Future global concurrent droughts and their effects on maize yield

Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study ai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Science of the total environment Ročník 855; s. 158860
Hlavní autoři: Muthuvel, Dineshkumar, Sivakumar, Bellie, Mahesha, Amai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 10.01.2023
Témata:
ISSN:0048-9697, 1879-1026, 1879-1026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950–2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950–2014), near future (2021–2060), and far future (2061–2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions. [Display omitted] •A copula-based approach is adopted to quantify global future concurrent droughts.•Concurrent drought duration, severity, spatial extent, and intensity are measured.•The Amazon, Central America, and the Mediterranean regions will be the most affected.•The XGBoost algorithm performs well in forecasting drought-maize yield dynamics.•Severe concurrent droughts could hamper maize yield in Mexico, France, and Brazil.
AbstractList Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950–2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950–2014), near future (2021–2060), and far future (2061–2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.
Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950-2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950-2014), near future (2021-2060), and far future (2061-2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950-2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950-2014), near future (2021-2060), and far future (2061-2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.
Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950–2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950–2014), near future (2021–2060), and far future (2061–2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions. [Display omitted] •A copula-based approach is adopted to quantify global future concurrent droughts.•Concurrent drought duration, severity, spatial extent, and intensity are measured.•The Amazon, Central America, and the Mediterranean regions will be the most affected.•The XGBoost algorithm performs well in forecasting drought-maize yield dynamics.•Severe concurrent droughts could hamper maize yield in Mexico, France, and Brazil.
ArticleNumber 158860
Author Sivakumar, Bellie
Mahesha, Amai
Muthuvel, Dineshkumar
Author_xml – sequence: 1
  givenname: Dineshkumar
  surname: Muthuvel
  fullname: Muthuvel, Dineshkumar
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
– sequence: 2
  givenname: Bellie
  surname: Sivakumar
  fullname: Sivakumar, Bellie
  email: b.sivakumar@iitb.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
– sequence: 3
  givenname: Amai
  surname: Mahesha
  fullname: Mahesha, Amai
  organization: Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka Surathkal, Mangaluru 575025, India
BookMark eNqNkE1PGzEURa0KpCbAb2CW3Uzwe_Nhe9EFjaAgIbFp15ZjvwFHE5vaHqTw6ztRqi66ad7mSk_n3sVZsrMQAzF2DXwFHPqb7SpbX2Kh8L5CjriCTsqef2ILkELVwLE_YwvOW1mrXonPbJnzls8nJCzYt_upTImqlzFuzFjZGOyUEoVSuRSnl9eSKxNcVV7Jp4qGgez8iaHaGf9B1d7T6C7Z-WDGTFd_8oL9vL_7sX6on56_P65vn2rbSCg1tpz3VvSkOqE2qkMYcJBOAXZScC6xdcNGSaMGaHAO2jgUAC2SxK6TrrlgX467byn-migXvfPZ0jiaQHHKGgU2ALJt5Ako9B12gP2MiiNqU8w50aDfkt-ZtNfA9UGw3uq_gvVBsD4Knptf_2nOmCk-hpKMH0_o3x77NEt795QOHAVLzqdZs3bR_3fjNwq0nds
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130827
crossref_primary_10_1049_cit2_70031
crossref_primary_10_3389_fpls_2024_1391926
crossref_primary_10_5194_hess_29_3203_2025
crossref_primary_10_1007_s11430_023_1201_y
crossref_primary_10_1002_joc_8536
crossref_primary_10_1016_j_advwatres_2024_104676
crossref_primary_10_1007_s00477_023_02484_3
crossref_primary_10_3390_plants13121585
crossref_primary_10_3390_agriculture14071175
crossref_primary_10_3390_rs17050801
crossref_primary_10_1016_j_agrformet_2024_110282
crossref_primary_10_1007_s11069_025_07356_3
crossref_primary_10_3390_microorganisms11051144
crossref_primary_10_1007_s11356_025_36853_y
crossref_primary_10_3390_atmos16010034
crossref_primary_10_1061_JWRMD5_WRENG_6575
crossref_primary_10_1186_s12870_025_07012_9
crossref_primary_10_1007_s42729_025_02483_z
crossref_primary_10_1016_j_ijbiomac_2023_128117
crossref_primary_10_1016_j_jenvman_2024_122511
crossref_primary_10_1016_j_jhydrol_2023_130057
crossref_primary_10_1016_j_uclim_2025_102430
crossref_primary_10_1016_j_jhydrol_2023_129961
crossref_primary_10_1016_j_scitotenv_2024_174241
crossref_primary_10_3390_agriculture15030338
crossref_primary_10_1016_j_jhydrol_2024_131247
crossref_primary_10_1007_s00477_024_02689_0
crossref_primary_10_1016_j_jhydrol_2023_129143
crossref_primary_10_1111_1477_9552_12632
crossref_primary_10_1007_s10661_024_12637_8
crossref_primary_10_1016_j_jhydrol_2023_130437
crossref_primary_10_1007_s10661_025_13742_y
crossref_primary_10_1016_j_geosus_2025_100292
crossref_primary_10_1016_j_agwat_2025_109727
crossref_primary_10_1016_j_agsy_2024_104056
crossref_primary_10_1061_JWRMD5_WRENG_5858
crossref_primary_10_1016_j_indic_2025_100919
crossref_primary_10_3389_fpls_2024_1477383
crossref_primary_10_1016_j_agwat_2025_109425
crossref_primary_10_2166_wcc_2023_521
crossref_primary_10_1002_joc_8131
crossref_primary_10_3389_fpls_2024_1497952
crossref_primary_10_1002_agj2_70008
crossref_primary_10_1016_j_gloplacha_2024_104670
crossref_primary_10_3390_w16192742
Cites_doi 10.1029/2007GL032487
10.1038/nclimate1043
10.1016/j.jhydrol.2020.125126
10.1029/2020GL087820
10.1016/j.jclepro.2016.12.058
10.1016/j.advwatres.2013.03.009
10.1029/2018WR023120
10.1016/j.jhydrol.2016.02.058
10.1038/nclimate1832
10.1016/j.jhydrol.2022.127682
10.1016/j.jenvman.2021.112458
10.1007/s00477-008-0288-5
10.1016/j.scitotenv.2020.142844
10.1061/(ASCE)HE.1943-5584.0002101
10.1029/2019WR026284
10.1029/2020EF001502
10.1002/joc.7145
10.1016/j.jhydrol.2017.08.043
10.1111/gcbb.12332
10.1016/j.scitotenv.2021.150741
10.1038/s41467-022-28752-4
10.1029/2021EA001817
10.1016/j.ijhydene.2019.06.015
10.1002/hyp.9966
10.1002/joc.7221
10.1016/j.gloplacha.2020.103328
10.1016/j.jhydrol.2020.124901
10.1016/j.jhydrol.2018.06.058
10.1002/joc.7644
10.1016/j.jhydrol.2014.09.071
10.1016/j.jhydrol.2022.128177
10.1016/j.scitotenv.2019.135250
10.1002/joc.6070
10.1016/j.jhydrol.2020.125877
10.1007/s13593-016-0364-z
10.1002/joc.7390
10.1029/2019EF001461
10.1016/j.jhydrol.2019.124356
10.1061/(ASCE)HE.1943-5584.0001981
10.1016/j.jenvman.2021.113182
10.1016/j.advwatres.2016.04.010
10.1088/1748-9326/11/9/094021
10.1007/s00477-015-1056-y
10.1016/j.rse.2018.04.001
10.1016/j.agwat.2020.106090
10.1016/j.agwat.2021.107028
10.1016/j.scitotenv.2019.06.373
10.1007/s12571-011-0140-5
10.1002/joc.5922
10.1016/j.agwat.2014.07.022
10.1061/(ASCE)HE.1943-5584.0002061
10.1016/j.ecolind.2021.108198
10.1029/2020EA001620
10.1016/j.agrformet.2021.108698
10.1016/j.jhydrol.2019.124293
10.1016/j.scitotenv.2022.153817
10.1016/j.jhydrol.2021.126382
10.1007/s00477-021-02073-2
10.1007/s11269-021-03050-8
10.1007/s00477-013-0732-z
10.1175/BAMS-85-3-381
10.1002/joc.7518
10.5194/hess-25-565-2021
10.1002/2014GL059323
10.1038/s41558-022-01309-5
10.1016/j.scitotenv.2017.10.037
10.1016/j.atmosres.2022.106333
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2022.158860
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2022_158860
S0048969722059599
GeographicLocations Brazil
Central America
Mexico
France
Southern Africa
GeographicLocations_xml – name: Central America
– name: Mexico
– name: France
– name: Southern Africa
– name: Brazil
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c381t-24006c76e9579b9521f2f8d91258700824dfb98a9f1328a9ebd271142e82558d3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861377100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sun Nov 09 14:30:50 EST 2025
Sun Sep 28 08:46:34 EDT 2025
Tue Nov 18 22:08:22 EST 2025
Sat Nov 29 07:25:23 EST 2025
Sun Apr 06 06:56:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Climate change
CMIP6
Compound drought
Copula
Multivariate standardized drought index
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-24006c76e9579b9521f2f8d91258700824dfb98a9f1328a9ebd271142e82558d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2716525126
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2723118438
proquest_miscellaneous_2716525126
crossref_primary_10_1016_j_scitotenv_2022_158860
crossref_citationtrail_10_1016_j_scitotenv_2022_158860
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_158860
PublicationCentury 2000
PublicationDate 2023-01-10
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-10
  day: 10
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bjerre, Fienen, Schneider, Koch, Højberg (bb0075) 2022; 612
Dixit, Jayakumar (bb0140) 2021
Ortega, Arias, Villegas, Marquet, Nobre (bb0275) 2021; 41
Su, Miao, Kong, Duan, Lei, Hou, Li (bb0345) 2018; 563
Wasko, Shao, Vogel, Wilson, Wang, Frost, Donnelly (bb0380) 2021; 593
Florio, Mercau, Jobbágy, Nosetto (bb0160) 2014; 146
Asadi Zarch, Sivakumar, Sharma (bb0035) 2015; 526
Everingham, Sexton, Skocaj, Inman-Bamber (bb0145) 2016; 36
Bezak, Šraj, Mikoš (bb0060) 2016; 541
Das, Das, Umamahesh (bb0125) 2021; 41
Bhatti, Do (bb0065) 2019; 44
Chen, Guestrin (bb0095) 2016
Plavcová, Urban (bb0295) 2020; 746
Hao, Hao, Singh, Xia, Ouyang, Shen (bb0190) 2016; 92
He, Fang, Xu, Shi (bb0195) 2022
Yu, Wang, Wu, Chen, Wang, Qin (bb0390) 2020; 582
Shah, Mishra (bb0320) 2020; 56
Shukla, Wood (bb0335) 2008; 35
Ajjur, Al-Ghamdi (bb0010) 2021; 8
Muthuvel, Mahesha (bb0265) 2021; 26
Feng, Hao, Zhang, Hao (bb0155) 2019; 689
Saha, Sateesh (bb0315) 2022; 608
Alizadeh, Nikoo (bb0015) 2018; 211
Suman, Maity, Kunstmann (bb0350) 2021
Gocić, Motamedi, Shamshirband, Petković, Hashim (bb0170) 2015; 29
Shiau, Lien (bb0325) 2021; 13
Bevacqua, Zappa, Lehner, Zscheischler (bb0055) 2022
Zhai, Mondal, Fischer, Wang, Su, Huang, Tao, Wang, Ullah, Uddin (bb0395) 2020; 246
Chivers, Wallbank, Cole, Sebek, Stanley, Fry, Leontidis (bb0105) 2020; 588
Sklar (bb0340) 1959
Babaousmail, Hou, Ayugi, Sian, Ojara, Mumo, Chehbouni, Ongoma (bb0045) 2022
Arunrat, Wang, Pumijumnong, Sereenonchai, Cai (bb0020) 2017; 143
Chen, Yuan (bb0100) 2022; 824
Zhao, Pang, Xu, Yue, Tu (bb0405) 2018; 615
Bisht, Sridhar, Mishra, Chatterjee, Raghuwanshi (bb0070) 2019; 39
Cook, Mankin, Marvel, Williams, Smerdon, Anchukaitis (bb0110) 2020; 8
Kirono, Round, Heady, Chiew, Osbrough (bb0200) 2020; 30
Lischeid, Webber, Sommer, Nendel, Ewert (bb0215) 2022; 312
Reddy, Ganguli (bb0305) 2013; 27
Carvalho, Oliveira, Pedersen, Manhice, Lisboa, Norguet, de Wit, Santos (bb0085) 2020; 195
Das, Das, Umamahesh (bb0130) 2021; 36
Haile, Tang, Hosseini-Moghari, Liu, Gebremicael, Leng, Kebede, Xu, Yun (bb0180) 2020; 8
Lobell, Hammer, McLean, Messina, Roberts, Schlenker (bb0225) 2013; 3
Ukkola, de Kauwe, Roderick, Abramowitz, Pitman (bb0360) 2020; 47
Cui, Li, Tian (bb0115) 2021; 8
Ma, Zhao, He, Li, Dong, Wang, Wang (bb0230) 2021; 598
Gong, Du, Li, Ding (bb0175) 2021; 131
Pettitt (bb0290) 1979; 28
Qing, Wang, Ancell, Yang (bb0300) 2022; 13
Zhang, Hao, Feng, Zhang, Xu, Hao (bb0400) 2021; 255
Bacanli, Firat, Dikbas (bb0050) 2009; 23
Brédy, Gallichand, Celicourt, Gumiere (bb0080) 2020; 233
McKee, Doesken, Kleist (bb0235) 1993
Thomas, Reager, Famiglietti, Rodell (bb0355) 2014; 41
Monfreda, Ramankutty, Foley (bb0250) 2008
Arunrat, Sereenonchai, Chaowiwat, Wang (bb0030) 2022; 807
Zipper, Qiu, Kucharik (bb0410) 2016; 11
Chaudhary, Chandra, Chaudhary, Bhattacharyya (bb0090) 2021; 296
Deepthi, Sivakumar (bb0135) 2022; 278
Michael, Helman, Glickman, Gabay, Brenner, Lensky (bb0240) 2021; 764
Vignotto, Engelke, Zscheischler (bb0370) 2021; 32
Li, Guo, Xiong, Wang, Xie (bb0210) 2022; 36
Wang, Tu, Singh, Chen, Lin (bb0375) 2021; 596
Arunrat, Sereenonchai, Wang (bb0025) 2021; 289
Muthuvel, Mahesha (bb0260) 2021; 26
Parsons (bb0285) 2020; 8
Osman, Zaitchik, Badr, Christian, Tadesse, Otkin, Anderson (bb0280) 2021; 25
Uttarwar, Barma, Mahesha (bb0365) 2020; 25
Das, Jha, Goyal (bb0120) 2020; 580
Rodell, Houser, Jambor, Gottschalck, Mitchell, Meng, Arsenault, Cosgrove, Radakovich, Bosilovich, Entin, Walker, Lohmann, Toll (bb0310) 2004; 85
Ni, Wang, Wu, Wang, Tao, Zhang, Liu (bb0270) 2020; 586
Wu, Chen, Yao, Liu, Zhang (bb0385) 2018; 54
Lobell, Bänziger, Magorokosho, Vivek (bb0220) 2011; 1
Ganguli, Janga Reddy (bb0165) 2014; 28
Feng, Hao (bb0150) 2020; 704
Hao, AghaKouchak (bb0185) 2013; 57
Adarsh, Kumar, Deepthi, Gayathri, Aswathy, Bhagyasree (bb0005) 2019; 39
Muthuvel, Amai (bb0255) 2021; 42
Li, Wang, Wu, Chen, Guo, Zhang (bb0205) 2020; 194
Mola-Yudego, Rahlf, Astrup, Dimitriou (bb0245) 2016; 8
Shiferaw, Prasanna, Hellin, Bänziger (bb0330) 2011; 3
Asadi Zarch, Sivakumar, Malekinezhad, Sharma (bb0040) 2017; 554
Kirono (10.1016/j.scitotenv.2022.158860_bb0200) 2020; 30
Li (10.1016/j.scitotenv.2022.158860_bb0210) 2022; 36
Lobell (10.1016/j.scitotenv.2022.158860_bb0220) 2011; 1
Bezak (10.1016/j.scitotenv.2022.158860_bb0060) 2016; 541
Qing (10.1016/j.scitotenv.2022.158860_bb0300) 2022; 13
Adarsh (10.1016/j.scitotenv.2022.158860_bb0005) 2019; 39
Das (10.1016/j.scitotenv.2022.158860_bb0125) 2021; 41
Shukla (10.1016/j.scitotenv.2022.158860_bb0335) 2008; 35
Haile (10.1016/j.scitotenv.2022.158860_bb0180) 2020; 8
Shah (10.1016/j.scitotenv.2022.158860_bb0320) 2020; 56
Shiferaw (10.1016/j.scitotenv.2022.158860_bb0330) 2011; 3
Chivers (10.1016/j.scitotenv.2022.158860_bb0105) 2020; 588
Zhang (10.1016/j.scitotenv.2022.158860_bb0400) 2021; 255
Everingham (10.1016/j.scitotenv.2022.158860_bb0145) 2016; 36
Ni (10.1016/j.scitotenv.2022.158860_bb0270) 2020; 586
Parsons (10.1016/j.scitotenv.2022.158860_bb0285) 2020; 8
Suman (10.1016/j.scitotenv.2022.158860_bb0350) 2021
Bjerre (10.1016/j.scitotenv.2022.158860_bb0075) 2022; 612
Hao (10.1016/j.scitotenv.2022.158860_bb0185) 2013; 57
Wasko (10.1016/j.scitotenv.2022.158860_bb0380) 2021; 593
Bevacqua (10.1016/j.scitotenv.2022.158860_bb0055) 2022
Carvalho (10.1016/j.scitotenv.2022.158860_bb0085) 2020; 195
Chaudhary (10.1016/j.scitotenv.2022.158860_bb0090) 2021; 296
McKee (10.1016/j.scitotenv.2022.158860_bb0235) 1993
Ukkola (10.1016/j.scitotenv.2022.158860_bb0360) 2020; 47
Thomas (10.1016/j.scitotenv.2022.158860_bb0355) 2014; 41
Hao (10.1016/j.scitotenv.2022.158860_bb0190) 2016; 92
Zhao (10.1016/j.scitotenv.2022.158860_bb0405) 2018; 615
Shiau (10.1016/j.scitotenv.2022.158860_bb0325) 2021; 13
Muthuvel (10.1016/j.scitotenv.2022.158860_bb0260) 2021; 26
Saha (10.1016/j.scitotenv.2022.158860_bb0315) 2022; 608
Bhatti (10.1016/j.scitotenv.2022.158860_bb0065) 2019; 44
Das (10.1016/j.scitotenv.2022.158860_bb0120) 2020; 580
Mola-Yudego (10.1016/j.scitotenv.2022.158860_bb0245) 2016; 8
Sklar (10.1016/j.scitotenv.2022.158860_bb0340) 1959
Arunrat (10.1016/j.scitotenv.2022.158860_bb0025) 2021; 289
Brédy (10.1016/j.scitotenv.2022.158860_bb0080) 2020; 233
Bacanli (10.1016/j.scitotenv.2022.158860_bb0050) 2009; 23
Feng (10.1016/j.scitotenv.2022.158860_bb0155) 2019; 689
Monfreda (10.1016/j.scitotenv.2022.158860_bb0250) 2008
Asadi Zarch (10.1016/j.scitotenv.2022.158860_bb0040) 2017; 554
Ortega (10.1016/j.scitotenv.2022.158860_bb0275) 2021; 41
Vignotto (10.1016/j.scitotenv.2022.158860_bb0370) 2021; 32
He (10.1016/j.scitotenv.2022.158860_bb0195) 2022
Muthuvel (10.1016/j.scitotenv.2022.158860_bb0265) 2021; 26
Osman (10.1016/j.scitotenv.2022.158860_bb0280) 2021; 25
Feng (10.1016/j.scitotenv.2022.158860_bb0150) 2020; 704
Zipper (10.1016/j.scitotenv.2022.158860_bb0410) 2016; 11
Alizadeh (10.1016/j.scitotenv.2022.158860_bb0015) 2018; 211
Gocić (10.1016/j.scitotenv.2022.158860_bb0170) 2015; 29
Arunrat (10.1016/j.scitotenv.2022.158860_bb0030) 2022; 807
Deepthi (10.1016/j.scitotenv.2022.158860_bb0135) 2022; 278
Dixit (10.1016/j.scitotenv.2022.158860_bb0140) 2021
Rodell (10.1016/j.scitotenv.2022.158860_bb0310) 2004; 85
Lischeid (10.1016/j.scitotenv.2022.158860_bb0215) 2022; 312
Wang (10.1016/j.scitotenv.2022.158860_bb0375) 2021; 596
Pettitt (10.1016/j.scitotenv.2022.158860_bb0290) 1979; 28
Plavcová (10.1016/j.scitotenv.2022.158860_bb0295) 2020; 746
Wu (10.1016/j.scitotenv.2022.158860_bb0385) 2018; 54
Das (10.1016/j.scitotenv.2022.158860_bb0130) 2021; 36
Ma (10.1016/j.scitotenv.2022.158860_bb0230) 2021; 598
Yu (10.1016/j.scitotenv.2022.158860_bb0390) 2020; 582
Muthuvel (10.1016/j.scitotenv.2022.158860_bb0255) 2021; 42
Li (10.1016/j.scitotenv.2022.158860_bb0205) 2020; 194
Michael (10.1016/j.scitotenv.2022.158860_bb0240) 2021; 764
Uttarwar (10.1016/j.scitotenv.2022.158860_bb0365) 2020; 25
Chen (10.1016/j.scitotenv.2022.158860_bb0100) 2022; 824
Bisht (10.1016/j.scitotenv.2022.158860_bb0070) 2019; 39
Chen (10.1016/j.scitotenv.2022.158860_bb0095) 2016
Babaousmail (10.1016/j.scitotenv.2022.158860_bb0045) 2022
Reddy (10.1016/j.scitotenv.2022.158860_bb0305) 2013; 27
Cook (10.1016/j.scitotenv.2022.158860_bb0110) 2020; 8
Gong (10.1016/j.scitotenv.2022.158860_bb0175) 2021; 131
Su (10.1016/j.scitotenv.2022.158860_bb0345) 2018; 563
Ganguli (10.1016/j.scitotenv.2022.158860_bb0165) 2014; 28
Lobell (10.1016/j.scitotenv.2022.158860_bb0225) 2013; 3
Arunrat (10.1016/j.scitotenv.2022.158860_bb0020) 2017; 143
Florio (10.1016/j.scitotenv.2022.158860_bb0160) 2014; 146
Zhai (10.1016/j.scitotenv.2022.158860_bb0395) 2020; 246
Ajjur (10.1016/j.scitotenv.2022.158860_bb0010) 2021; 8
Cui (10.1016/j.scitotenv.2022.158860_bb0115) 2021; 8
Asadi Zarch (10.1016/j.scitotenv.2022.158860_bb0035) 2015; 526
References_xml – volume: 8
  year: 2020
  ident: bb0180
  article-title: Projected impacts of climate change on drought patterns over East Africa
  publication-title: Earth’s Future
– volume: 608
  year: 2022
  ident: bb0315
  article-title: Rainfall extremes on the rise: observations during 1951–2020 and bias-corrected CMIP6 projections for near- and late 21st century over Indian landmass
  publication-title: J. Hydrol.
– volume: 615
  start-page: 1133
  year: 2018
  end-page: 1142
  ident: bb0405
  article-title: Mapping flood susceptibility in mountainous areas on a national scale in China
  publication-title: Sci. Total Environ.
– volume: 704
  year: 2020
  ident: bb0150
  article-title: Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale
  publication-title: Sci. Total Environ.
– volume: 146
  start-page: 75
  year: 2014
  end-page: 83
  ident: bb0160
  article-title: Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas
  publication-title: Agric. Water Manag.
– volume: 233
  year: 2020
  ident: bb0080
  article-title: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches
  publication-title: Agric. Water Manag.
– volume: 44
  start-page: 19453
  year: 2019
  end-page: 19473
  ident: bb0065
  article-title: Recent development in copula and its applications to the energy, forestry and environmental sciences
  publication-title: Int. J. Hydrog. Energy
– volume: 563
  start-page: 818
  year: 2018
  end-page: 833
  ident: bb0345
  article-title: Long-term trends in global river flow and the causal relationships between river flow and ocean signals
  publication-title: J. Hydrol.
– volume: 746
  start-page: 033
  year: 2020
  ident: bb0295
  article-title: Intensified impacts on mortality due to compound winter extremes in the Czech Republic
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 307
  year: 2011
  end-page: 327
  ident: bb0330
  article-title: Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security
  publication-title: Food Secur.
– volume: 25
  start-page: 565
  year: 2021
  end-page: 581
  ident: bb0280
  article-title: Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 8
  start-page: 1093
  year: 2016
  end-page: 1105
  ident: bb0245
  article-title: Spatial yield estimates of fast-growing willow plantations for energy based on climatic variables in northern Europe
  publication-title: GCB Bioenergy
– volume: 42
  start-page: 2773
  year: 2021
  end-page: 2794
  ident: bb0255
  article-title: Multivariate analysis of concurrent droughts and their effects on Kharif crops—a copula-based approach
  publication-title: Int. J. Climatol.
– year: 2021
  ident: bb0350
  article-title: Precipitation of Mainland India: copula-based bias-corrected daily CORDEX climate data for both mean and extreme values
  publication-title: Geosci. Data J.
– volume: 255
  year: 2021
  ident: bb0400
  article-title: Agricultural drought prediction in China based on drought propagation and large-scale drivers
  publication-title: Agric. Water Manag.
– volume: 554
  start-page: 451
  year: 2017
  end-page: 469
  ident: bb0040
  article-title: Future aridity under conditions of global climate change
  publication-title: J. Hydrol.
– year: 2022
  ident: bb0045
  article-title: Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using bias-corrected CMIP6 models
  publication-title: Int. J. Climatol.
– volume: 598
  year: 2021
  ident: bb0230
  article-title: XGBoost-based method for flash flood risk assessment
  publication-title: J. Hydrol.
– volume: 30
  year: 2020
  ident: bb0200
  article-title: Drought projections for Australia: updated results and analysis of model simulations
  publication-title: Weather. Clim. Extremes
– volume: 26
  year: 2021
  ident: bb0265
  article-title: Copula-based frequency and coincidence risk analysis of floods in tropical-seasonal rivers
  publication-title: J. Hydrol. Eng.
– volume: 29
  start-page: 1993
  year: 2015
  end-page: 2002
  ident: bb0170
  article-title: Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices
  publication-title: Stoch. Env. Res. Risk A.
– volume: 131
  year: 2021
  ident: bb0175
  article-title: Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments
  publication-title: Ecol. Indic.
– volume: 13
  start-page: 1701
  year: 2021
  ident: bb0325
  article-title: Copula-based infilling methods for daily suspended sediment loads
  publication-title: Water (Switzerland)
– volume: 3
  start-page: 497
  year: 2013
  end-page: 501
  ident: bb0225
  article-title: The critical role of extreme heat for maize production in the United States
  publication-title: Nat. Clim. Chang.
– volume: 41
  start-page: 1537
  year: 2014
  end-page: 1545
  ident: bb0355
  article-title: A GRACE-based water storage deficit approach for hydrological drought characterization
  publication-title: Geophys. Res. Lett.
– volume: 541
  start-page: 272
  year: 2016
  end-page: 284
  ident: bb0060
  article-title: Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides
  publication-title: J. Hydrol.
– volume: 764
  year: 2021
  ident: bb0240
  article-title: Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series
  publication-title: Sci. Total Environ.
– volume: 612
  year: 2022
  ident: bb0075
  article-title: Assessing spatial transferability of a random forest metamodel for predicting drainage fraction
  publication-title: J. Hydrol.
– volume: 278
  year: 2022
  ident: bb0135
  article-title: General circulation models for rainfall simulations: performance assessment using complex networks
  publication-title: Atmos. Res.
– year: 1959
  ident: bb0340
  article-title: Fonctions de repartition a n dimensions et Leurs Marges
– volume: 526
  start-page: 183
  year: 2015
  end-page: 195
  ident: bb0035
  article-title: Droughts in a warming climate: a global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI)
  publication-title: J. Hydrol.
– volume: 39
  start-page: 1889
  year: 2019
  end-page: 1911
  ident: bb0070
  article-title: Drought characterization over India under projected climate scenario
  publication-title: Int. J. Climatol.
– volume: 13
  start-page: 1139
  year: 2022
  ident: bb0300
  article-title: Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity
  publication-title: Nat. Commun.
– volume: 47
  year: 2020
  ident: bb0360
  article-title: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation
  publication-title: Geophys. Res. Lett.
– volume: 28
  start-page: 4989
  year: 2014
  end-page: 5009
  ident: bb0165
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach
  publication-title: Hydrol. Process.
– volume: 1
  start-page: 42
  year: 2011
  end-page: 45
  ident: bb0220
  article-title: Nonlinear heat effects on African maize as evidenced by historical yield trials
  publication-title: Nat. Clim. Chang.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bb0095
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And Data Mining
– volume: 824
  year: 2022
  ident: bb0100
  article-title: Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China
  publication-title: Sci. Total Environ.
– year: 1993
  ident: bb0235
  article-title: The Relationship of Drought Frequency and Duration to Time Scales, Paper Presented at 8th Conference on Applied Climatology
– start-page: 22
  year: 2008
  ident: bb0250
  article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
  publication-title: Glob. Biogeochem. Cycles
– volume: 35
  year: 2008
  ident: bb0335
  article-title: Use of a standardized runoff index for characterizing hydrologic drought
  publication-title: Geophys. Res. Lett.
– volume: 296
  year: 2021
  ident: bb0090
  article-title: Global warming potential and energy dynamics of conservation tillage practices for different rabi crops in the Indo-Gangetic Plains
  publication-title: J. Environ. Manag.
– volume: 92
  start-page: 240
  year: 2016
  end-page: 247
  ident: bb0190
  article-title: A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices
  publication-title: Adv. Water Resour.
– volume: 689
  start-page: 1228
  year: 2019
  end-page: 1234
  ident: bb0155
  article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields
  publication-title: Sci. Total Environ.
– year: 2022
  ident: bb0055
  article-title: Precipitation trends determine future occurrences of compound hot–dry events
  publication-title: Nat. Clim. Chang.
– volume: 36
  start-page: 683
  year: 2022
  end-page: 698
  ident: bb0210
  article-title: Comparative study of flood coincidence risk estimation methods in the mainstream and its tributaries
  publication-title: Water Resour. Manag.
– volume: 26
  year: 2021
  ident: bb0260
  article-title: Spatiotemporal analysis of compound agrometeorological drought and hot events in India using a Standardized Index
  publication-title: J. Hydrol. Eng.
– volume: 195
  year: 2020
  ident: bb0085
  article-title: A changing Amazon rainforest: historical trends and future projections under post-Paris climate scenarios
  publication-title: Glob. Planet. Chang.
– volume: 56
  year: 2020
  ident: bb0320
  article-title: Integrated Drought Index (IDI) for drought monitoring and assessment in India
  publication-title: Water Resour. Res.
– volume: 580
  year: 2020
  ident: bb0120
  article-title: Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India
  publication-title: J. Hydrol.
– volume: 8
  year: 2020
  ident: bb0285
  article-title: Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earth’s
  publication-title: Future
– volume: 8
  year: 2020
  ident: bb0110
  article-title: Twenty-first century drought projections in the CMIP6 forcing scenarios
  publication-title: Earth’s Future
– volume: 586
  year: 2020
  ident: bb0270
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
– volume: 8
  year: 2021
  ident: bb0115
  article-title: Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau
  publication-title: Earth Space Sci.
– volume: 28
  start-page: 126
  year: 1979
  end-page: 135
  ident: bb0290
  article-title: A non-parametric approach to the change-point problem
  publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat.
– volume: 41
  start-page: 5644
  year: 2021
  end-page: 5662
  ident: bb0125
  article-title: Identification of future meteorological drought hotspots over Indian region: a study based on NEX-GDDP data
  publication-title: Int. J. Climatol.
– volume: 23
  start-page: 1143
  year: 2009
  end-page: 1154
  ident: bb0050
  article-title: Adaptive Neuro-Fuzzy inference system for drought forecasting
  publication-title: Stoch. Env. Res. Risk A.
– volume: 27
  start-page: 1975
  year: 2013
  end-page: 1989
  ident: bb0305
  article-title: Spatio-temporal analysis and derivation of copula-based intensity-area-frequency curves for droughts in western Rajasthan (India)
  publication-title: Stoch. Env. Res. Risk A.
– volume: 596
  start-page: 091
  year: 2021
  ident: bb0375
  article-title: Global data assessment and analysis of drought characteristics based on CMIP6
  publication-title: J. Hydrol.
– volume: 25
  year: 2020
  ident: bb0365
  article-title: Bivariate modeling of hydroclimatic variables in humid tropical coastal region using Archimedean copulas
  publication-title: J. Hydrol. Eng.
– volume: 289
  year: 2021
  ident: bb0025
  article-title: Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: a case study in Phichit province, Thailand
  publication-title: J. Environ. Manag.
– volume: 36
  start-page: 27
  year: 2016
  ident: bb0145
  article-title: Accurate prediction of sugarcane yield using a random forest algorithm
  publication-title: Agron. Sustain. Dev.
– volume: 54
  start-page: 9549
  year: 2018
  end-page: 9565
  ident: bb0385
  article-title: Hydrological drought instantaneous propagation speed based on the variable motion relationship of speed-time process
  publication-title: Water Resour. Res.
– volume: 39
  start-page: 4234
  year: 2019
  end-page: 4255
  ident: bb0005
  article-title: Multifractal characterization of meteorological drought in India using detrended fluctuation analysis
  publication-title: Int. J. Climatol.
– volume: 32
  start-page: 318
  year: 2021
  ident: bb0370
  article-title: Clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and Ireland
  publication-title: Weather. Clim. Extremes
– year: 2021
  ident: bb0140
  article-title: Spatio-temporal analysis of copula-based probabilistic multivariate drought index using CMIP6 model
  publication-title: Int. J. Climatol.
– volume: 582
  year: 2020
  ident: bb0390
  article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting
  publication-title: J. Hydrol.
– volume: 8
  year: 2021
  ident: bb0010
  article-title: Global hotspots for future absolute temperature extremes from CMIP6 models
  publication-title: Earth Space Sci.
– volume: 36
  start-page: 1597
  year: 2021
  end-page: 1614
  ident: bb0130
  article-title: Investigating seasonal drought severity-area-frequency (SAF) curve over Indian region: incorporating GCM and scenario uncertainties
  publication-title: Stoch. Env. Res. Risk A.
– volume: 194
  year: 2020
  ident: bb0205
  article-title: A new framework for tracking flash drought events in space and time
  publication-title: Catena (Amst)
– volume: 246
  start-page: 111
  year: 2020
  ident: bb0395
  article-title: Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia
  publication-title: Atmos. Res.
– volume: 57
  start-page: 12
  year: 2013
  end-page: 18
  ident: bb0185
  article-title: Multivariate Standardized Drought Index: a parametric multi-index model
  publication-title: Adv. Water Resour.
– volume: 41
  start-page: 6713
  year: 2021
  end-page: 6735
  ident: bb0275
  article-title: Present-day and future climate over central and South America according to CMIP5/CMIP6 models
  publication-title: Int. J. Climatol.
– year: 2022
  ident: bb0195
  article-title: Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide
  publication-title: Int. J. Climatol.
– volume: 211
  start-page: 229
  year: 2018
  end-page: 247
  ident: bb0015
  article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 588
  year: 2020
  ident: bb0105
  article-title: Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach
  publication-title: J. Hydrol.
– volume: 143
  start-page: 672
  year: 2017
  end-page: 685
  ident: bb0020
  article-title: Farmers’ intention and decision to adapt to climate change: a case study in the Yom and Nan basins, Phichit province of Thailand
  publication-title: J. Clean. Prod.
– volume: 85
  start-page: 381
  year: 2004
  end-page: 394
  ident: bb0310
  article-title: The global land data assimilation system
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 807
  year: 2022
  ident: bb0030
  article-title: Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand
  publication-title: Sci. Total Environ.
– volume: 593
  year: 2021
  ident: bb0380
  article-title: Understanding trends in hydrologic extremes across Australia
  publication-title: J. Hydrol.
– volume: 312
  year: 2022
  ident: bb0215
  article-title: Machine learning in crop yield modelling: a powerful tool, but no surrogate for science
  publication-title: Agric. For. Meteorol.
– volume: 11
  year: 2016
  ident: bb0410
  article-title: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes
  publication-title: Environ. Res. Lett.
– volume: 35
  year: 2008
  ident: 10.1016/j.scitotenv.2022.158860_bb0335
  article-title: Use of a standardized runoff index for characterizing hydrologic drought
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL032487
– volume: 1
  start-page: 42
  year: 2011
  ident: 10.1016/j.scitotenv.2022.158860_bb0220
  article-title: Nonlinear heat effects on African maize as evidenced by historical yield trials
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1043
– year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0140
  article-title: Spatio-temporal analysis of copula-based probabilistic multivariate drought index using CMIP6 model
  publication-title: Int. J. Climatol.
– volume: 588
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0105
  article-title: Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125126
– volume: 47
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0360
  article-title: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL087820
– year: 1993
  ident: 10.1016/j.scitotenv.2022.158860_bb0235
– volume: 143
  start-page: 672
  year: 2017
  ident: 10.1016/j.scitotenv.2022.158860_bb0020
  article-title: Farmers’ intention and decision to adapt to climate change: a case study in the Yom and Nan basins, Phichit province of Thailand
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.12.058
– volume: 57
  start-page: 12
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158860_bb0185
  article-title: Multivariate Standardized Drought Index: a parametric multi-index model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.03.009
– volume: 54
  start-page: 9549
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158860_bb0385
  article-title: Hydrological drought instantaneous propagation speed based on the variable motion relationship of speed-time process
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023120
– volume: 541
  start-page: 272
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158860_bb0060
  article-title: Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.058
– volume: 596
  start-page: 091
  issue: 126
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0375
  article-title: Global data assessment and analysis of drought characteristics based on CMIP6
  publication-title: J. Hydrol.
– volume: 3
  start-page: 497
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158860_bb0225
  article-title: The critical role of extreme heat for maize production in the United States
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1832
– volume: 608
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0315
  article-title: Rainfall extremes on the rise: observations during 1951–2020 and bias-corrected CMIP6 projections for near- and late 21st century over Indian landmass
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127682
– volume: 13
  start-page: 1701
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0325
  article-title: Copula-based infilling methods for daily suspended sediment loads
  publication-title: Water (Switzerland)
– volume: 289
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0025
  article-title: Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: a case study in Phichit province, Thailand
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112458
– year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0350
  article-title: Precipitation of Mainland India: copula-based bias-corrected daily CORDEX climate data for both mean and extreme values
  publication-title: Geosci. Data J.
– volume: 23
  start-page: 1143
  year: 2009
  ident: 10.1016/j.scitotenv.2022.158860_bb0050
  article-title: Adaptive Neuro-Fuzzy inference system for drought forecasting
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-008-0288-5
– volume: 764
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0240
  article-title: Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142844
– volume: 26
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0260
  article-title: Spatiotemporal analysis of compound agrometeorological drought and hot events in India using a Standardized Index
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0002101
– volume: 56
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0320
  article-title: Integrated Drought Index (IDI) for drought monitoring and assessment in India
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026284
– volume: 8
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0180
  article-title: Projected impacts of climate change on drought patterns over East Africa
  publication-title: Earth’s Future
  doi: 10.1029/2020EF001502
– volume: 41
  start-page: 5644
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0125
  article-title: Identification of future meteorological drought hotspots over Indian region: a study based on NEX-GDDP data
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7145
– volume: 554
  start-page: 451
  year: 2017
  ident: 10.1016/j.scitotenv.2022.158860_bb0040
  article-title: Future aridity under conditions of global climate change
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.08.043
– year: 1959
  ident: 10.1016/j.scitotenv.2022.158860_bb0340
– volume: 28
  start-page: 126
  year: 1979
  ident: 10.1016/j.scitotenv.2022.158860_bb0290
  article-title: A non-parametric approach to the change-point problem
  publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat.
– volume: 8
  start-page: 1093
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158860_bb0245
  article-title: Spatial yield estimates of fast-growing willow plantations for energy based on climatic variables in northern Europe
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12332
– start-page: 22
  year: 2008
  ident: 10.1016/j.scitotenv.2022.158860_bb0250
  article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
  publication-title: Glob. Biogeochem. Cycles
– volume: 807
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0030
  article-title: Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150741
– volume: 13
  start-page: 1139
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0300
  article-title: Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28752-4
– volume: 8
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0010
  article-title: Global hotspots for future absolute temperature extremes from CMIP6 models
  publication-title: Earth Space Sci.
  doi: 10.1029/2021EA001817
– volume: 32
  start-page: 318
  issue: 100
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0370
  article-title: Clustering bivariate dependencies of compound precipitation and wind extremes over Great Britain and Ireland
  publication-title: Weather. Clim. Extremes
– volume: 194
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0205
  article-title: A new framework for tracking flash drought events in space and time
  publication-title: Catena (Amst)
– volume: 44
  start-page: 19453
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158860_bb0065
  article-title: Recent development in copula and its applications to the energy, forestry and environmental sciences
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.06.015
– volume: 28
  start-page: 4989
  year: 2014
  ident: 10.1016/j.scitotenv.2022.158860_bb0165
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9966
– volume: 41
  start-page: 6713
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0275
  article-title: Present-day and future climate over central and South America according to CMIP5/CMIP6 models
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7221
– start-page: 785
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158860_bb0095
  article-title: Xgboost: a scalable tree boosting system
– volume: 195
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0085
  article-title: A changing Amazon rainforest: historical trends and future projections under post-Paris climate scenarios
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2020.103328
– volume: 586
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0270
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124901
– volume: 563
  start-page: 818
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158860_bb0345
  article-title: Long-term trends in global river flow and the causal relationships between river flow and ocean signals
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.058
– year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0045
  article-title: Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using bias-corrected CMIP6 models
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7644
– volume: 526
  start-page: 183
  year: 2015
  ident: 10.1016/j.scitotenv.2022.158860_bb0035
  article-title: Droughts in a warming climate: a global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.09.071
– volume: 612
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0075
  article-title: Assessing spatial transferability of a random forest metamodel for predicting drainage fraction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128177
– volume: 704
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0150
  article-title: Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135250
– volume: 8
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0285
  article-title: Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earth’s
  publication-title: Future
– volume: 39
  start-page: 4234
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158860_bb0005
  article-title: Multifractal characterization of meteorological drought in India using detrended fluctuation analysis
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6070
– volume: 593
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0380
  article-title: Understanding trends in hydrologic extremes across Australia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125877
– volume: 36
  start-page: 27
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158860_bb0145
  article-title: Accurate prediction of sugarcane yield using a random forest algorithm
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-016-0364-z
– volume: 42
  start-page: 2773
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0255
  article-title: Multivariate analysis of concurrent droughts and their effects on Kharif crops—a copula-based approach
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7390
– volume: 8
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0110
  article-title: Twenty-first century drought projections in the CMIP6 forcing scenarios
  publication-title: Earth’s Future
  doi: 10.1029/2019EF001461
– volume: 580
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0120
  article-title: Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124356
– volume: 25
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0365
  article-title: Bivariate modeling of hydroclimatic variables in humid tropical coastal region using Archimedean copulas
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001981
– volume: 296
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0090
  article-title: Global warming potential and energy dynamics of conservation tillage practices for different rabi crops in the Indo-Gangetic Plains
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113182
– volume: 92
  start-page: 240
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158860_bb0190
  article-title: A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.04.010
– volume: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158860_bb0410
  article-title: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/11/9/094021
– volume: 29
  start-page: 1993
  year: 2015
  ident: 10.1016/j.scitotenv.2022.158860_bb0170
  article-title: Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-015-1056-y
– volume: 211
  start-page: 229
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158860_bb0015
  article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.001
– volume: 233
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0080
  article-title: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106090
– volume: 255
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0400
  article-title: Agricultural drought prediction in China based on drought propagation and large-scale drivers
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107028
– volume: 689
  start-page: 1228
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158860_bb0155
  article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.373
– volume: 3
  start-page: 307
  year: 2011
  ident: 10.1016/j.scitotenv.2022.158860_bb0330
  article-title: Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security
  publication-title: Food Secur.
  doi: 10.1007/s12571-011-0140-5
– volume: 39
  start-page: 1889
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158860_bb0070
  article-title: Drought characterization over India under projected climate scenario
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5922
– volume: 146
  start-page: 75
  year: 2014
  ident: 10.1016/j.scitotenv.2022.158860_bb0160
  article-title: Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.07.022
– volume: 26
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0265
  article-title: Copula-based frequency and coincidence risk analysis of floods in tropical-seasonal rivers
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0002061
– volume: 131
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0175
  article-title: Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108198
– volume: 8
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0115
  article-title: Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001620
– volume: 312
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0215
  article-title: Machine learning in crop yield modelling: a powerful tool, but no surrogate for science
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108698
– volume: 582
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0390
  article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124293
– volume: 746
  start-page: 033
  issue: 141
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0295
  article-title: Intensified impacts on mortality due to compound winter extremes in the Czech Republic
  publication-title: Sci. Total Environ.
– volume: 824
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0100
  article-title: Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153817
– volume: 598
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0230
  article-title: XGBoost-based method for flash flood risk assessment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126382
– volume: 36
  start-page: 1597
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0130
  article-title: Investigating seasonal drought severity-area-frequency (SAF) curve over Indian region: incorporating GCM and scenario uncertainties
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-021-02073-2
– volume: 36
  start-page: 683
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0210
  article-title: Comparative study of flood coincidence risk estimation methods in the mainstream and its tributaries
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-03050-8
– volume: 27
  start-page: 1975
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158860_bb0305
  article-title: Spatio-temporal analysis and derivation of copula-based intensity-area-frequency curves for droughts in western Rajasthan (India)
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-013-0732-z
– volume: 85
  start-page: 381
  year: 2004
  ident: 10.1016/j.scitotenv.2022.158860_bb0310
  article-title: The global land data assimilation system
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-85-3-381
– year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0195
  article-title: Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7518
– volume: 30
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0200
  article-title: Drought projections for Australia: updated results and analysis of model simulations
  publication-title: Weather. Clim. Extremes
– volume: 25
  start-page: 565
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158860_bb0280
  article-title: Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-565-2021
– volume: 41
  start-page: 1537
  year: 2014
  ident: 10.1016/j.scitotenv.2022.158860_bb0355
  article-title: A GRACE-based water storage deficit approach for hydrological drought characterization
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL059323
– year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0055
  article-title: Precipitation trends determine future occurrences of compound hot–dry events
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-022-01309-5
– volume: 615
  start-page: 1133
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158860_bb0405
  article-title: Mapping flood susceptibility in mountainous areas on a national scale in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.037
– volume: 278
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158860_bb0135
  article-title: General circulation models for rainfall simulations: performance assessment using complex networks
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106333
– volume: 246
  start-page: 111
  issue: 105
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158860_bb0395
  article-title: Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia
  publication-title: Atmos. Res.
SSID ssj0000781
Score 2.5785968
Snippet Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 158860
SubjectTerms basins
Brazil
Central America
Climate change
CMIP6
Compound drought
Copula
corn
crop yield
drought
environment
food security
France
Mexico
Multivariate standardized drought index
runoff
soil water
Southern Africa
time series analysis
Title Future global concurrent droughts and their effects on maize yield
URI https://dx.doi.org/10.1016/j.scitotenv.2022.158860
https://www.proquest.com/docview/2716525126
https://www.proquest.com/docview/2723118438
Volume 855
WOSCitedRecordID wos000861377100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6DSSkCUFhYgMmIyFeqqA0jWOHtwKtYJoKD52UN8uJHTXbSEubRhu_nnNsNwUNNh54SavIblLf5_Od7zsfQq8lLCEDAeBlkhIvzFnmiZgEXkjSKJYyTMNB2hSboJMJS5L4a6dz4nJh6ktaluzqKl78V1HDPRC2Tp39B3FvfhRuwHcQOlxB7HC9k-DHzSkh7qQPcHczewSTbCryVCtHmiyWLZuj7H0TxQ_Vu9aEtm2DVcPIzX9LJ6jmOoFyK0OuFVo1W9cm7P9R0-lnF5rAvdnEKWpx4RjdOi-o2OLdzlzoaQgvsr0VEWgilmdJqVa9hqA9I0O4deqVEdJbvO0TxiLfu1Fpm_2Dc3DnQYmBp1CD2x4Etku7TrnY_OQLH5-dnvLpKJm-WXz3dAUxHWm35VR20F5ASQxKem_4eZSctOsyZaZ-on3JX9h-Nz77T7bKb6t2Y4pMH6GH1ofAQyP7x6ijyi66b6qKXnfRwagVDTSz0lt10b7Zo8Um9ewJem-ggg1UcAsV7KCCASq4gQq2UMHzEjdQwQ1UnqKz8Wj64ZNna2p4GdhmlQ6m-VFGI6XDsynMyn4e5EzGYOeC5gZ7MJR5GjMR5_1BAB8qlQHV-daKgfPJ5OAA7ZbzUj1DmCmpKCEijUQW9gNfUF_CagU6naQCdP0hitzo8cweOK_rnlxyxyw855th53rYuRn2Q-RvOi7MmSu3d3nnxMOt6WhMQg4gu73zKydQDspVR8xEqebrFYe_HhHtAUR_awMukq6axI7u0OY5etDOnBdot1qu1Ut0L6urYrU8Rjs0YccWuD8BBCaqwA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+global+concurrent+droughts+and+their+effects+on+maize+yield&rft.jtitle=The+Science+of+the+total+environment&rft.au=Muthuvel%2C+Dineshkumar&rft.au=Sivakumar%2C+Bellie&rft.au=Mahesha%2C+Amai&rft.date=2023-01-10&rft.issn=0048-9697&rft.volume=855+p.158860-&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.158860&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon