IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is dep...
Saved in:
| Published in: | IEEE transactions on medical imaging Vol. 40; no. 10; pp. 2615 - 2628 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%. |
|---|---|
| AbstractList | We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%. We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. To this end, we propose a deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices and uses it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devised a Bidirectional Long Short Term Memory module. To train our model with a minimal amount of training samples, we propose a strategy to combine learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. To promote few-shot learning, we propose a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to adaptively penalize false positives and false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 44 subjects. We achieve a dice score coefficient of over 95 % and a small fraction of error with 1.6035 ± 0.587. We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labelling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95 % and a volumetric error of 1.6035±0.587%. We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%. |
| Author | Duque, Vanessa Gonzalez Nordez, Antoine Crouzier, Marion Lacourpaille, Lilian Mateus, Diana Chanti, Dawood Al |
| Author_xml | – sequence: 1 givenname: Dawood Al orcidid: 0000-0002-6258-6970 surname: Chanti fullname: Chanti, Dawood Al email: dawood.alchanti@ls2n.fr organization: École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, UMR CNRS 6004 Nantes, Nantes, France – sequence: 2 givenname: Vanessa Gonzalez orcidid: 0000-0002-2149-6581 surname: Duque fullname: Duque, Vanessa Gonzalez organization: École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, UMR CNRS 6004 Nantes, Nantes, France – sequence: 3 givenname: Marion orcidid: 0000-0002-8623-9252 surname: Crouzier fullname: Crouzier, Marion organization: Laboratoire Movement, Interactions, Performance, MIP, Université de Nantes, EA 4334, Nantes, France – sequence: 4 givenname: Antoine orcidid: 0000-0002-7276-4793 surname: Nordez fullname: Nordez, Antoine organization: Laboratoire Movement, Interactions, Performance, MIP, Université de Nantes, EA 4334, Nantes, France – sequence: 5 givenname: Lilian orcidid: 0000-0002-9664-8121 surname: Lacourpaille fullname: Lacourpaille, Lilian organization: Laboratoire Movement, Interactions, Performance, MIP, Université de Nantes, EA 4334, Nantes, France – sequence: 6 givenname: Diana orcidid: 0000-0002-2252-8717 surname: Mateus fullname: Mateus, Diana organization: École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, UMR CNRS 6004 Nantes, Nantes, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33560982$$D View this record in MEDLINE/PubMed https://hal.science/hal-03197457$$DView record in HAL |
| BookMark | eNp9kc1v1DAUxC1URLeFOxISssQFDln8EcdOb1XF0pW2gJQWcbOc5KV1SezFTrbiv8erbHvogZNl-zfvaWZO0JHzDhB6S8mSUlJ-vr5aLxlhdMmJUJzwF2hBhVAZE_mvI7QgTKqMkIIdo5MY7wmhuSDlK3TMuShIqdgC7darqsq-wXiG126EYJrR7gCv4CGr7vyIK2sGiIAT8eDDb9z5gFcmJhJfTbHpAVdwO4AbzWi9w8a1-EfwW3M7363DP30_DTAG2-Cbfgwm-sm1r9HLzvQR3hzOU3Sz-nJ9cZltvn9dX5xvsoYrOmZMsqZsirJVuWilEUR1ZV5T0SnZqrpNzmvaJIOU1Jx2itWyBiJpnb6gpZ3kp-jTPPfO9Hob7GDCX-2N1ZfnG71_I5yWMhdyRxP7cWa3wf-ZII56sLGBvjcO_BQ1y5WiSgohEvrhGXrvp-CSE82EVCxPQe-p9wdqqgdon_Y_pp-AYgaa4GMM0OnGzkGmnGyvKdH7mnWqWe9r1oeak5A8Ez7O_o_k3SyxAPCEl1yQQlD-D4KzsJo |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_jmb_2023_168045 crossref_primary_10_1109_TMM_2022_3215310 crossref_primary_10_3390_bioengineering10020137 crossref_primary_10_1109_TMI_2023_3258069 crossref_primary_10_1186_s12880_025_01720_2 crossref_primary_10_1080_21681163_2023_2301403 crossref_primary_10_1109_TAI_2022_3207112 crossref_primary_10_1155_2022_8342767 crossref_primary_10_1109_ACCESS_2021_3098844 crossref_primary_10_1016_j_ultrasmedbio_2023_02_012 crossref_primary_10_1007_s11831_022_09720_z crossref_primary_10_21105_joss_06284 crossref_primary_10_1016_j_media_2025_103614 crossref_primary_10_1016_j_artmed_2025_103183 crossref_primary_10_1016_j_artmed_2022_102366 crossref_primary_10_1016_j_neucom_2025_130217 crossref_primary_10_1016_j_patcog_2023_109529 crossref_primary_10_1109_TBME_2023_3253646 crossref_primary_10_1016_j_media_2025_103671 |
| Cites_doi | 10.1007/978-3-319-46448-0_5 10.1016/j.diii.2019.02.009 10.1007/978-3-319-48881-3_56 10.1016/j.nmd.2018.02.007 10.1016/j.mri.2012.05.001 10.1109/3DV.2016.79 10.1186/s12891-016-1378-z 10.1016/j.media.2019.101539 10.1109/CVPR.2016.158 10.1016/S1474-4422(15)00242-2 10.1109/CVPR.2017.372 10.1007/978-3-030-00928-1_37 10.1007/978-3-319-67558-9_28 10.1242/jeb.187260 10.1007/978-3-030-00889-5_3 10.1109/ACCESS.2019.2891970 10.1007/s11263-019-01164-6 10.1109/TMI.2016.2623819 10.1109/5.58337 10.1109/TMI.2018.2881678 10.3390/rs9121330 10.1016/j.micron.2018.01.010 10.1109/ISBI.2019.8759382 10.1109/CVPR.2019.00874 10.1016/j.media.2017.05.001 10.1038/s41746-020-0255-1 10.1088/1361-6560/aa82ec 10.1109/CVPR.2017.189 10.1109/CVPR.2018.00770 10.1007/s10278-019-00227-x 10.1007/978-3-319-67389-9_44 10.1016/j.media.2019.101631 10.1109/JBHI.2015.2425041 10.1109/TMI.2019.2913184 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| DOI | 10.1109/TMI.2021.3058303 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Statistics Computer Science |
| EISSN | 1558-254X |
| EndPage | 2628 |
| ExternalDocumentID | oai:HAL:hal-03197457v1 33560982 10_1109_TMI_2021_3058303 9350651 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: European Regional Development Fund the Pays de la Loire Region on the Connect Talent scheme (MILCOM Project) grantid: Nantes Métropole funderid: 10.13039/501100008530 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION NPM Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c381t-272c9c69d845d7a508f94b15f87d8bd021b1c00610b31f82b7be071bbd0ed1f73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702638800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sat Nov 29 15:04:56 EST 2025 Mon Sep 29 05:47:56 EDT 2025 Mon Jun 30 03:36:45 EDT 2025 Wed Feb 19 02:29:04 EST 2025 Sat Nov 29 05:14:08 EST 2025 Tue Nov 18 19:58:24 EST 2025 Wed Aug 27 02:27:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Few-Shot annotation Mask propagation Segmentation 3D Ultrasound Pseudo labelling |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-272c9c69d845d7a508f94b15f87d8bd021b1c00610b31f82b7be071bbd0ed1f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9664-8121 0000-0002-2149-6581 0000-0002-6258-6970 0000-0002-8623-9252 0000-0002-7276-4793 0000-0002-2252-8717 |
| OpenAccessLink | https://hal.science/hal-03197457 |
| PMID | 33560982 |
| PQID | 2578241455 |
| PQPubID | 85460 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2488187555 proquest_journals_2578241455 crossref_citationtrail_10_1109_TMI_2021_3058303 hal_primary_oai_HAL_hal_03197457v1 pubmed_primary_33560982 ieee_primary_9350651 crossref_primary_10_1109_TMI_2021_3058303 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 duque (ref5) 2020; 11583 ref11 he (ref44) 2016 ref10 ref17 ref16 ref19 lee (ref38) 2013; 3 ref18 kotia (ref3) 2020 çiçek (ref8) 2016 treece (ref48) 2020 ref45 ref47 ref42 ref41 ref43 drozdzal (ref31) 2016 ref49 ref7 ref4 ref6 ref35 ref34 ref37 ref33 ronneberger (ref9) 2015 ref2 ref1 ref39 duque (ref21) 2020 lin (ref40) 2016 chen (ref36) 2018 panteli (ref29) 2020 ref24 ref23 ref26 ref25 ref20 hu (ref32) 2017 roth (ref30) 2018; 10574 ref22 ref28 ref27 kingma (ref46) 2014 |
| References_xml | – ident: ref37 doi: 10.1007/978-3-319-46448-0_5 – ident: ref16 doi: 10.1016/j.diii.2019.02.009 – ident: ref26 doi: 10.1007/978-3-319-48881-3_56 – volume: 11583 year: 2020 ident: ref5 article-title: Low-limb muscles segmentation in 3D freehand ultrasound using non-learning methods and label transfer publication-title: Proc SPIE – start-page: 107 year: 2020 ident: ref3 article-title: Few shot learning for medical imaging publication-title: Machine Learning Algorithms for Industrial Applications – ident: ref1 doi: 10.1016/j.nmd.2018.02.007 – start-page: 710 year: 2020 ident: ref21 article-title: Spatio-temporal consistency and negative label transfer for 3D freehand US segmentation publication-title: Proc 23rd Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) Part VII – ident: ref49 doi: 10.1016/j.mri.2012.05.001 – ident: ref10 doi: 10.1109/3DV.2016.79 – ident: ref12 doi: 10.1186/s12891-016-1378-z – ident: ref22 doi: 10.1016/j.media.2019.101539 – start-page: 1845 year: 2016 ident: ref40 article-title: Re-active learning: Active learning with relabeling publication-title: Proc AAAI – ident: ref25 doi: 10.1109/CVPR.2016.158 – ident: ref13 doi: 10.1016/S1474-4422(15)00242-2 – ident: ref33 doi: 10.1109/CVPR.2017.372 – ident: ref20 doi: 10.1007/978-3-030-00928-1_37 – ident: ref41 doi: 10.1007/978-3-319-67558-9_28 – ident: ref47 doi: 10.1242/jeb.187260 – ident: ref23 doi: 10.1007/978-3-030-00889-5_3 – start-page: 630 year: 2016 ident: ref44 article-title: Identity mappings in deep residual networks publication-title: Proc 14th Eur Conf ECCV Part I – start-page: 234 year: 2015 ident: ref9 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc 18th Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) Part III – ident: ref39 doi: 10.1109/ACCESS.2019.2891970 – ident: ref34 doi: 10.1007/s11263-019-01164-6 – ident: ref17 doi: 10.1109/TMI.2016.2623819 – ident: ref43 doi: 10.1109/5.58337 – ident: ref6 doi: 10.1109/TMI.2018.2881678 – ident: ref35 doi: 10.3390/rs9121330 – ident: ref19 doi: 10.1016/j.micron.2018.01.010 – ident: ref27 doi: 10.1109/ISBI.2019.8759382 – ident: ref18 doi: 10.1109/CVPR.2019.00874 – ident: ref2 doi: 10.1016/j.media.2017.05.001 – start-page: 1 year: 2014 ident: ref46 article-title: Adam: A method for stochastic optimization publication-title: Proc ICLR – ident: ref28 doi: 10.1038/s41746-020-0255-1 – volume: 10574 year: 2018 ident: ref30 article-title: Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks publication-title: Proc SPIE – ident: ref15 doi: 10.1088/1361-6560/aa82ec – start-page: 801 year: 2018 ident: ref36 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proc ECCV – ident: ref45 doi: 10.1109/CVPR.2017.189 – ident: ref24 doi: 10.1109/CVPR.2018.00770 – volume: 3 start-page: 1 year: 2013 ident: ref38 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks publication-title: Proc ICML – start-page: 179 year: 2016 ident: ref31 article-title: The importance of skip connections in biomedical image segmentation publication-title: Proc 1st Int Workshop LABELS 2nd Int Workshop DLMIA MICCAI – start-page: 424 year: 2016 ident: ref8 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc 19th Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) Part II – ident: ref7 doi: 10.1007/s10278-019-00227-x – start-page: 325 year: 2017 ident: ref32 article-title: Maskrnn: Instance level video object segmentation publication-title: Proc NeurIPS – ident: ref42 doi: 10.1007/978-3-319-67389-9_44 – year: 2020 ident: ref29 article-title: Siamese tracking of cell behaviour patterns publication-title: Medical Imaging with Deep Learning (MIDL) – year: 2020 ident: ref48 article-title: Stradwin 6.02 – ident: ref11 doi: 10.1016/j.media.2019.101631 – ident: ref14 doi: 10.1109/JBHI.2015.2425041 – ident: ref4 doi: 10.1109/TMI.2019.2913184 |
| SSID | ssj0014509 |
| Score | 2.513458 |
| Snippet | We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2615 |
| SubjectTerms | 3D ultrasound Annotations Artificial neural networks Coders Computer Science Computer Vision and Pattern Recognition Encoders-Decoders few-shot annotation Image Processing Image segmentation Learning Long short-term memory Machine Learning mask propagation Muscles Objective function Propagation pseudo-labeling segmentation Statistics Switches Task analysis Three-dimensional displays Training Two dimensional displays Ultrasonic imaging Ultrasound |
| Title | IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound |
| URI | https://ieeexplore.ieee.org/document/9350651 https://www.ncbi.nlm.nih.gov/pubmed/33560982 https://www.proquest.com/docview/2578241455 https://www.proquest.com/docview/2488187555 https://hal.science/hal-03197457 |
| Volume | 40 |
| WOSCitedRecordID | wos000702638800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdtGaV92Ee7btm64o29DJZePuzY3lsZCy30jkLacm8h_kh70OXKXe727092cmGDbbC3fChxiGTpJ0uWAD6KyFTU0jjUlZYhImKKejDJQhNJo4yu08wvDdxe8slETKfyags-D3thrLU--cyeukMfyzdzvXJLZSOZMrSY6Otsc867vVpDxICyLp0jcRVjoyzZhCQjOboeX6AjmMSnKNsCVfYe7KYpWnopkt-s0fa9y4X0TVb-jje93cmf_d8XP4enPb4kZ51AvIAt2xzA_i9VBw9gd9zH0w9hfZEXRTix7RfilwYrr_1Ibn-Exf28JcXMJdFaMumSxQkiXJJXrrYCGa-WOAAp7N33fvtSQ6rGkKsFuuF33fmsIbde-7k2AOTmoV1US9fG6SXc5N-uv56HfSeGUKNFb8OEJ1rqTBpBmeEVgrpaUhWzWnAjlMF_q2Lt0FCk0rgWieLKInZReMuauObpEew088a-BiIolRGrDSKh2FW3F1wLWzGVRdYypUQAow1HSt2XKXfdMh5K765EskR2lo6dZc_OAD4NTzx2JTr-QfsBmTyQudra52eXpbvmtnNxyvg6DuDQcXKg6pkYwPFGJsp-oi9Lp_EQBFHGAng_3MYp6uIuVWPnK6RBJRmjX-hoXnWyNLx7I4hv_jzmW9hzn99lDx7DTrtY2XfwRK_b2XJxgvNgKk78PPgJIgn_lQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9NADLfGQGM88LExCAw4EC-TyJpL7pI73iZE1Io2mtRu2luU-8hWaaRTm5Z_H1-SRiABEm_5cD7ts38--2yAjyIwBbOM-rrQ0kdEzFAPhrFvAmmU0WUUN1MDl-Mky8TVlTzfgU_9WhhrbZN8Zk_dZhPLNwu9dlNlAxlxtJjo69znjIW0Xa3VxwwYbxM6QlczNojDbVAykIPZZISuYEhPUboFKu192IsitPVShL_Zo3s3LhuyabPyd8TZWJ70yf-981N43CFMctaKxDPYsdUBPPql7uAB7E26iPohbEbpdOpntv5MmsnBotF_JLU__OnNoibTuUujtSRr08UJYlySFq66ApmsV_gAMrXX37sFTBUpKkPOl-iIX7f784pcNvrPNQIgF7f1sli5Rk7P4SL9Ovsy9LteDL5Gm177YRJqqWNpBOMmKRDWlZIpykuRGKEM_ltFtcNDgYpoKUKVKIvoReEpa2iZREewWy0q-xKIYEwGvDSIhairby8SLWzBVRxYy5USHgy2HMl1V6jc9cu4zRuHJZA5sjN37Mw7dnpw0l9x1xbp-AftB2RyT-aqaw_Pxrk75hZ0JYwnG-rBoeNkT9Ux0YPjrUzk3VBf5U7nIQxinHvwvj-Ng9RFXorKLtZIg2qSomfoaF60stTfeyuIr_78zHfwcDibjPPxKPv2Gvbdp7S5hMewWy_X9g080Jt6vlq-bUbDT4r_AgM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFSS-Net%3A+Interactive+Few-Shot+Siamese+Network+for+Faster+Muscle+Segmentation+and+Propagation+in+Volumetric+Ultrasound&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chanti%2C+Dawood+Al&rft.au=Duque%2C+Vanessa+Gonzalez&rft.au=Crouzier%2C+Marion&rft.au=Nordez%2C+Antoine&rft.date=2021-10-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=10&rft.spage=2615&rft.epage=2628&rft_id=info:doi/10.1109%2FTMI.2021.3058303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2021_3058303 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |