgaoI5bSzHl2ZQ1Yqgw4I1MrgVMrHDDCNtF8Na6KLYSpt45hItNOOU4Kn19zR30vsuBEgYMOot9A5baVDg8VLJ7ymEKkKm_QzQO6eYtuBx1OH3pplDN-b94PFpg2DbLX8YZ3hrx1hvwvZ-igjWC_mf7ChMbl9n-8fActhgE3_1920Xw9eSv20IJ9r8vXyX70P389_xzux1OEX1ou3sI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPItYnj5wJCXxo7GPu0tXRWxXFSpSxSWyPXaJKEm1TSv132M7ZtUeQOJmWY5s57M1L883AO85ViUK5gpXUSx4VdpCc8kK4cvSMMtqoVKi8LJereTxsTrMyeopF8Y5lx6fuZ3YTLF87O1FdJWFGx7PJ5e34Y7gnJZjutbGpRJrSChRZ26hqlQfp_N52EawAinfYTxGHOsb8ifR9N-oq5LEyuLRfy7oMTzM-iOZjoA_gVuuewoPrrEKPoPvh-v2Utsr8rU9_0mmG-pN0nuS4zJk1p6QT3rQZBakGJK-IzkvKeJE9uLz9bMrojski_kBmZ6e9Ot2-PFrG74t9o7m-0UuoVDYIIqHgpldveu9NYwFxU0rSXktvaASGRqkvrKU1j6oYNagpcqgN7K0Ejm1wiOr2HPY6vrOvQBCA4SGiVp75XnlghHOPQ2zSMcrhR4nQP_82MZmfvFY5uK0SXZGqZoRjSai0WQ0JvBh89HZSK_x7-GziNhmaOTGTh0BlSZftQYxmFnCKm2M5DZYZJSjEpahNkHZtXoC2xHJa_ONIL78S_87uLd_dLBslp9XX17B_bie0QfzGraG9YV7A3ft5dCer9-m4_gbYX7cfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+Risk+Assessment+of+Medical+Big+Data+Based+on+Information+Entropy+and+FCM+Algorithm&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Xiaoliang&rft.au=Guo%2C+Tianwei&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=148190&rft.epage=148200&rft_id=info:doi/10.1109%2FACCESS.2024.3472037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3472037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |