IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound

We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is dep...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 40; no. 10; pp. 2615 - 2628
Main Authors: Chanti, Dawood Al, Duque, Vanessa Gonzalez, Crouzier, Marion, Nordez, Antoine, Lacourpaille, Lilian, Mateus, Diana
Format: Journal Article
Language:English
Published: United States IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.
AbstractList We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. To this end, we propose a deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices and uses it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devised a Bidirectional Long Short Term Memory module. To train our model with a minimal amount of training samples, we propose a strategy to combine learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. To promote few-shot learning, we propose a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to adaptively penalize false positives and false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 44 subjects. We achieve a dice score coefficient of over 95 % and a small fraction of error with 1.6035 ± 0.587.
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labelling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95 % and a volumetric error of 1.6035±0.587%.
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.
Author Duque, Vanessa Gonzalez
Nordez, Antoine
Crouzier, Marion
Lacourpaille, Lilian
Mateus, Diana
Chanti, Dawood Al
Author_xml – sequence: 1
  givenname: Dawood Al
  orcidid: 0000-0002-6258-6970
  surname: Chanti
  fullname: Chanti, Dawood Al
  email: dawood.alchanti@ls2n.fr
  organization: École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, UMR CNRS 6004 Nantes, Nantes, France
– sequence: 2
  givenname: Vanessa Gonzalez
  orcidid: 0000-0002-2149-6581
  surname: Duque
  fullname: Duque, Vanessa Gonzalez
  organization: École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, UMR CNRS 6004 Nantes, Nantes, France
– sequence: 3
  givenname: Marion
  orcidid: 0000-0002-8623-9252
  surname: Crouzier
  fullname: Crouzier, Marion
  organization: Laboratoire Movement, Interactions, Performance, MIP, Université de Nantes, EA 4334, Nantes, France
– sequence: 4
  givenname: Antoine
  orcidid: 0000-0002-7276-4793
  surname: Nordez
  fullname: Nordez, Antoine
  organization: Laboratoire Movement, Interactions, Performance, MIP, Université de Nantes, EA 4334, Nantes, France
– sequence: 5
  givenname: Lilian
  orcidid: 0000-0002-9664-8121
  surname: Lacourpaille
  fullname: Lacourpaille, Lilian
  organization: Laboratoire Movement, Interactions, Performance, MIP, Université de Nantes, EA 4334, Nantes, France
– sequence: 6
  givenname: Diana
  orcidid: 0000-0002-2252-8717
  surname: Mateus
  fullname: Mateus, Diana
  organization: École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, UMR CNRS 6004 Nantes, Nantes, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33560982$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03197457$$DView record in HAL
BookMark eNp9kc1v1DAUxC1URLeFOxISssQFDln8EcdOb1XF0pW2gJQWcbOc5KV1SezFTrbiv8erbHvogZNl-zfvaWZO0JHzDhB6S8mSUlJ-vr5aLxlhdMmJUJzwF2hBhVAZE_mvI7QgTKqMkIIdo5MY7wmhuSDlK3TMuShIqdgC7darqsq-wXiG126EYJrR7gCv4CGr7vyIK2sGiIAT8eDDb9z5gFcmJhJfTbHpAVdwO4AbzWi9w8a1-EfwW3M7363DP30_DTAG2-Cbfgwm-sm1r9HLzvQR3hzOU3Sz-nJ9cZltvn9dX5xvsoYrOmZMsqZsirJVuWilEUR1ZV5T0SnZqrpNzmvaJIOU1Jx2itWyBiJpnb6gpZ3kp-jTPPfO9Hob7GDCX-2N1ZfnG71_I5yWMhdyRxP7cWa3wf-ZII56sLGBvjcO_BQ1y5WiSgohEvrhGXrvp-CSE82EVCxPQe-p9wdqqgdon_Y_pp-AYgaa4GMM0OnGzkGmnGyvKdH7mnWqWe9r1oeak5A8Ez7O_o_k3SyxAPCEl1yQQlD-D4KzsJo
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_jmb_2023_168045
crossref_primary_10_1109_TMM_2022_3215310
crossref_primary_10_3390_bioengineering10020137
crossref_primary_10_1109_TMI_2023_3258069
crossref_primary_10_1186_s12880_025_01720_2
crossref_primary_10_1080_21681163_2023_2301403
crossref_primary_10_1109_TAI_2022_3207112
crossref_primary_10_1155_2022_8342767
crossref_primary_10_1109_ACCESS_2021_3098844
crossref_primary_10_1016_j_ultrasmedbio_2023_02_012
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_21105_joss_06284
crossref_primary_10_1016_j_media_2025_103614
crossref_primary_10_1016_j_artmed_2025_103183
crossref_primary_10_1016_j_artmed_2022_102366
crossref_primary_10_1016_j_neucom_2025_130217
crossref_primary_10_1016_j_patcog_2023_109529
crossref_primary_10_1109_TBME_2023_3253646
crossref_primary_10_1016_j_media_2025_103671
Cites_doi 10.1007/978-3-319-46448-0_5
10.1016/j.diii.2019.02.009
10.1007/978-3-319-48881-3_56
10.1016/j.nmd.2018.02.007
10.1016/j.mri.2012.05.001
10.1109/3DV.2016.79
10.1186/s12891-016-1378-z
10.1016/j.media.2019.101539
10.1109/CVPR.2016.158
10.1016/S1474-4422(15)00242-2
10.1109/CVPR.2017.372
10.1007/978-3-030-00928-1_37
10.1007/978-3-319-67558-9_28
10.1242/jeb.187260
10.1007/978-3-030-00889-5_3
10.1109/ACCESS.2019.2891970
10.1007/s11263-019-01164-6
10.1109/TMI.2016.2623819
10.1109/5.58337
10.1109/TMI.2018.2881678
10.3390/rs9121330
10.1016/j.micron.2018.01.010
10.1109/ISBI.2019.8759382
10.1109/CVPR.2019.00874
10.1016/j.media.2017.05.001
10.1038/s41746-020-0255-1
10.1088/1361-6560/aa82ec
10.1109/CVPR.2017.189
10.1109/CVPR.2018.00770
10.1007/s10278-019-00227-x
10.1007/978-3-319-67389-9_44
10.1016/j.media.2019.101631
10.1109/JBHI.2015.2425041
10.1109/TMI.2019.2913184
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1109/TMI.2021.3058303
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Statistics
Computer Science
EISSN 1558-254X
EndPage 2628
ExternalDocumentID oai:HAL:hal-03197457v1
33560982
10_1109_TMI_2021_3058303
9350651
Genre orig-research
Journal Article
GrantInformation_xml – fundername: European Regional Development Fund the Pays de la Loire Region on the Connect Talent scheme (MILCOM Project)
  grantid: Nantes Métropole
  funderid: 10.13039/501100008530
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
NPM
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c381t-272c9c69d845d7a508f94b15f87d8bd021b1c00610b31f82b7be071bbd0ed1f73
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702638800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sat Nov 29 15:04:56 EST 2025
Mon Sep 29 05:47:56 EDT 2025
Mon Jun 30 03:36:45 EDT 2025
Wed Feb 19 02:29:04 EST 2025
Sat Nov 29 05:14:08 EST 2025
Tue Nov 18 19:58:24 EST 2025
Wed Aug 27 02:27:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords Few-Shot annotation
Mask propagation
Segmentation
3D Ultrasound
Pseudo labelling
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-272c9c69d845d7a508f94b15f87d8bd021b1c00610b31f82b7be071bbd0ed1f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9664-8121
0000-0002-2149-6581
0000-0002-6258-6970
0000-0002-8623-9252
0000-0002-7276-4793
0000-0002-2252-8717
OpenAccessLink https://hal.science/hal-03197457
PMID 33560982
PQID 2578241455
PQPubID 85460
PageCount 14
ParticipantIDs proquest_miscellaneous_2488187555
proquest_journals_2578241455
crossref_citationtrail_10_1109_TMI_2021_3058303
hal_primary_oai_HAL_hal_03197457v1
pubmed_primary_33560982
ieee_primary_9350651
crossref_primary_10_1109_TMI_2021_3058303
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
duque (ref5) 2020; 11583
ref11
he (ref44) 2016
ref10
ref17
ref16
ref19
lee (ref38) 2013; 3
ref18
kotia (ref3) 2020
çiçek (ref8) 2016
treece (ref48) 2020
ref45
ref47
ref42
ref41
ref43
drozdzal (ref31) 2016
ref49
ref7
ref4
ref6
ref35
ref34
ref37
ref33
ronneberger (ref9) 2015
ref2
ref1
ref39
duque (ref21) 2020
lin (ref40) 2016
chen (ref36) 2018
panteli (ref29) 2020
ref24
ref23
ref26
ref25
ref20
hu (ref32) 2017
roth (ref30) 2018; 10574
ref22
ref28
ref27
kingma (ref46) 2014
References_xml – ident: ref37
  doi: 10.1007/978-3-319-46448-0_5
– ident: ref16
  doi: 10.1016/j.diii.2019.02.009
– ident: ref26
  doi: 10.1007/978-3-319-48881-3_56
– volume: 11583
  year: 2020
  ident: ref5
  article-title: Low-limb muscles segmentation in 3D freehand ultrasound using non-learning methods and label transfer
  publication-title: Proc SPIE
– start-page: 107
  year: 2020
  ident: ref3
  article-title: Few shot learning for medical imaging
  publication-title: Machine Learning Algorithms for Industrial Applications
– ident: ref1
  doi: 10.1016/j.nmd.2018.02.007
– start-page: 710
  year: 2020
  ident: ref21
  article-title: Spatio-temporal consistency and negative label transfer for 3D freehand US segmentation
  publication-title: Proc 23rd Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) Part VII
– ident: ref49
  doi: 10.1016/j.mri.2012.05.001
– ident: ref10
  doi: 10.1109/3DV.2016.79
– ident: ref12
  doi: 10.1186/s12891-016-1378-z
– ident: ref22
  doi: 10.1016/j.media.2019.101539
– start-page: 1845
  year: 2016
  ident: ref40
  article-title: Re-active learning: Active learning with relabeling
  publication-title: Proc AAAI
– ident: ref25
  doi: 10.1109/CVPR.2016.158
– ident: ref13
  doi: 10.1016/S1474-4422(15)00242-2
– ident: ref33
  doi: 10.1109/CVPR.2017.372
– ident: ref20
  doi: 10.1007/978-3-030-00928-1_37
– ident: ref41
  doi: 10.1007/978-3-319-67558-9_28
– ident: ref47
  doi: 10.1242/jeb.187260
– ident: ref23
  doi: 10.1007/978-3-030-00889-5_3
– start-page: 630
  year: 2016
  ident: ref44
  article-title: Identity mappings in deep residual networks
  publication-title: Proc 14th Eur Conf ECCV Part I
– start-page: 234
  year: 2015
  ident: ref9
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc 18th Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) Part III
– ident: ref39
  doi: 10.1109/ACCESS.2019.2891970
– ident: ref34
  doi: 10.1007/s11263-019-01164-6
– ident: ref17
  doi: 10.1109/TMI.2016.2623819
– ident: ref43
  doi: 10.1109/5.58337
– ident: ref6
  doi: 10.1109/TMI.2018.2881678
– ident: ref35
  doi: 10.3390/rs9121330
– ident: ref19
  doi: 10.1016/j.micron.2018.01.010
– ident: ref27
  doi: 10.1109/ISBI.2019.8759382
– ident: ref18
  doi: 10.1109/CVPR.2019.00874
– ident: ref2
  doi: 10.1016/j.media.2017.05.001
– start-page: 1
  year: 2014
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc ICLR
– ident: ref28
  doi: 10.1038/s41746-020-0255-1
– volume: 10574
  year: 2018
  ident: ref30
  article-title: Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks
  publication-title: Proc SPIE
– ident: ref15
  doi: 10.1088/1361-6560/aa82ec
– start-page: 801
  year: 2018
  ident: ref36
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc ECCV
– ident: ref45
  doi: 10.1109/CVPR.2017.189
– ident: ref24
  doi: 10.1109/CVPR.2018.00770
– volume: 3
  start-page: 1
  year: 2013
  ident: ref38
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Proc ICML
– start-page: 179
  year: 2016
  ident: ref31
  article-title: The importance of skip connections in biomedical image segmentation
  publication-title: Proc 1st Int Workshop LABELS 2nd Int Workshop DLMIA MICCAI
– start-page: 424
  year: 2016
  ident: ref8
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc 19th Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) Part II
– ident: ref7
  doi: 10.1007/s10278-019-00227-x
– start-page: 325
  year: 2017
  ident: ref32
  article-title: Maskrnn: Instance level video object segmentation
  publication-title: Proc NeurIPS
– ident: ref42
  doi: 10.1007/978-3-319-67389-9_44
– year: 2020
  ident: ref29
  article-title: Siamese tracking of cell behaviour patterns
  publication-title: Medical Imaging with Deep Learning (MIDL)
– year: 2020
  ident: ref48
  article-title: Stradwin 6.02
– ident: ref11
  doi: 10.1016/j.media.2019.101631
– ident: ref14
  doi: 10.1109/JBHI.2015.2425041
– ident: ref4
  doi: 10.1109/TMI.2019.2913184
SSID ssj0014509
Score 2.513458
Snippet We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2615
SubjectTerms 3D ultrasound
Annotations
Artificial neural networks
Coders
Computer Science
Computer Vision and Pattern Recognition
Encoders-Decoders
few-shot annotation
Image Processing
Image segmentation
Learning
Long short-term memory
Machine Learning
mask propagation
Muscles
Objective function
Propagation
pseudo-labeling
segmentation
Statistics
Switches
Task analysis
Three-dimensional displays
Training
Two dimensional displays
Ultrasonic imaging
Ultrasound
Title IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound
URI https://ieeexplore.ieee.org/document/9350651
https://www.ncbi.nlm.nih.gov/pubmed/33560982
https://www.proquest.com/docview/2578241455
https://www.proquest.com/docview/2488187555
https://hal.science/hal-03197457
Volume 40
WOSCitedRecordID wos000702638800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdtGaV92Ee7btm64o29DJZePuzY3lsZCy30jkLacm8h_kh70OXKXe727092cmGDbbC3fChxiGTpJ0uWAD6KyFTU0jjUlZYhImKKejDJQhNJo4yu08wvDdxe8slETKfyags-D3thrLU--cyeukMfyzdzvXJLZSOZMrSY6Otsc867vVpDxICyLp0jcRVjoyzZhCQjOboeX6AjmMSnKNsCVfYe7KYpWnopkt-s0fa9y4X0TVb-jje93cmf_d8XP4enPb4kZ51AvIAt2xzA_i9VBw9gd9zH0w9hfZEXRTix7RfilwYrr_1Ibn-Exf28JcXMJdFaMumSxQkiXJJXrrYCGa-WOAAp7N33fvtSQ6rGkKsFuuF33fmsIbde-7k2AOTmoV1US9fG6SXc5N-uv56HfSeGUKNFb8OEJ1rqTBpBmeEVgrpaUhWzWnAjlMF_q2Lt0FCk0rgWieLKInZReMuauObpEew088a-BiIolRGrDSKh2FW3F1wLWzGVRdYypUQAow1HSt2XKXfdMh5K765EskR2lo6dZc_OAD4NTzx2JTr-QfsBmTyQudra52eXpbvmtnNxyvg6DuDQcXKg6pkYwPFGJsp-oi9Lp_EQBFHGAng_3MYp6uIuVWPnK6RBJRmjX-hoXnWyNLx7I4hv_jzmW9hzn99lDx7DTrtY2XfwRK_b2XJxgvNgKk78PPgJIgn_lQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9NADLfGQGM88LExCAw4EC-TyJpL7pI73iZE1Io2mtRu2luU-8hWaaRTm5Z_H1-SRiABEm_5cD7ts38--2yAjyIwBbOM-rrQ0kdEzFAPhrFvAmmU0WUUN1MDl-Mky8TVlTzfgU_9WhhrbZN8Zk_dZhPLNwu9dlNlAxlxtJjo69znjIW0Xa3VxwwYbxM6QlczNojDbVAykIPZZISuYEhPUboFKu192IsitPVShL_Zo3s3LhuyabPyd8TZWJ70yf-981N43CFMctaKxDPYsdUBPPql7uAB7E26iPohbEbpdOpntv5MmsnBotF_JLU__OnNoibTuUujtSRr08UJYlySFq66ApmsV_gAMrXX37sFTBUpKkPOl-iIX7f784pcNvrPNQIgF7f1sli5Rk7P4SL9Ovsy9LteDL5Gm177YRJqqWNpBOMmKRDWlZIpykuRGKEM_ltFtcNDgYpoKUKVKIvoReEpa2iZREewWy0q-xKIYEwGvDSIhairby8SLWzBVRxYy5USHgy2HMl1V6jc9cu4zRuHJZA5sjN37Mw7dnpw0l9x1xbp-AftB2RyT-aqaw_Pxrk75hZ0JYwnG-rBoeNkT9Ux0YPjrUzk3VBf5U7nIQxinHvwvj-Ng9RFXorKLtZIg2qSomfoaF60stTfeyuIr_78zHfwcDibjPPxKPv2Gvbdp7S5hMewWy_X9g080Jt6vlq-bUbDT4r_AgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFSS-Net%3A+Interactive+Few-Shot+Siamese+Network+for+Faster+Muscle+Segmentation+and+Propagation+in+Volumetric+Ultrasound&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chanti%2C+Dawood+Al&rft.au=Duque%2C+Vanessa+Gonzalez&rft.au=Crouzier%2C+Marion&rft.au=Nordez%2C+Antoine&rft.date=2021-10-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=10&rft.spage=2615&rft.epage=2628&rft_id=info:doi/10.1109%2FTMI.2021.3058303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2021_3058303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon