Future global concurrent droughts and their effects on maize yield
Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study ai...
Uloženo v:
| Vydáno v: | The Science of the total environment Ročník 855; s. 158860 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
10.01.2023
|
| Témata: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950–2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950–2014), near future (2021–2060), and far future (2061–2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.
[Display omitted]
•A copula-based approach is adopted to quantify global future concurrent droughts.•Concurrent drought duration, severity, spatial extent, and intensity are measured.•The Amazon, Central America, and the Mediterranean regions will be the most affected.•The XGBoost algorithm performs well in forecasting drought-maize yield dynamics.•Severe concurrent droughts could hamper maize yield in Mexico, France, and Brazil. |
|---|---|
| AbstractList | Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950–2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950–2014), near future (2021–2060), and far future (2061–2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions. Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950-2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950-2014), near future (2021-2060), and far future (2061-2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950-2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950-2014), near future (2021-2060), and far future (2061-2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions. Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950–2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950–2014), near future (2021–2060), and far future (2061–2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions. [Display omitted] •A copula-based approach is adopted to quantify global future concurrent droughts.•Concurrent drought duration, severity, spatial extent, and intensity are measured.•The Amazon, Central America, and the Mediterranean regions will be the most affected.•The XGBoost algorithm performs well in forecasting drought-maize yield dynamics.•Severe concurrent droughts could hamper maize yield in Mexico, France, and Brazil. |
| ArticleNumber | 158860 |
| Author | Sivakumar, Bellie Mahesha, Amai Muthuvel, Dineshkumar |
| Author_xml | – sequence: 1 givenname: Dineshkumar surname: Muthuvel fullname: Muthuvel, Dineshkumar organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India – sequence: 2 givenname: Bellie surname: Sivakumar fullname: Sivakumar, Bellie email: b.sivakumar@iitb.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India – sequence: 3 givenname: Amai surname: Mahesha fullname: Mahesha, Amai organization: Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka Surathkal, Mangaluru 575025, India |
| BookMark | eNqNkE1PGzEURa0KpCbAb2CW3Uzwe_Nhe9EFjaAgIbFp15ZjvwFHE5vaHqTw6ztRqi66ad7mSk_n3sVZsrMQAzF2DXwFHPqb7SpbX2Kh8L5CjriCTsqef2ILkELVwLE_YwvOW1mrXonPbJnzls8nJCzYt_upTImqlzFuzFjZGOyUEoVSuRSnl9eSKxNcVV7Jp4qGgez8iaHaGf9B1d7T6C7Z-WDGTFd_8oL9vL_7sX6on56_P65vn2rbSCg1tpz3VvSkOqE2qkMYcJBOAXZScC6xdcNGSaMGaHAO2jgUAC2SxK6TrrlgX467byn-migXvfPZ0jiaQHHKGgU2ALJt5Ako9B12gP2MiiNqU8w50aDfkt-ZtNfA9UGw3uq_gvVBsD4Knptf_2nOmCk-hpKMH0_o3x77NEt795QOHAVLzqdZs3bR_3fjNwq0nds |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130827 crossref_primary_10_1049_cit2_70031 crossref_primary_10_3389_fpls_2024_1391926 crossref_primary_10_5194_hess_29_3203_2025 crossref_primary_10_1007_s11430_023_1201_y crossref_primary_10_1002_joc_8536 crossref_primary_10_1016_j_advwatres_2024_104676 crossref_primary_10_1007_s00477_023_02484_3 crossref_primary_10_3390_plants13121585 crossref_primary_10_3390_agriculture14071175 crossref_primary_10_3390_rs17050801 crossref_primary_10_1016_j_agrformet_2024_110282 crossref_primary_10_1007_s11069_025_07356_3 crossref_primary_10_3390_microorganisms11051144 crossref_primary_10_1007_s11356_025_36853_y crossref_primary_10_3390_atmos16010034 crossref_primary_10_1061_JWRMD5_WRENG_6575 crossref_primary_10_1186_s12870_025_07012_9 crossref_primary_10_1007_s42729_025_02483_z crossref_primary_10_1016_j_ijbiomac_2023_128117 crossref_primary_10_1016_j_jenvman_2024_122511 crossref_primary_10_1016_j_jhydrol_2023_130057 crossref_primary_10_1016_j_uclim_2025_102430 crossref_primary_10_1016_j_jhydrol_2023_129961 crossref_primary_10_1016_j_scitotenv_2024_174241 crossref_primary_10_3390_agriculture15030338 crossref_primary_10_1016_j_jhydrol_2024_131247 crossref_primary_10_1007_s00477_024_02689_0 crossref_primary_10_1016_j_jhydrol_2023_129143 crossref_primary_10_1111_1477_9552_12632 crossref_primary_10_1007_s10661_024_12637_8 crossref_primary_10_1016_j_jhydrol_2023_130437 crossref_primary_10_1007_s10661_025_13742_y crossref_primary_10_1016_j_geosus_2025_100292 crossref_primary_10_1016_j_agwat_2025_109727 crossref_primary_10_1016_j_agsy_2024_104056 crossref_primary_10_1061_JWRMD5_WRENG_5858 crossref_primary_10_1016_j_indic_2025_100919 crossref_primary_10_3389_fpls_2024_1477383 crossref_primary_10_1016_j_agwat_2025_109425 crossref_primary_10_2166_wcc_2023_521 crossref_primary_10_1002_joc_8131 crossref_primary_10_3389_fpls_2024_1497952 crossref_primary_10_1002_agj2_70008 crossref_primary_10_1016_j_gloplacha_2024_104670 crossref_primary_10_3390_w16192742 |
| Cites_doi | 10.1029/2007GL032487 10.1038/nclimate1043 10.1016/j.jhydrol.2020.125126 10.1029/2020GL087820 10.1016/j.jclepro.2016.12.058 10.1016/j.advwatres.2013.03.009 10.1029/2018WR023120 10.1016/j.jhydrol.2016.02.058 10.1038/nclimate1832 10.1016/j.jhydrol.2022.127682 10.1016/j.jenvman.2021.112458 10.1007/s00477-008-0288-5 10.1016/j.scitotenv.2020.142844 10.1061/(ASCE)HE.1943-5584.0002101 10.1029/2019WR026284 10.1029/2020EF001502 10.1002/joc.7145 10.1016/j.jhydrol.2017.08.043 10.1111/gcbb.12332 10.1016/j.scitotenv.2021.150741 10.1038/s41467-022-28752-4 10.1029/2021EA001817 10.1016/j.ijhydene.2019.06.015 10.1002/hyp.9966 10.1002/joc.7221 10.1016/j.gloplacha.2020.103328 10.1016/j.jhydrol.2020.124901 10.1016/j.jhydrol.2018.06.058 10.1002/joc.7644 10.1016/j.jhydrol.2014.09.071 10.1016/j.jhydrol.2022.128177 10.1016/j.scitotenv.2019.135250 10.1002/joc.6070 10.1016/j.jhydrol.2020.125877 10.1007/s13593-016-0364-z 10.1002/joc.7390 10.1029/2019EF001461 10.1016/j.jhydrol.2019.124356 10.1061/(ASCE)HE.1943-5584.0001981 10.1016/j.jenvman.2021.113182 10.1016/j.advwatres.2016.04.010 10.1088/1748-9326/11/9/094021 10.1007/s00477-015-1056-y 10.1016/j.rse.2018.04.001 10.1016/j.agwat.2020.106090 10.1016/j.agwat.2021.107028 10.1016/j.scitotenv.2019.06.373 10.1007/s12571-011-0140-5 10.1002/joc.5922 10.1016/j.agwat.2014.07.022 10.1061/(ASCE)HE.1943-5584.0002061 10.1016/j.ecolind.2021.108198 10.1029/2020EA001620 10.1016/j.agrformet.2021.108698 10.1016/j.jhydrol.2019.124293 10.1016/j.scitotenv.2022.153817 10.1016/j.jhydrol.2021.126382 10.1007/s00477-021-02073-2 10.1007/s11269-021-03050-8 10.1007/s00477-013-0732-z 10.1175/BAMS-85-3-381 10.1002/joc.7518 10.5194/hess-25-565-2021 10.1002/2014GL059323 10.1038/s41558-022-01309-5 10.1016/j.scitotenv.2017.10.037 10.1016/j.atmosres.2022.106333 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2022.158860 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 10_1016_j_scitotenv_2022_158860 S0048969722059599 |
| GeographicLocations | Brazil Central America Mexico France Southern Africa |
| GeographicLocations_xml | – name: Central America – name: Mexico – name: France – name: Southern Africa – name: Brazil |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c381t-24006c76e9579b9521f2f8d91258700824dfb98a9f1328a9ebd271142e82558d3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861377100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Nov 09 14:30:50 EST 2025 Sun Sep 28 08:46:34 EDT 2025 Tue Nov 18 22:08:22 EST 2025 Sat Nov 29 07:25:23 EST 2025 Sun Apr 06 06:56:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Climate change CMIP6 Compound drought Copula Multivariate standardized drought index |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-24006c76e9579b9521f2f8d91258700824dfb98a9f1328a9ebd271142e82558d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2716525126 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2723118438 proquest_miscellaneous_2716525126 crossref_primary_10_1016_j_scitotenv_2022_158860 crossref_citationtrail_10_1016_j_scitotenv_2022_158860 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_158860 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-10 |
| PublicationDateYYYYMMDD | 2023-01-10 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bjerre, Fienen, Schneider, Koch, Højberg (bb0075) 2022; 612 Dixit, Jayakumar (bb0140) 2021 Ortega, Arias, Villegas, Marquet, Nobre (bb0275) 2021; 41 Su, Miao, Kong, Duan, Lei, Hou, Li (bb0345) 2018; 563 Wasko, Shao, Vogel, Wilson, Wang, Frost, Donnelly (bb0380) 2021; 593 Florio, Mercau, Jobbágy, Nosetto (bb0160) 2014; 146 Asadi Zarch, Sivakumar, Sharma (bb0035) 2015; 526 Everingham, Sexton, Skocaj, Inman-Bamber (bb0145) 2016; 36 Bezak, Šraj, Mikoš (bb0060) 2016; 541 Das, Das, Umamahesh (bb0125) 2021; 41 Bhatti, Do (bb0065) 2019; 44 Chen, Guestrin (bb0095) 2016 Plavcová, Urban (bb0295) 2020; 746 Hao, Hao, Singh, Xia, Ouyang, Shen (bb0190) 2016; 92 He, Fang, Xu, Shi (bb0195) 2022 Yu, Wang, Wu, Chen, Wang, Qin (bb0390) 2020; 582 Shah, Mishra (bb0320) 2020; 56 Shukla, Wood (bb0335) 2008; 35 Ajjur, Al-Ghamdi (bb0010) 2021; 8 Muthuvel, Mahesha (bb0265) 2021; 26 Feng, Hao, Zhang, Hao (bb0155) 2019; 689 Saha, Sateesh (bb0315) 2022; 608 Alizadeh, Nikoo (bb0015) 2018; 211 Suman, Maity, Kunstmann (bb0350) 2021 Gocić, Motamedi, Shamshirband, Petković, Hashim (bb0170) 2015; 29 Shiau, Lien (bb0325) 2021; 13 Bevacqua, Zappa, Lehner, Zscheischler (bb0055) 2022 Zhai, Mondal, Fischer, Wang, Su, Huang, Tao, Wang, Ullah, Uddin (bb0395) 2020; 246 Chivers, Wallbank, Cole, Sebek, Stanley, Fry, Leontidis (bb0105) 2020; 588 Sklar (bb0340) 1959 Babaousmail, Hou, Ayugi, Sian, Ojara, Mumo, Chehbouni, Ongoma (bb0045) 2022 Arunrat, Wang, Pumijumnong, Sereenonchai, Cai (bb0020) 2017; 143 Chen, Yuan (bb0100) 2022; 824 Zhao, Pang, Xu, Yue, Tu (bb0405) 2018; 615 Bisht, Sridhar, Mishra, Chatterjee, Raghuwanshi (bb0070) 2019; 39 Cook, Mankin, Marvel, Williams, Smerdon, Anchukaitis (bb0110) 2020; 8 Kirono, Round, Heady, Chiew, Osbrough (bb0200) 2020; 30 Lischeid, Webber, Sommer, Nendel, Ewert (bb0215) 2022; 312 Reddy, Ganguli (bb0305) 2013; 27 Carvalho, Oliveira, Pedersen, Manhice, Lisboa, Norguet, de Wit, Santos (bb0085) 2020; 195 Das, Das, Umamahesh (bb0130) 2021; 36 Haile, Tang, Hosseini-Moghari, Liu, Gebremicael, Leng, Kebede, Xu, Yun (bb0180) 2020; 8 Lobell, Hammer, McLean, Messina, Roberts, Schlenker (bb0225) 2013; 3 Ukkola, de Kauwe, Roderick, Abramowitz, Pitman (bb0360) 2020; 47 Cui, Li, Tian (bb0115) 2021; 8 Ma, Zhao, He, Li, Dong, Wang, Wang (bb0230) 2021; 598 Gong, Du, Li, Ding (bb0175) 2021; 131 Pettitt (bb0290) 1979; 28 Qing, Wang, Ancell, Yang (bb0300) 2022; 13 Zhang, Hao, Feng, Zhang, Xu, Hao (bb0400) 2021; 255 Bacanli, Firat, Dikbas (bb0050) 2009; 23 Brédy, Gallichand, Celicourt, Gumiere (bb0080) 2020; 233 McKee, Doesken, Kleist (bb0235) 1993 Thomas, Reager, Famiglietti, Rodell (bb0355) 2014; 41 Monfreda, Ramankutty, Foley (bb0250) 2008 Arunrat, Sereenonchai, Chaowiwat, Wang (bb0030) 2022; 807 Zipper, Qiu, Kucharik (bb0410) 2016; 11 Chaudhary, Chandra, Chaudhary, Bhattacharyya (bb0090) 2021; 296 Deepthi, Sivakumar (bb0135) 2022; 278 Michael, Helman, Glickman, Gabay, Brenner, Lensky (bb0240) 2021; 764 Vignotto, Engelke, Zscheischler (bb0370) 2021; 32 Li, Guo, Xiong, Wang, Xie (bb0210) 2022; 36 Wang, Tu, Singh, Chen, Lin (bb0375) 2021; 596 Arunrat, Sereenonchai, Wang (bb0025) 2021; 289 Muthuvel, Mahesha (bb0260) 2021; 26 Parsons (bb0285) 2020; 8 Osman, Zaitchik, Badr, Christian, Tadesse, Otkin, Anderson (bb0280) 2021; 25 Uttarwar, Barma, Mahesha (bb0365) 2020; 25 Das, Jha, Goyal (bb0120) 2020; 580 Rodell, Houser, Jambor, Gottschalck, Mitchell, Meng, Arsenault, Cosgrove, Radakovich, Bosilovich, Entin, Walker, Lohmann, Toll (bb0310) 2004; 85 Ni, Wang, Wu, Wang, Tao, Zhang, Liu (bb0270) 2020; 586 Wu, Chen, Yao, Liu, Zhang (bb0385) 2018; 54 Lobell, Bänziger, Magorokosho, Vivek (bb0220) 2011; 1 Ganguli, Janga Reddy (bb0165) 2014; 28 Feng, Hao (bb0150) 2020; 704 Hao, AghaKouchak (bb0185) 2013; 57 Adarsh, Kumar, Deepthi, Gayathri, Aswathy, Bhagyasree (bb0005) 2019; 39 Muthuvel, Amai (bb0255) 2021; 42 Li, Wang, Wu, Chen, Guo, Zhang (bb0205) 2020; 194 Mola-Yudego, Rahlf, Astrup, Dimitriou (bb0245) 2016; 8 Shiferaw, Prasanna, Hellin, Bänziger (bb0330) 2011; 3 Asadi Zarch, Sivakumar, Malekinezhad, Sharma (bb0040) 2017; 554 Kirono (10.1016/j.scitotenv.2022.158860_bb0200) 2020; 30 Li (10.1016/j.scitotenv.2022.158860_bb0210) 2022; 36 Lobell (10.1016/j.scitotenv.2022.158860_bb0220) 2011; 1 Bezak (10.1016/j.scitotenv.2022.158860_bb0060) 2016; 541 Qing (10.1016/j.scitotenv.2022.158860_bb0300) 2022; 13 Adarsh (10.1016/j.scitotenv.2022.158860_bb0005) 2019; 39 Das (10.1016/j.scitotenv.2022.158860_bb0125) 2021; 41 Shukla (10.1016/j.scitotenv.2022.158860_bb0335) 2008; 35 Haile (10.1016/j.scitotenv.2022.158860_bb0180) 2020; 8 Shah (10.1016/j.scitotenv.2022.158860_bb0320) 2020; 56 Shiferaw (10.1016/j.scitotenv.2022.158860_bb0330) 2011; 3 Chivers (10.1016/j.scitotenv.2022.158860_bb0105) 2020; 588 Zhang (10.1016/j.scitotenv.2022.158860_bb0400) 2021; 255 Everingham (10.1016/j.scitotenv.2022.158860_bb0145) 2016; 36 Ni (10.1016/j.scitotenv.2022.158860_bb0270) 2020; 586 Parsons (10.1016/j.scitotenv.2022.158860_bb0285) 2020; 8 Suman (10.1016/j.scitotenv.2022.158860_bb0350) 2021 Bjerre (10.1016/j.scitotenv.2022.158860_bb0075) 2022; 612 Hao (10.1016/j.scitotenv.2022.158860_bb0185) 2013; 57 Wasko (10.1016/j.scitotenv.2022.158860_bb0380) 2021; 593 Bevacqua (10.1016/j.scitotenv.2022.158860_bb0055) 2022 Carvalho (10.1016/j.scitotenv.2022.158860_bb0085) 2020; 195 Chaudhary (10.1016/j.scitotenv.2022.158860_bb0090) 2021; 296 McKee (10.1016/j.scitotenv.2022.158860_bb0235) 1993 Ukkola (10.1016/j.scitotenv.2022.158860_bb0360) 2020; 47 Thomas (10.1016/j.scitotenv.2022.158860_bb0355) 2014; 41 Hao (10.1016/j.scitotenv.2022.158860_bb0190) 2016; 92 Zhao (10.1016/j.scitotenv.2022.158860_bb0405) 2018; 615 Shiau (10.1016/j.scitotenv.2022.158860_bb0325) 2021; 13 Muthuvel (10.1016/j.scitotenv.2022.158860_bb0260) 2021; 26 Saha (10.1016/j.scitotenv.2022.158860_bb0315) 2022; 608 Bhatti (10.1016/j.scitotenv.2022.158860_bb0065) 2019; 44 Das (10.1016/j.scitotenv.2022.158860_bb0120) 2020; 580 Mola-Yudego (10.1016/j.scitotenv.2022.158860_bb0245) 2016; 8 Sklar (10.1016/j.scitotenv.2022.158860_bb0340) 1959 Arunrat (10.1016/j.scitotenv.2022.158860_bb0025) 2021; 289 Brédy (10.1016/j.scitotenv.2022.158860_bb0080) 2020; 233 Bacanli (10.1016/j.scitotenv.2022.158860_bb0050) 2009; 23 Feng (10.1016/j.scitotenv.2022.158860_bb0155) 2019; 689 Monfreda (10.1016/j.scitotenv.2022.158860_bb0250) 2008 Asadi Zarch (10.1016/j.scitotenv.2022.158860_bb0040) 2017; 554 Ortega (10.1016/j.scitotenv.2022.158860_bb0275) 2021; 41 Vignotto (10.1016/j.scitotenv.2022.158860_bb0370) 2021; 32 He (10.1016/j.scitotenv.2022.158860_bb0195) 2022 Muthuvel (10.1016/j.scitotenv.2022.158860_bb0265) 2021; 26 Osman (10.1016/j.scitotenv.2022.158860_bb0280) 2021; 25 Feng (10.1016/j.scitotenv.2022.158860_bb0150) 2020; 704 Zipper (10.1016/j.scitotenv.2022.158860_bb0410) 2016; 11 Alizadeh (10.1016/j.scitotenv.2022.158860_bb0015) 2018; 211 Gocić (10.1016/j.scitotenv.2022.158860_bb0170) 2015; 29 Arunrat (10.1016/j.scitotenv.2022.158860_bb0030) 2022; 807 Deepthi (10.1016/j.scitotenv.2022.158860_bb0135) 2022; 278 Dixit (10.1016/j.scitotenv.2022.158860_bb0140) 2021 Rodell (10.1016/j.scitotenv.2022.158860_bb0310) 2004; 85 Lischeid (10.1016/j.scitotenv.2022.158860_bb0215) 2022; 312 Wang (10.1016/j.scitotenv.2022.158860_bb0375) 2021; 596 Pettitt (10.1016/j.scitotenv.2022.158860_bb0290) 1979; 28 Plavcová (10.1016/j.scitotenv.2022.158860_bb0295) 2020; 746 Wu (10.1016/j.scitotenv.2022.158860_bb0385) 2018; 54 Das (10.1016/j.scitotenv.2022.158860_bb0130) 2021; 36 Ma (10.1016/j.scitotenv.2022.158860_bb0230) 2021; 598 Yu (10.1016/j.scitotenv.2022.158860_bb0390) 2020; 582 Muthuvel (10.1016/j.scitotenv.2022.158860_bb0255) 2021; 42 Li (10.1016/j.scitotenv.2022.158860_bb0205) 2020; 194 Michael (10.1016/j.scitotenv.2022.158860_bb0240) 2021; 764 Uttarwar (10.1016/j.scitotenv.2022.158860_bb0365) 2020; 25 Chen (10.1016/j.scitotenv.2022.158860_bb0100) 2022; 824 Bisht (10.1016/j.scitotenv.2022.158860_bb0070) 2019; 39 Chen (10.1016/j.scitotenv.2022.158860_bb0095) 2016 Babaousmail (10.1016/j.scitotenv.2022.158860_bb0045) 2022 Reddy (10.1016/j.scitotenv.2022.158860_bb0305) 2013; 27 Cook (10.1016/j.scitotenv.2022.158860_bb0110) 2020; 8 Gong (10.1016/j.scitotenv.2022.158860_bb0175) 2021; 131 Su (10.1016/j.scitotenv.2022.158860_bb0345) 2018; 563 Ganguli (10.1016/j.scitotenv.2022.158860_bb0165) 2014; 28 Lobell (10.1016/j.scitotenv.2022.158860_bb0225) 2013; 3 Arunrat (10.1016/j.scitotenv.2022.158860_bb0020) 2017; 143 Florio (10.1016/j.scitotenv.2022.158860_bb0160) 2014; 146 Zhai (10.1016/j.scitotenv.2022.158860_bb0395) 2020; 246 Ajjur (10.1016/j.scitotenv.2022.158860_bb0010) 2021; 8 Cui (10.1016/j.scitotenv.2022.158860_bb0115) 2021; 8 Asadi Zarch (10.1016/j.scitotenv.2022.158860_bb0035) 2015; 526 |
| References_xml | – volume: 8 year: 2020 ident: bb0180 article-title: Projected impacts of climate change on drought patterns over East Africa publication-title: Earth’s Future – volume: 608 year: 2022 ident: bb0315 article-title: Rainfall extremes on the rise: observations during 1951–2020 and bias-corrected CMIP6 projections for near- and late 21st century over Indian landmass publication-title: J. Hydrol. – volume: 615 start-page: 1133 year: 2018 end-page: 1142 ident: bb0405 article-title: Mapping flood susceptibility in mountainous areas on a national scale in China publication-title: Sci. Total Environ. – volume: 704 year: 2020 ident: bb0150 article-title: Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale publication-title: Sci. Total Environ. – volume: 146 start-page: 75 year: 2014 end-page: 83 ident: bb0160 article-title: Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas publication-title: Agric. Water Manag. – volume: 233 year: 2020 ident: bb0080 article-title: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches publication-title: Agric. Water Manag. – volume: 44 start-page: 19453 year: 2019 end-page: 19473 ident: bb0065 article-title: Recent development in copula and its applications to the energy, forestry and environmental sciences publication-title: Int. J. Hydrog. Energy – volume: 563 start-page: 818 year: 2018 end-page: 833 ident: bb0345 article-title: Long-term trends in global river flow and the causal relationships between river flow and ocean signals publication-title: J. Hydrol. – volume: 746 start-page: 033 year: 2020 ident: bb0295 article-title: Intensified impacts on mortality due to compound winter extremes in the Czech Republic publication-title: Sci. Total Environ. – volume: 3 start-page: 307 year: 2011 end-page: 327 ident: bb0330 article-title: Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security publication-title: Food Secur. – volume: 25 start-page: 565 year: 2021 end-page: 581 ident: bb0280 article-title: Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions publication-title: Hydrol. Earth Syst. Sci. – volume: 8 start-page: 1093 year: 2016 end-page: 1105 ident: bb0245 article-title: Spatial yield estimates of fast-growing willow plantations for energy based on climatic variables in northern Europe publication-title: GCB Bioenergy – volume: 42 start-page: 2773 year: 2021 end-page: 2794 ident: bb0255 article-title: Multivariate analysis of concurrent droughts and their effects on Kharif crops—a copula-based approach publication-title: Int. J. Climatol. – year: 2021 ident: bb0350 article-title: Precipitation of Mainland India: copula-based bias-corrected daily CORDEX climate data for both mean and extreme values publication-title: Geosci. Data J. – volume: 255 year: 2021 ident: bb0400 article-title: Agricultural drought prediction in China based on drought propagation and large-scale drivers publication-title: Agric. Water Manag. – volume: 554 start-page: 451 year: 2017 end-page: 469 ident: bb0040 article-title: Future aridity under conditions of global climate change publication-title: J. Hydrol. – year: 2022 ident: bb0045 article-title: Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using bias-corrected CMIP6 models publication-title: Int. J. Climatol. – volume: 598 year: 2021 ident: bb0230 article-title: XGBoost-based method for flash flood risk assessment publication-title: J. Hydrol. – volume: 30 year: 2020 ident: bb0200 article-title: Drought projections for Australia: updated results and analysis of model simulations publication-title: Weather. Clim. Extremes – volume: 26 year: 2021 ident: bb0265 article-title: Copula-based frequency and coincidence risk analysis of floods in tropical-seasonal rivers publication-title: J. Hydrol. Eng. – volume: 29 start-page: 1993 year: 2015 end-page: 2002 ident: bb0170 article-title: Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices publication-title: Stoch. Env. Res. Risk A. – volume: 131 year: 2021 ident: bb0175 article-title: Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments publication-title: Ecol. Indic. – volume: 13 start-page: 1701 year: 2021 ident: bb0325 article-title: Copula-based infilling methods for daily suspended sediment loads publication-title: Water (Switzerland) – volume: 3 start-page: 497 year: 2013 end-page: 501 ident: bb0225 article-title: The critical role of extreme heat for maize production in the United States publication-title: Nat. Clim. Chang. – volume: 41 start-page: 1537 year: 2014 end-page: 1545 ident: bb0355 article-title: A GRACE-based water storage deficit approach for hydrological drought characterization publication-title: Geophys. Res. Lett. – volume: 541 start-page: 272 year: 2016 end-page: 284 ident: bb0060 article-title: Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides publication-title: J. Hydrol. – volume: 764 year: 2021 ident: bb0240 article-title: Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series publication-title: Sci. Total Environ. – volume: 612 year: 2022 ident: bb0075 article-title: Assessing spatial transferability of a random forest metamodel for predicting drainage fraction publication-title: J. Hydrol. – volume: 278 year: 2022 ident: bb0135 article-title: General circulation models for rainfall simulations: performance assessment using complex networks publication-title: Atmos. Res. – year: 1959 ident: bb0340 article-title: Fonctions de repartition a n dimensions et Leurs Marges – volume: 526 start-page: 183 year: 2015 end-page: 195 ident: bb0035 article-title: Droughts in a warming climate: a global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI) publication-title: J. Hydrol. – volume: 39 start-page: 1889 year: 2019 end-page: 1911 ident: bb0070 article-title: Drought characterization over India under projected climate scenario publication-title: Int. J. Climatol. – volume: 13 start-page: 1139 year: 2022 ident: bb0300 article-title: Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity publication-title: Nat. Commun. – volume: 47 year: 2020 ident: bb0360 article-title: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation publication-title: Geophys. Res. Lett. – volume: 28 start-page: 4989 year: 2014 end-page: 5009 ident: bb0165 article-title: Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach publication-title: Hydrol. Process. – volume: 1 start-page: 42 year: 2011 end-page: 45 ident: bb0220 article-title: Nonlinear heat effects on African maize as evidenced by historical yield trials publication-title: Nat. Clim. Chang. – start-page: 785 year: 2016 end-page: 794 ident: bb0095 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And Data Mining – volume: 824 year: 2022 ident: bb0100 article-title: Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China publication-title: Sci. Total Environ. – year: 1993 ident: bb0235 article-title: The Relationship of Drought Frequency and Duration to Time Scales, Paper Presented at 8th Conference on Applied Climatology – start-page: 22 year: 2008 ident: bb0250 article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 publication-title: Glob. Biogeochem. Cycles – volume: 35 year: 2008 ident: bb0335 article-title: Use of a standardized runoff index for characterizing hydrologic drought publication-title: Geophys. Res. Lett. – volume: 296 year: 2021 ident: bb0090 article-title: Global warming potential and energy dynamics of conservation tillage practices for different rabi crops in the Indo-Gangetic Plains publication-title: J. Environ. Manag. – volume: 92 start-page: 240 year: 2016 end-page: 247 ident: bb0190 article-title: A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices publication-title: Adv. Water Resour. – volume: 689 start-page: 1228 year: 2019 end-page: 1234 ident: bb0155 article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields publication-title: Sci. Total Environ. – year: 2022 ident: bb0055 article-title: Precipitation trends determine future occurrences of compound hot–dry events publication-title: Nat. Clim. Chang. – volume: 36 start-page: 683 year: 2022 end-page: 698 ident: bb0210 article-title: Comparative study of flood coincidence risk estimation methods in the mainstream and its tributaries publication-title: Water Resour. Manag. – volume: 26 year: 2021 ident: bb0260 article-title: Spatiotemporal analysis of compound agrometeorological drought and hot events in India using a Standardized Index publication-title: J. Hydrol. Eng. – volume: 195 year: 2020 ident: bb0085 article-title: A changing Amazon rainforest: historical trends and future projections under post-Paris climate scenarios publication-title: Glob. Planet. Chang. – volume: 56 year: 2020 ident: bb0320 article-title: Integrated Drought Index (IDI) for drought monitoring and assessment in India publication-title: Water Resour. Res. – volume: 580 year: 2020 ident: bb0120 article-title: Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India publication-title: J. Hydrol. – volume: 8 year: 2020 ident: bb0285 article-title: Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earth’s publication-title: Future – volume: 8 year: 2020 ident: bb0110 article-title: Twenty-first century drought projections in the CMIP6 forcing scenarios publication-title: Earth’s Future – volume: 586 year: 2020 ident: bb0270 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. – volume: 8 year: 2021 ident: bb0115 article-title: Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau publication-title: Earth Space Sci. – volume: 28 start-page: 126 year: 1979 end-page: 135 ident: bb0290 article-title: A non-parametric approach to the change-point problem publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat. – volume: 41 start-page: 5644 year: 2021 end-page: 5662 ident: bb0125 article-title: Identification of future meteorological drought hotspots over Indian region: a study based on NEX-GDDP data publication-title: Int. J. Climatol. – volume: 23 start-page: 1143 year: 2009 end-page: 1154 ident: bb0050 article-title: Adaptive Neuro-Fuzzy inference system for drought forecasting publication-title: Stoch. Env. Res. Risk A. – volume: 27 start-page: 1975 year: 2013 end-page: 1989 ident: bb0305 article-title: Spatio-temporal analysis and derivation of copula-based intensity-area-frequency curves for droughts in western Rajasthan (India) publication-title: Stoch. Env. Res. Risk A. – volume: 596 start-page: 091 year: 2021 ident: bb0375 article-title: Global data assessment and analysis of drought characteristics based on CMIP6 publication-title: J. Hydrol. – volume: 25 year: 2020 ident: bb0365 article-title: Bivariate modeling of hydroclimatic variables in humid tropical coastal region using Archimedean copulas publication-title: J. Hydrol. Eng. – volume: 289 year: 2021 ident: bb0025 article-title: Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: a case study in Phichit province, Thailand publication-title: J. Environ. Manag. – volume: 36 start-page: 27 year: 2016 ident: bb0145 article-title: Accurate prediction of sugarcane yield using a random forest algorithm publication-title: Agron. Sustain. Dev. – volume: 54 start-page: 9549 year: 2018 end-page: 9565 ident: bb0385 article-title: Hydrological drought instantaneous propagation speed based on the variable motion relationship of speed-time process publication-title: Water Resour. Res. – volume: 39 start-page: 4234 year: 2019 end-page: 4255 ident: bb0005 article-title: Multifractal characterization of meteorological drought in India using detrended fluctuation analysis publication-title: Int. J. Climatol. – volume: 32 start-page: 318 year: 2021 ident: bb0370 article-title: Clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and Ireland publication-title: Weather. Clim. Extremes – year: 2021 ident: bb0140 article-title: Spatio-temporal analysis of copula-based probabilistic multivariate drought index using CMIP6 model publication-title: Int. J. Climatol. – volume: 582 year: 2020 ident: bb0390 article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting publication-title: J. Hydrol. – volume: 8 year: 2021 ident: bb0010 article-title: Global hotspots for future absolute temperature extremes from CMIP6 models publication-title: Earth Space Sci. – volume: 36 start-page: 1597 year: 2021 end-page: 1614 ident: bb0130 article-title: Investigating seasonal drought severity-area-frequency (SAF) curve over Indian region: incorporating GCM and scenario uncertainties publication-title: Stoch. Env. Res. Risk A. – volume: 194 year: 2020 ident: bb0205 article-title: A new framework for tracking flash drought events in space and time publication-title: Catena (Amst) – volume: 246 start-page: 111 year: 2020 ident: bb0395 article-title: Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia publication-title: Atmos. Res. – volume: 57 start-page: 12 year: 2013 end-page: 18 ident: bb0185 article-title: Multivariate Standardized Drought Index: a parametric multi-index model publication-title: Adv. Water Resour. – volume: 41 start-page: 6713 year: 2021 end-page: 6735 ident: bb0275 article-title: Present-day and future climate over central and South America according to CMIP5/CMIP6 models publication-title: Int. J. Climatol. – year: 2022 ident: bb0195 article-title: Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide publication-title: Int. J. Climatol. – volume: 211 start-page: 229 year: 2018 end-page: 247 ident: bb0015 article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data publication-title: Remote Sens. Environ. – volume: 588 year: 2020 ident: bb0105 article-title: Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach publication-title: J. Hydrol. – volume: 143 start-page: 672 year: 2017 end-page: 685 ident: bb0020 article-title: Farmers’ intention and decision to adapt to climate change: a case study in the Yom and Nan basins, Phichit province of Thailand publication-title: J. Clean. Prod. – volume: 85 start-page: 381 year: 2004 end-page: 394 ident: bb0310 article-title: The global land data assimilation system publication-title: Bull. Am. Meteorol. Soc. – volume: 807 year: 2022 ident: bb0030 article-title: Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand publication-title: Sci. Total Environ. – volume: 593 year: 2021 ident: bb0380 article-title: Understanding trends in hydrologic extremes across Australia publication-title: J. Hydrol. – volume: 312 year: 2022 ident: bb0215 article-title: Machine learning in crop yield modelling: a powerful tool, but no surrogate for science publication-title: Agric. For. Meteorol. – volume: 11 year: 2016 ident: bb0410 article-title: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes publication-title: Environ. Res. Lett. – volume: 35 year: 2008 ident: 10.1016/j.scitotenv.2022.158860_bb0335 article-title: Use of a standardized runoff index for characterizing hydrologic drought publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL032487 – volume: 1 start-page: 42 year: 2011 ident: 10.1016/j.scitotenv.2022.158860_bb0220 article-title: Nonlinear heat effects on African maize as evidenced by historical yield trials publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1043 – year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0140 article-title: Spatio-temporal analysis of copula-based probabilistic multivariate drought index using CMIP6 model publication-title: Int. J. Climatol. – volume: 588 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0105 article-title: Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125126 – volume: 47 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0360 article-title: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL087820 – year: 1993 ident: 10.1016/j.scitotenv.2022.158860_bb0235 – volume: 143 start-page: 672 year: 2017 ident: 10.1016/j.scitotenv.2022.158860_bb0020 article-title: Farmers’ intention and decision to adapt to climate change: a case study in the Yom and Nan basins, Phichit province of Thailand publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.12.058 – volume: 57 start-page: 12 year: 2013 ident: 10.1016/j.scitotenv.2022.158860_bb0185 article-title: Multivariate Standardized Drought Index: a parametric multi-index model publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.03.009 – volume: 54 start-page: 9549 year: 2018 ident: 10.1016/j.scitotenv.2022.158860_bb0385 article-title: Hydrological drought instantaneous propagation speed based on the variable motion relationship of speed-time process publication-title: Water Resour. Res. doi: 10.1029/2018WR023120 – volume: 541 start-page: 272 year: 2016 ident: 10.1016/j.scitotenv.2022.158860_bb0060 article-title: Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.058 – volume: 596 start-page: 091 issue: 126 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0375 article-title: Global data assessment and analysis of drought characteristics based on CMIP6 publication-title: J. Hydrol. – volume: 3 start-page: 497 year: 2013 ident: 10.1016/j.scitotenv.2022.158860_bb0225 article-title: The critical role of extreme heat for maize production in the United States publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1832 – volume: 608 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0315 article-title: Rainfall extremes on the rise: observations during 1951–2020 and bias-corrected CMIP6 projections for near- and late 21st century over Indian landmass publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127682 – volume: 13 start-page: 1701 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0325 article-title: Copula-based infilling methods for daily suspended sediment loads publication-title: Water (Switzerland) – volume: 289 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0025 article-title: Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: a case study in Phichit province, Thailand publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112458 – year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0350 article-title: Precipitation of Mainland India: copula-based bias-corrected daily CORDEX climate data for both mean and extreme values publication-title: Geosci. Data J. – volume: 23 start-page: 1143 year: 2009 ident: 10.1016/j.scitotenv.2022.158860_bb0050 article-title: Adaptive Neuro-Fuzzy inference system for drought forecasting publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-008-0288-5 – volume: 764 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0240 article-title: Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142844 – volume: 26 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0260 article-title: Spatiotemporal analysis of compound agrometeorological drought and hot events in India using a Standardized Index publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0002101 – volume: 56 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0320 article-title: Integrated Drought Index (IDI) for drought monitoring and assessment in India publication-title: Water Resour. Res. doi: 10.1029/2019WR026284 – volume: 8 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0180 article-title: Projected impacts of climate change on drought patterns over East Africa publication-title: Earth’s Future doi: 10.1029/2020EF001502 – volume: 41 start-page: 5644 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0125 article-title: Identification of future meteorological drought hotspots over Indian region: a study based on NEX-GDDP data publication-title: Int. J. Climatol. doi: 10.1002/joc.7145 – volume: 554 start-page: 451 year: 2017 ident: 10.1016/j.scitotenv.2022.158860_bb0040 article-title: Future aridity under conditions of global climate change publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.08.043 – year: 1959 ident: 10.1016/j.scitotenv.2022.158860_bb0340 – volume: 28 start-page: 126 year: 1979 ident: 10.1016/j.scitotenv.2022.158860_bb0290 article-title: A non-parametric approach to the change-point problem publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat. – volume: 8 start-page: 1093 year: 2016 ident: 10.1016/j.scitotenv.2022.158860_bb0245 article-title: Spatial yield estimates of fast-growing willow plantations for energy based on climatic variables in northern Europe publication-title: GCB Bioenergy doi: 10.1111/gcbb.12332 – start-page: 22 year: 2008 ident: 10.1016/j.scitotenv.2022.158860_bb0250 article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 publication-title: Glob. Biogeochem. Cycles – volume: 807 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0030 article-title: Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150741 – volume: 13 start-page: 1139 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0300 article-title: Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity publication-title: Nat. Commun. doi: 10.1038/s41467-022-28752-4 – volume: 8 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0010 article-title: Global hotspots for future absolute temperature extremes from CMIP6 models publication-title: Earth Space Sci. doi: 10.1029/2021EA001817 – volume: 32 start-page: 318 issue: 100 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0370 article-title: Clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and Ireland publication-title: Weather. Clim. Extremes – volume: 194 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0205 article-title: A new framework for tracking flash drought events in space and time publication-title: Catena (Amst) – volume: 44 start-page: 19453 year: 2019 ident: 10.1016/j.scitotenv.2022.158860_bb0065 article-title: Recent development in copula and its applications to the energy, forestry and environmental sciences publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.06.015 – volume: 28 start-page: 4989 year: 2014 ident: 10.1016/j.scitotenv.2022.158860_bb0165 article-title: Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach publication-title: Hydrol. Process. doi: 10.1002/hyp.9966 – volume: 41 start-page: 6713 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0275 article-title: Present-day and future climate over central and South America according to CMIP5/CMIP6 models publication-title: Int. J. Climatol. doi: 10.1002/joc.7221 – start-page: 785 year: 2016 ident: 10.1016/j.scitotenv.2022.158860_bb0095 article-title: Xgboost: a scalable tree boosting system – volume: 195 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0085 article-title: A changing Amazon rainforest: historical trends and future projections under post-Paris climate scenarios publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2020.103328 – volume: 586 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0270 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124901 – volume: 563 start-page: 818 year: 2018 ident: 10.1016/j.scitotenv.2022.158860_bb0345 article-title: Long-term trends in global river flow and the causal relationships between river flow and ocean signals publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.06.058 – year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0045 article-title: Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using bias-corrected CMIP6 models publication-title: Int. J. Climatol. doi: 10.1002/joc.7644 – volume: 526 start-page: 183 year: 2015 ident: 10.1016/j.scitotenv.2022.158860_bb0035 article-title: Droughts in a warming climate: a global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.09.071 – volume: 612 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0075 article-title: Assessing spatial transferability of a random forest metamodel for predicting drainage fraction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128177 – volume: 704 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0150 article-title: Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135250 – volume: 8 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0285 article-title: Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earth’s publication-title: Future – volume: 39 start-page: 4234 year: 2019 ident: 10.1016/j.scitotenv.2022.158860_bb0005 article-title: Multifractal characterization of meteorological drought in India using detrended fluctuation analysis publication-title: Int. J. Climatol. doi: 10.1002/joc.6070 – volume: 593 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0380 article-title: Understanding trends in hydrologic extremes across Australia publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125877 – volume: 36 start-page: 27 year: 2016 ident: 10.1016/j.scitotenv.2022.158860_bb0145 article-title: Accurate prediction of sugarcane yield using a random forest algorithm publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-016-0364-z – volume: 42 start-page: 2773 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0255 article-title: Multivariate analysis of concurrent droughts and their effects on Kharif crops—a copula-based approach publication-title: Int. J. Climatol. doi: 10.1002/joc.7390 – volume: 8 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0110 article-title: Twenty-first century drought projections in the CMIP6 forcing scenarios publication-title: Earth’s Future doi: 10.1029/2019EF001461 – volume: 580 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0120 article-title: Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124356 – volume: 25 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0365 article-title: Bivariate modeling of hydroclimatic variables in humid tropical coastal region using Archimedean copulas publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001981 – volume: 296 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0090 article-title: Global warming potential and energy dynamics of conservation tillage practices for different rabi crops in the Indo-Gangetic Plains publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113182 – volume: 92 start-page: 240 year: 2016 ident: 10.1016/j.scitotenv.2022.158860_bb0190 article-title: A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.04.010 – volume: 11 year: 2016 ident: 10.1016/j.scitotenv.2022.158860_bb0410 article-title: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/9/094021 – volume: 29 start-page: 1993 year: 2015 ident: 10.1016/j.scitotenv.2022.158860_bb0170 article-title: Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-015-1056-y – volume: 211 start-page: 229 year: 2018 ident: 10.1016/j.scitotenv.2022.158860_bb0015 article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.001 – volume: 233 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0080 article-title: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106090 – volume: 255 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0400 article-title: Agricultural drought prediction in China based on drought propagation and large-scale drivers publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107028 – volume: 689 start-page: 1228 year: 2019 ident: 10.1016/j.scitotenv.2022.158860_bb0155 article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.373 – volume: 3 start-page: 307 year: 2011 ident: 10.1016/j.scitotenv.2022.158860_bb0330 article-title: Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security publication-title: Food Secur. doi: 10.1007/s12571-011-0140-5 – volume: 39 start-page: 1889 year: 2019 ident: 10.1016/j.scitotenv.2022.158860_bb0070 article-title: Drought characterization over India under projected climate scenario publication-title: Int. J. Climatol. doi: 10.1002/joc.5922 – volume: 146 start-page: 75 year: 2014 ident: 10.1016/j.scitotenv.2022.158860_bb0160 article-title: Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.07.022 – volume: 26 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0265 article-title: Copula-based frequency and coincidence risk analysis of floods in tropical-seasonal rivers publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0002061 – volume: 131 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0175 article-title: Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108198 – volume: 8 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0115 article-title: Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau publication-title: Earth Space Sci. doi: 10.1029/2020EA001620 – volume: 312 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0215 article-title: Machine learning in crop yield modelling: a powerful tool, but no surrogate for science publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108698 – volume: 582 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0390 article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124293 – volume: 746 start-page: 033 issue: 141 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0295 article-title: Intensified impacts on mortality due to compound winter extremes in the Czech Republic publication-title: Sci. Total Environ. – volume: 824 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0100 article-title: Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153817 – volume: 598 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0230 article-title: XGBoost-based method for flash flood risk assessment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126382 – volume: 36 start-page: 1597 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0130 article-title: Investigating seasonal drought severity-area-frequency (SAF) curve over Indian region: incorporating GCM and scenario uncertainties publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-021-02073-2 – volume: 36 start-page: 683 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0210 article-title: Comparative study of flood coincidence risk estimation methods in the mainstream and its tributaries publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-03050-8 – volume: 27 start-page: 1975 year: 2013 ident: 10.1016/j.scitotenv.2022.158860_bb0305 article-title: Spatio-temporal analysis and derivation of copula-based intensity-area-frequency curves for droughts in western Rajasthan (India) publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-013-0732-z – volume: 85 start-page: 381 year: 2004 ident: 10.1016/j.scitotenv.2022.158860_bb0310 article-title: The global land data assimilation system publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-85-3-381 – year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0195 article-title: Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide publication-title: Int. J. Climatol. doi: 10.1002/joc.7518 – volume: 30 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0200 article-title: Drought projections for Australia: updated results and analysis of model simulations publication-title: Weather. Clim. Extremes – volume: 25 start-page: 565 year: 2021 ident: 10.1016/j.scitotenv.2022.158860_bb0280 article-title: Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-565-2021 – volume: 41 start-page: 1537 year: 2014 ident: 10.1016/j.scitotenv.2022.158860_bb0355 article-title: A GRACE-based water storage deficit approach for hydrological drought characterization publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL059323 – year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0055 article-title: Precipitation trends determine future occurrences of compound hot–dry events publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-022-01309-5 – volume: 615 start-page: 1133 year: 2018 ident: 10.1016/j.scitotenv.2022.158860_bb0405 article-title: Mapping flood susceptibility in mountainous areas on a national scale in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.037 – volume: 278 year: 2022 ident: 10.1016/j.scitotenv.2022.158860_bb0135 article-title: General circulation models for rainfall simulations: performance assessment using complex networks publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106333 – volume: 246 start-page: 111 issue: 105 year: 2020 ident: 10.1016/j.scitotenv.2022.158860_bb0395 article-title: Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia publication-title: Atmos. Res. |
| SSID | ssj0000781 |
| Score | 2.5785968 |
| Snippet | Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 158860 |
| SubjectTerms | basins Brazil Central America Climate change CMIP6 Compound drought Copula corn crop yield drought environment food security France Mexico Multivariate standardized drought index runoff soil water Southern Africa time series analysis |
| Title | Future global concurrent droughts and their effects on maize yield |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2022.158860 https://www.proquest.com/docview/2716525126 https://www.proquest.com/docview/2723118438 |
| Volume | 855 |
| WOSCitedRecordID | wos000861377100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6DSSkCUFhYgMmIyFeqqA0jWOHtwKtYJoKD52UN8uJHTXbSEubRhu_nnNsNwUNNh54SavIblLf5_Od7zsfQq8lLCEDAeBlkhIvzFnmiZgEXkjSKJYyTMNB2hSboJMJS5L4a6dz4nJh6ktaluzqKl78V1HDPRC2Tp39B3FvfhRuwHcQOlxB7HC9k-DHzSkh7qQPcHczewSTbCryVCtHmiyWLZuj7H0TxQ_Vu9aEtm2DVcPIzX9LJ6jmOoFyK0OuFVo1W9cm7P9R0-lnF5rAvdnEKWpx4RjdOi-o2OLdzlzoaQgvsr0VEWgilmdJqVa9hqA9I0O4deqVEdJbvO0TxiLfu1Fpm_2Dc3DnQYmBp1CD2x4Etku7TrnY_OQLH5-dnvLpKJm-WXz3dAUxHWm35VR20F5ASQxKem_4eZSctOsyZaZ-on3JX9h-Nz77T7bKb6t2Y4pMH6GH1ofAQyP7x6ijyi66b6qKXnfRwagVDTSz0lt10b7Zo8Um9ewJem-ggg1UcAsV7KCCASq4gQq2UMHzEjdQwQ1UnqKz8Wj64ZNna2p4GdhmlQ6m-VFGI6XDsynMyn4e5EzGYOeC5gZ7MJR5GjMR5_1BAB8qlQHV-daKgfPJ5OAA7ZbzUj1DmCmpKCEijUQW9gNfUF_CagU6naQCdP0hitzo8cweOK_rnlxyxyw855th53rYuRn2Q-RvOi7MmSu3d3nnxMOt6WhMQg4gu73zKydQDspVR8xEqebrFYe_HhHtAUR_awMukq6axI7u0OY5etDOnBdot1qu1Ut0L6urYrU8Rjs0YccWuD8BBCaqwA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+global+concurrent+droughts+and+their+effects+on+maize+yield&rft.jtitle=The+Science+of+the+total+environment&rft.au=Muthuvel%2C+Dineshkumar&rft.au=Sivakumar%2C+Bellie&rft.au=Mahesha%2C+Amai&rft.date=2023-01-10&rft.issn=0048-9697&rft.volume=855+p.158860-&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.158860&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |