Short-Term Power Load Forecasting Based on DPSO-LSSVM Model

The accurate prediction of short-term power load is a critical element for maintaining the normal and stable operation of the power system. For short-term power load forecasting, the collected power load data is preprocessed to quantify temperature, weather, and date types. A short-term load forecas...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 32211 - 32224
Hlavní autori: Ji, Shujun, Zhang, Linhao, Wang, Jinteng, Wei, Tao, Li, Jiadong, Ling, Bu, Xu, Jinglong, Wu, Zuoping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The accurate prediction of short-term power load is a critical element for maintaining the normal and stable operation of the power system. For short-term power load forecasting, the collected power load data is preprocessed to quantify temperature, weather, and date types. A short-term load forecasting model based on least squares support vector machine is constructed, and the optimal parameters of the model are established. The dynamic particle swarm optimization algorithm is utilized to dynamically adjust the parameters to achieve higher accuracy in load forecasting. The findings denoted that the average absolute percentage error of the least squares support vector machine model using linear kernel function is only 3.75%, the average absolute error is only 256.38MW, and the root mean square error is only 311.20MW. The mean absolute percentage error of the proposed model is only 1.91%, significantly lower than other advanced models. The developed model has stronger adaptability and higher prediction accuracy in dealing with the complexity and dynamic changes of power load data, providing effective technical support for the operation optimization and decision-making of the power system.
AbstractList The accurate prediction of short-term power load is a critical element for maintaining the normal and stable operation of the power system. For short-term power load forecasting, the collected power load data is preprocessed to quantify temperature, weather, and date types. A short-term load forecasting model based on least squares support vector machine is constructed, and the optimal parameters of the model are established. The dynamic particle swarm optimization algorithm is utilized to dynamically adjust the parameters to achieve higher accuracy in load forecasting. The findings denoted that the average absolute percentage error of the least squares support vector machine model using linear kernel function is only 3.75%, the average absolute error is only 256.38MW, and the root mean square error is only 311.20MW. The mean absolute percentage error of the proposed model is only 1.91%, significantly lower than other advanced models. The developed model has stronger adaptability and higher prediction accuracy in dealing with the complexity and dynamic changes of power load data, providing effective technical support for the operation optimization and decision-making of the power system.
Author Ling, Bu
Zhang, Linhao
Wei, Tao
Li, Jiadong
Xu, Jinglong
Wang, Jinteng
Wu, Zuoping
Ji, Shujun
Author_xml – sequence: 1
  givenname: Shujun
  orcidid: 0009-0009-7545-4078
  surname: Ji
  fullname: Ji, Shujun
  email: JiShujun2024@163.com
  organization: Marketing Business Quality Control Center, State Grid Hebei Marketing Service Center, Shijiazhuang, China
– sequence: 2
  givenname: Linhao
  surname: Zhang
  fullname: Zhang, Linhao
  organization: Marketing Business Quality Control Center, State Grid Hebei Marketing Service Center, Shijiazhuang, China
– sequence: 3
  givenname: Jinteng
  surname: Wang
  fullname: Wang, Jinteng
  organization: Marketing Business Quality Control Center, State Grid Hebei Marketing Service Center, Shijiazhuang, China
– sequence: 4
  givenname: Tao
  surname: Wei
  fullname: Wei, Tao
  organization: Marketing Business Quality Control Center, State Grid Hebei Marketing Service Center, Shijiazhuang, China
– sequence: 5
  givenname: Jiadong
  surname: Li
  fullname: Li, Jiadong
  organization: Marketing Business Quality Control Center, State Grid Hebei Marketing Service Center, Shijiazhuang, China
– sequence: 6
  givenname: Bu
  surname: Ling
  fullname: Ling, Bu
  organization: Marketing Business Quality Control Center, State Grid Hebei Marketing Service Center, Shijiazhuang, China
– sequence: 7
  givenname: Jinglong
  surname: Xu
  fullname: Xu, Jinglong
  organization: New Technology Division, Beijing China-Power Information Technology Company Ltd., Beijing, China
– sequence: 8
  givenname: Zuoping
  surname: Wu
  fullname: Wu, Zuoping
  organization: New Technology Division, Beijing China-Power Information Technology Company Ltd., Beijing, China
BookMark eNp9kF1LAkEUhocwyMxfUBf7B9bme3foykxLUBTWuh1mZs_Yiu7E7EL079M0kC46N-fwwvNyeK5Rpw41IHRL8IAQrO6Ho9G4KAYUUzFggmPO-AXqUiJVygSTnbP7CvWbZoP3k-8jkXXRQ_EeYpuuIO6SZfiEmMyCKZNJiOBM01b1Onk0DZRJqJOnZbFIZ0XxNk_moYTtDbr0ZttA_7R76HUyXo1e0tnieToazlLHctKmVFhKTSls5mzJcCYBg80wl1zi0oNnWHpvbe4ME4pmXELuaCmVzDk4rBjroemxtwxmoz9itTPxSwdT6Z8gxLU2sa3cFrS1HntBpcsJ4Rnk1hpCqHBWGZBe2X2XOna5GJomgteuak1bhbqNptpqgvVBqj5K1Qep-iR1z7I_7O8v_1N3R6oCgDMizxTHjH0DycWDaA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en18102491
crossref_primary_10_1007_s44444_025_00012_y
crossref_primary_10_3390_electronics14163172
Cites_doi 10.1109/TVT.2023.3247729
10.1109/JAS.2023.123387
10.1109/TPWRS.2023.3271325
10.1109/tsg.2021.3091469
10.1109/TSG.2023.3264525
10.1109/JAS.2023.123531
10.1109/tii.2020.2990962
10.1109/tsg.2021.3093515
10.1109/JSEN.2023.3269064
10.1109/TPWRS.2020.3042389
10.1109/TLA.2023.10268274
10.1109/TPEL.2020.2967053
10.1109/TSTE.2023.3250710
10.1109/tpwrd.2022.3178822
10.1109/TII.2022.3230726
10.1109/TETC.2023.3268182
10.1109/TEVC.2023.3258491
10.1109/TCYB.2021.3088519
10.1109/TPWRS.2023.3257353
10.1109/TNET.2023.3276363
10.1109/TII.2020.3000184
10.1109/TVT.2023.3275959
10.1109/tpwrs.2020.3028133
10.1109/TSG.2023.3266342
10.1109/TIA.2023.3276356
10.1109/TII.2023.3259445
10.1109/TIA.2023.3289440
10.1109/TPWRS.2023.3256130
10.47852/bonviewJDSIS32021078
10.1109/TSG.2023.3268633
10.1109/TSTE.2023.3274939
10.1109/JSEN.2023.3237876
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2025.3540434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 32224
ExternalDocumentID oai_doaj_org_article_bbf0f526c81147e8bba1125cb9ae6f9b
10_1109_ACCESS_2025_3540434
10879403
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c381t-25b22ad5b7cbd3076e0eb7046460dfef306ffbb8ca3592746e8c2d69684ec0933
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492133300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:03 EDT 2025
Sat Nov 29 07:51:39 EST 2025
Tue Nov 18 22:32:58 EST 2025
Wed Aug 27 01:38:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-25b22ad5b7cbd3076e0eb7046460dfef306ffbb8ca3592746e8c2d69684ec0933
ORCID 0009-0009-7545-4078
OpenAccessLink https://ieeexplore.ieee.org/document/10879403
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2025_3540434
crossref_primary_10_1109_ACCESS_2025_3540434
doaj_primary_oai_doaj_org_article_bbf0f526c81147e8bba1125cb9ae6f9b
ieee_primary_10879403
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/TVT.2023.3247729
– ident: ref11
  doi: 10.1109/JAS.2023.123387
– ident: ref16
  doi: 10.1109/TPWRS.2023.3271325
– ident: ref1
  doi: 10.1109/tsg.2021.3091469
– ident: ref23
  doi: 10.1109/TSG.2023.3264525
– ident: ref28
  doi: 10.1109/JAS.2023.123531
– ident: ref5
  doi: 10.1109/tii.2020.2990962
– ident: ref3
  doi: 10.1109/tsg.2021.3093515
– ident: ref13
  doi: 10.1109/JSEN.2023.3269064
– ident: ref6
  doi: 10.1109/TPWRS.2020.3042389
– ident: ref22
  doi: 10.1109/TLA.2023.10268274
– ident: ref7
  doi: 10.1109/TPEL.2020.2967053
– ident: ref10
  doi: 10.1109/TSTE.2023.3250710
– ident: ref2
  doi: 10.1109/tpwrd.2022.3178822
– ident: ref19
  doi: 10.1109/TII.2022.3230726
– ident: ref9
  doi: 10.1109/TETC.2023.3268182
– ident: ref12
  doi: 10.1109/TEVC.2023.3258491
– ident: ref25
  doi: 10.1109/TCYB.2021.3088519
– ident: ref24
  doi: 10.1109/TPWRS.2023.3257353
– ident: ref31
  doi: 10.1109/TNET.2023.3276363
– ident: ref21
  doi: 10.1109/TII.2020.3000184
– ident: ref32
  doi: 10.1109/TVT.2023.3275959
– ident: ref4
  doi: 10.1109/tpwrs.2020.3028133
– ident: ref20
  doi: 10.1109/TSG.2023.3266342
– ident: ref17
  doi: 10.1109/TIA.2023.3276356
– ident: ref18
  doi: 10.1109/TII.2023.3259445
– ident: ref30
  doi: 10.1109/TIA.2023.3289440
– ident: ref27
  doi: 10.1109/TPWRS.2023.3256130
– ident: ref29
  doi: 10.47852/bonviewJDSIS32021078
– ident: ref15
  doi: 10.1109/TSG.2023.3268633
– ident: ref14
  doi: 10.1109/TSTE.2023.3274939
– ident: ref26
  doi: 10.1109/JSEN.2023.3237876
SSID ssj0000816957
Score 2.3603647
Snippet The accurate prediction of short-term power load is a critical element for maintaining the normal and stable operation of the power system. For short-term...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 32211
SubjectTerms Accuracy
Adaptation models
Data models
dynamic particle swarm optimization algorithm
Heuristic algorithms
Load modeling
LSSVM
Mathematical models
Optimization
power load
Power system dynamics
Prediction algorithms
Predictive models
radial basis kernel function
short-term
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQYoAB8SiivOSBEYPr1LEtJlqoGApUakFskX1tC6SqRW3h-_FNAioLLKyRkzjnxvdl6xxCTp1SHHLwLNUewNogJNOZVywtJStaECSUrYunvrq_18_PZrAk9YVnwip64Aq4C-cij1LkoFPmroJ2zqYUQYIzNuTROPS-XJmlYqr0wbqVG6lqmqEWNxdX3W76olQQCnmOvY521v4RikrG_h8SK2WE6W2RzTo1pFfVlLbJSpjskI0lwsBdcjl8SekyGyV3Sgeob0b7U-sp6muCneMJZtpJYcnT6YReD4YPrD8cPt1RFDwbN8hj72bUvWW1_AGDFEYXTEgnhPXSKXA-LcU88OAUbkXm3McQU7Ifo3MabCZNKi7zoEF4JLtpB8BGxR5ZnUwnYZ9QEC3vvczylBzgBq4zXFrvAreSRx2hScQXEgXU3OAoUTEuyhqBm6KCr0D4ihq-Jjn7vumtosb4fXgHIf4eirzW5YVk7aK2dvGXtZukgQZaep9ODoVnB__x8EOyjhOuGixHZHUxew_HZA0-Fq_z2Un5g30CryrRDA
  priority: 102
  providerName: Directory of Open Access Journals
Title Short-Term Power Load Forecasting Based on DPSO-LSSVM Model
URI https://ieeexplore.ieee.org/document/10879403
https://doaj.org/article/bbf0f526c81147e8bba1125cb9ae6f9b
Volume 13
WOSCitedRecordID wos001492133300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBN6K85IERg-vWcSKmUkAMBSoVEFtkn22BhFoEhZHfzp0TKhhAYokiy1GcO1_uYfv7GNt3xkjIwAvMPUB0QGmRt70RaEpWtSBoSKWLu765usrv74tBfVg9nYUJIaTNZ-GQbtNavh_DG5XK0MJznD6E7TlrTFYd1poWVIhBotCmRhZqyeKo2-vhR2AOqPQhlTc67c4P75NA-n-wqiSncr70z-Ess8U6euTdSt0rbCaMVtnCN0zBNXY8fMCIWtzgH5cPiAKN98fWc6LgBPtKm5z5CXouz8cjfjoYXov-cHh3yYkT7Wmd3Z6f3fQuRM2QIAA97UQo7ZSyXjsDzqO1ZkEGZ2i1MpM-hoj5QIzO5WDbusD8Mws5KE94OJ0AVMvYYI3ReBQ2GQfV8t7rdobxA63xukJq612QVsuYR2gy9SW5Emr4cGKxeCpTGiGLshJ3SeIua3E32cH0oecKPePv7iekkmlXgr5ODSj2srak0rkoo1YZ5JjKmZA7ZzFm1OAKG7JYuCZbJ1V9e1-lpa1f2rfZPI2hKqvssMbk5S3ssjl4nzy-vuylHB2vlx9ne2m-fQK7is-v
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqqFQ4QB9BBErxoccaHCfehzgloYiKJY2UFOW2sse2QIoSBAm_nxnvNiIHkLitLFvrnfHsPGx_H2M_bZpKSMAJzD1AdEBpkbVdKtCUjGqB1xBLFzdFOhhkk0k-rC-rx7sw3vt4-Myf0GPcy3dzWFKpDC08w-VD2J6bRJ1VX9dalVSIQyLXaY0t1JL5abffx8_ALFDpEypwdNqdNf8TYfrXeFWiW7nYfeeEPrOdOn7k3UrhX9gHP_vKtl-gCn5jZ6NbjKnFGP-5fEgkaLyYG8eJhBPMIx1z5j30XY7PZ_x8OPoritHo5poTK9q0wf5d_B73L0XNkSAAfe1CKG2VMk7bFKxDe0289Dal_cpEuuADZgQhWJuBaescM9DEZ6AcIeJ0PFA1Y49tzOYzv884qJZzTrcTjCBol9fmUhtnvTRahixAk6n_kiuhBhAnHotpGRMJmZeVuEsSd1mLu8l-rQbdV_gZb3fvkUpWXQn8Ojag2MvalkprgwxaJZBhMpf6zFqDUaMGmxufhNw2WYNU9eJ9lZYOXmk_Zp8ux9dFWfwZXB2yLZpPVWT5zjYWD0t_xD7C0-Lu8eFHXG_P7nPQ0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Power+Load+Forecasting+Based+on+DPSO-LSSVM+Model&rft.jtitle=IEEE+access&rft.au=Ji%2C+Shujun&rft.au=Zhang%2C+Linhao&rft.au=Wang%2C+Jinteng&rft.au=Wei%2C+Tao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=32211&rft.epage=32224&rft_id=info:doi/10.1109%2FACCESS.2025.3540434&rft.externalDocID=10879403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon