Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data
•Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion algorithm.•A universal LR model was built to predict CEC at various depths using inverted electrical conductivity.•CEC was mapped at various de...
Uloženo v:
| Vydáno v: | Soil & tillage research Ročník 200; s. 104618 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2020
|
| Témata: | |
| ISSN: | 0167-1987, 1879-3444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion algorithm.•A universal LR model was built to predict CEC at various depths using inverted electrical conductivity.•CEC was mapped at various depths (0–2.1 m with 0.3 m increment) across a 26 ha field, using the universal LR model.
Cation exchange capacity (CEC, cmol(+) kg−1) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and directly measure across a heterogenous field and at different depths. To add value to limited data, proximally sensed apparent soil electrical conductivity (ECa, mS m−1) from electromagnetic (EM) instruments has been coupled to CEC at each depth through a linear regression (LR) model. In this study, LR between ECa and depth specific CEC was compared with a LR developed between true electrical conductivity (σ, mS m−1), inverted from ECa, and CEC from various depths, including topsoil (0–0.3 m), subsurface (0.3–0.6 m), shallow subsoil (0.6–0.9 m) and deeper subsoil (0.9–2.1 m). We estimate σ using quasi-3d (q-3d) inversion software (EM4Soil) considering inversion of EM38 and EM31 ECa either alone or in combination (joint inversion), in horizontal (ECah) and vertical (ECav) modes, and EM38 at two different heights (i.e. 0.2 or 0.4 m). The calibration results showed LR between ECa and depth specific CEC in the topsoil (R2 = 0.31), subsurface (0.37) and shallow subsoil (0.52) was unsatisfactory. Stronger LR could be established for deeper subsoil CEC (> 0.60). However, a single LR could be developed between CEC at all depths with σ (R2 = 0.72) estimated by jointly inverting EM38 (0.2 m) and EM31 ECa in both modes using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). A leave-one-out-cross-validation showed CEC prediction was precise (RMSE, 2.39 cmol(+) kg−1), unbiased (ME, -0.01 cmol(+) kg−1) with good concordance (Lin’s = 0.82). To improve areal prediction closer spaced transects are required, while to improve vertical resolution of prediction we recommend the use of a single-frequency multi-coil array DUALEM-421. |
|---|---|
| AbstractList | Cation exchange capacity (CEC, cmol(+) kg⁻¹) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and directly measure across a heterogenous field and at different depths. To add value to limited data, proximally sensed apparent soil electrical conductivity (ECₐ, mS m⁻¹) from electromagnetic (EM) instruments has been coupled to CEC at each depth through a linear regression (LR) model. In this study, LR between ECₐ and depth specific CEC was compared with a LR developed between true electrical conductivity (σ, mS m⁻¹), inverted from ECₐ, and CEC from various depths, including topsoil (0–0.3 m), subsurface (0.3–0.6 m), shallow subsoil (0.6–0.9 m) and deeper subsoil (0.9–2.1 m). We estimate σ using quasi-3d (q-3d) inversion software (EM4Soil) considering inversion of EM38 and EM31 ECₐ either alone or in combination (joint inversion), in horizontal (ECₐₕ) and vertical (ECₐᵥ) modes, and EM38 at two different heights (i.e. 0.2 or 0.4 m). The calibration results showed LR between ECₐ and depth specific CEC in the topsoil (R² = 0.31), subsurface (0.37) and shallow subsoil (0.52) was unsatisfactory. Stronger LR could be established for deeper subsoil CEC (> 0.60). However, a single LR could be developed between CEC at all depths with σ (R² = 0.72) estimated by jointly inverting EM38 (0.2 m) and EM31 ECₐ in both modes using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). A leave-one-out-cross-validation showed CEC prediction was precise (RMSE, 2.39 cmol(+) kg⁻¹), unbiased (ME, -0.01 cmol(+) kg⁻¹) with good concordance (Lin’s = 0.82). To improve areal prediction closer spaced transects are required, while to improve vertical resolution of prediction we recommend the use of a single-frequency multi-coil array DUALEM-421. •Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion algorithm.•A universal LR model was built to predict CEC at various depths using inverted electrical conductivity.•CEC was mapped at various depths (0–2.1 m with 0.3 m increment) across a 26 ha field, using the universal LR model. Cation exchange capacity (CEC, cmol(+) kg−1) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and directly measure across a heterogenous field and at different depths. To add value to limited data, proximally sensed apparent soil electrical conductivity (ECa, mS m−1) from electromagnetic (EM) instruments has been coupled to CEC at each depth through a linear regression (LR) model. In this study, LR between ECa and depth specific CEC was compared with a LR developed between true electrical conductivity (σ, mS m−1), inverted from ECa, and CEC from various depths, including topsoil (0–0.3 m), subsurface (0.3–0.6 m), shallow subsoil (0.6–0.9 m) and deeper subsoil (0.9–2.1 m). We estimate σ using quasi-3d (q-3d) inversion software (EM4Soil) considering inversion of EM38 and EM31 ECa either alone or in combination (joint inversion), in horizontal (ECah) and vertical (ECav) modes, and EM38 at two different heights (i.e. 0.2 or 0.4 m). The calibration results showed LR between ECa and depth specific CEC in the topsoil (R2 = 0.31), subsurface (0.37) and shallow subsoil (0.52) was unsatisfactory. Stronger LR could be established for deeper subsoil CEC (> 0.60). However, a single LR could be developed between CEC at all depths with σ (R2 = 0.72) estimated by jointly inverting EM38 (0.2 m) and EM31 ECa in both modes using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). A leave-one-out-cross-validation showed CEC prediction was precise (RMSE, 2.39 cmol(+) kg−1), unbiased (ME, -0.01 cmol(+) kg−1) with good concordance (Lin’s = 0.82). To improve areal prediction closer spaced transects are required, while to improve vertical resolution of prediction we recommend the use of a single-frequency multi-coil array DUALEM-421. |
| ArticleNumber | 104618 |
| Author | Zhao, Dongxue Li, Nan Zare, Ehsan Triantafilis, John Wang, Jie |
| Author_xml | – sequence: 1 givenname: Dongxue surname: Zhao fullname: Zhao, Dongxue email: zhaodx08@gmail.com – sequence: 2 givenname: Nan surname: Li fullname: Li, Nan – sequence: 3 givenname: Ehsan surname: Zare fullname: Zare, Ehsan – sequence: 4 givenname: Jie surname: Wang fullname: Wang, Jie – sequence: 5 givenname: John orcidid: 0000-0003-1561-0242 surname: Triantafilis fullname: Triantafilis, John email: j.triantafilis@unsw.edu.au |
| BookMark | eNqFkD1PwzAQhi0EEuXjF7B4ZEmxYzdxBgZU8SWBWECM1tW-FEfBSW0Xwb8naZgYYDqf_T4n33NE9n3nkZAzzuac8eKimcfk2naes3y8kQVXe2TGVVllQkq5T2ZDqsx4pcpDchRjwxiTIlcz8voIfe_8mhpIrvMUP80b-DUOfQ_GpS-6jeMz0M0WosuEpU3nfKLOf2CII9LV9PpRKArejgdOLSQ4IQc1tBFPf-oxebm5fl7eZQ9Pt_fLq4fMCMVTxosaaot2JWtleWWLnIEsVqwCwYwClADVQoAAW4JdDH82C5kbhiswBuuCiWNyPs3tQ7fZYkz63UWDbQseu23UuVCqLIQU1RCtpqgJXYwBaz3st9s6BXCt5kyPMnWjdzL1KFNPMgdW_GL74N4hfP1DXU4UDgY-HAYdjUNv0LqAJmnbuT_5b-qykU8 |
| CitedBy_id | crossref_primary_10_1016_j_compag_2022_107512 crossref_primary_10_1002_ldr_4709 crossref_primary_10_1016_j_agwat_2020_106705 crossref_primary_10_1016_j_catena_2021_105702 crossref_primary_10_1016_j_geoderma_2021_115380 crossref_primary_10_3390_land10121406 crossref_primary_10_3390_land13122250 crossref_primary_10_1007_s11356_020_11255_4 crossref_primary_10_1016_j_geoderma_2023_116378 crossref_primary_10_1016_j_scs_2022_103684 crossref_primary_10_3390_agronomy14112671 crossref_primary_10_3390_ijerph192316159 crossref_primary_10_1016_j_compag_2021_105990 crossref_primary_10_3390_land11122307 crossref_primary_10_3390_rs14081911 crossref_primary_10_1016_j_catena_2020_104938 crossref_primary_10_3390_land11122148 crossref_primary_10_1109_JSTARS_2022_3153958 crossref_primary_10_1007_s11356_022_20138_9 crossref_primary_10_3390_land13030295 crossref_primary_10_1080_10106049_2022_2076913 crossref_primary_10_1016_j_still_2023_105735 crossref_primary_10_3390_su15020964 crossref_primary_10_3390_atmos13010075 crossref_primary_10_3390_atmos13040596 crossref_primary_10_1016_j_uclim_2022_101387 crossref_primary_10_1016_j_still_2024_106429 crossref_primary_10_3390_atmos13020287 crossref_primary_10_1016_j_catena_2022_106843 crossref_primary_10_1007_s40333_022_0052_6 crossref_primary_10_3390_land11091553 crossref_primary_10_1007_s11629_020_6523_3 crossref_primary_10_3390_rs14132964 crossref_primary_10_3390_su142416696 crossref_primary_10_1016_j_rser_2022_112350 crossref_primary_10_1016_j_geoderma_2022_115972 crossref_primary_10_1002_ldr_3684 crossref_primary_10_3389_fevo_2022_922739 crossref_primary_10_1007_s12517_021_08810_9 crossref_primary_10_3390_land11010134 crossref_primary_10_3390_s22166153 crossref_primary_10_3390_su142214884 crossref_primary_10_3390_su15010683 crossref_primary_10_1016_j_compag_2022_107409 crossref_primary_10_1016_j_jclepro_2020_124849 crossref_primary_10_3390_land11071110 crossref_primary_10_1016_j_agwat_2021_107246 crossref_primary_10_3390_land11071076 |
| Cites_doi | 10.2136/sssaj1977.03615995004100060041x 10.3390/s19183936 10.1111/sum.12352 10.1016/S0016-7061(01)00074-X 10.1016/j.jappgeo.2004.04.005 10.1190/1.3537834 10.1016/S0016-7061(00)00025-2 10.1016/j.agwat.2015.09.003 10.1016/0016-7061(93)90049-Q 10.1016/S0016-7061(00)00043-4 10.1190/1.1442813 10.1071/SR08240 10.1111/sum.12261 10.1016/j.scitotenv.2017.05.074 10.1016/j.geoderma.2013.06.001 10.1111/sum.12353 10.1190/1.1442649 10.1016/j.compag.2004.11.010 10.1111/j.1365-2389.2012.01425.x 10.1111/j.1475-2743.2002.tb00249.x 10.2307/2532051 10.2136/sssaj2017.10.0356 10.1111/sum.12106 10.2136/sssaj2015.06.0238 10.2136/sssaj2018.03.0100 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.still.2020.104618 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1879-3444 |
| ExternalDocumentID | 10_1016_j_still_2020_104618 S0167198719300352 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c381t-16fafdedb4f8d19d620a46b09a30c8ae4aa953a3ad7ad5043c542c0ebaccef603 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528029900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-1987 |
| IngestDate | Sun Nov 09 11:47:34 EST 2025 Sat Nov 29 07:20:51 EST 2025 Tue Nov 18 21:56:42 EST 2025 Fri Feb 23 02:50:32 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cation exchange capacity Digital soil mapping Fertility EM38 Electromagnetic inversion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-16fafdedb4f8d19d620a46b09a30c8ae4aa953a3ad7ad5043c542c0ebaccef603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1561-0242 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167198719300352 |
| PQID | 2388763439 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2388763439 crossref_citationtrail_10_1016_j_still_2020_104618 crossref_primary_10_1016_j_still_2020_104618 elsevier_sciencedirect_doi_10_1016_j_still_2020_104618 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Soil & tillage research |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | McKenzie (bib0100) 1998 Triantafilis, Lesch, La Lau, Buchanan (bib0185) 2009; 47 McNeill (bib0110) 1980 Geonics Ltd (bib0030) 2020 Jafari, Finke, Vande Wauw, Ayoubi, Khademi (bib0055) 2012; 63 Triantafilis, Monteiro Santos (bib0175) 2013; 211 Zhao, Zhao, Khongnawang, Arshad, Triantafilis (bib0200) 2018 McKenzie, Austin (bib0105) 1993; 57 Huang, Scudiero, Choo, Corwin, Triantafilis (bib0045) 2016; 163 Huang, Davies, Bowd, Monteiro Santos, Triantafilis (bib0040) 2014; 30 Tucker (bib0190) 1974 Blume, Brümmer, Fleige, Horn, Kandeler, Kögel-Knabner, Kretzschmar, Stahr, Wilke (bib0010) 2015 Koganti, Moral, Rebollo, Huang, Triantafilis (bib0075) 2017; 599 McNeill (bib0115) 1980 DeGroot-Hedlin, Constable (bib0020) 1990; 55 Sudduth, Kitchen, Wiebold, Batchelor, Bollero, Bullock, Clay, Palm, Pierce, Schuler, Thelen (bib0170) 2005; 46 Sasaki (bib0150) 1989; 54 Zare, Huang, Santos, Triantafilis (bib0195) 2015; 79 Holmgren, Juve, Geschwender (bib0035) 1977; 41 Nagra, Burkett, Huang, Ward, Triantafilis (bib0135) 2017; 33 Bishop, McBratney (bib0005) 2001; 103 McNeill (bib0120) 1990 Monteiro Santos (bib0125) 2004; 56 Li, Zare, Huang, Triantafilis (bib0080) 2018 Kaufman, Keller (bib0065) 1983 R Core Team (bib0140) 2016 Monteiro Santos, Triantafilis, Bruzgulis (bib0130) 2011; 76 Lin (bib0085) 1989; 45 Malone, Minasny, McBratney (bib0090) 2017 Stockmann, Huang, Minasny, Triantafilis (bib0165) 2017; 33 Stannard, Kelly (bib0160) 1977 Jung, Kitchen, Sudduth, Anderson (bib0060) 2006; 74 EMTOMO (bib0025) 2014 Khongnawang, Zare, Zhao, Srihabun, Triantafilis (bib0070) 2019; 19 McBratney, Odeh, Bishop, Dunbar, Shatar (bib0095) 2000; 97 Triantafilis, Ahmed, Odeh (bib0180) 2002; 18 Castrignanò, Giugliarini, Risaliti, Martinelli (bib0015) 2000; 97 Rhoades, Chanduvi, Lesch (bib0145) 1999 Smith, Welsh (bib0155) 2018 Huang, Scudiero, Clary, Corwin, Triantafilis (bib0050) 2017; 33 McNeill (10.1016/j.still.2020.104618_bib0120) 1990 Smith (10.1016/j.still.2020.104618_bib0155) 2018 Blume (10.1016/j.still.2020.104618_bib0010) 2015 Khongnawang (10.1016/j.still.2020.104618_bib0070) 2019; 19 Bishop (10.1016/j.still.2020.104618_bib0005) 2001; 103 Triantafilis (10.1016/j.still.2020.104618_bib0180) 2002; 18 Zhao (10.1016/j.still.2020.104618_bib0200) 2018 R Core Team (10.1016/j.still.2020.104618_bib0140) 2016 Kaufman (10.1016/j.still.2020.104618_bib0065) 1983 Malone (10.1016/j.still.2020.104618_bib0090) 2017 Holmgren (10.1016/j.still.2020.104618_bib0035) 1977; 41 McKenzie (10.1016/j.still.2020.104618_bib0105) 1993; 57 Huang (10.1016/j.still.2020.104618_bib0050) 2017; 33 Triantafilis (10.1016/j.still.2020.104618_bib0185) 2009; 47 Huang (10.1016/j.still.2020.104618_bib0045) 2016; 163 McNeill (10.1016/j.still.2020.104618_bib0115) 1980 Huang (10.1016/j.still.2020.104618_bib0040) 2014; 30 McNeill (10.1016/j.still.2020.104618_bib0110) 1980 Jafari (10.1016/j.still.2020.104618_bib0055) 2012; 63 Koganti (10.1016/j.still.2020.104618_bib0075) 2017; 599 Stannard (10.1016/j.still.2020.104618_bib0160) 1977 McBratney (10.1016/j.still.2020.104618_bib0095) 2000; 97 Zare (10.1016/j.still.2020.104618_bib0195) 2015; 79 Rhoades (10.1016/j.still.2020.104618_bib0145) 1999 Stockmann (10.1016/j.still.2020.104618_bib0165) 2017; 33 Sudduth (10.1016/j.still.2020.104618_bib0170) 2005; 46 Li (10.1016/j.still.2020.104618_bib0080) 2018 Jung (10.1016/j.still.2020.104618_bib0060) 2006; 74 Sasaki (10.1016/j.still.2020.104618_bib0150) 1989; 54 DeGroot-Hedlin (10.1016/j.still.2020.104618_bib0020) 1990; 55 McKenzie (10.1016/j.still.2020.104618_bib0100) 1998 Monteiro Santos (10.1016/j.still.2020.104618_bib0125) 2004; 56 Tucker (10.1016/j.still.2020.104618_bib0190) 1974 EMTOMO (10.1016/j.still.2020.104618_bib0025) 2014 Castrignanò (10.1016/j.still.2020.104618_bib0015) 2000; 97 Geonics Ltd (10.1016/j.still.2020.104618_bib0030) 2020 Nagra (10.1016/j.still.2020.104618_bib0135) 2017; 33 Triantafilis (10.1016/j.still.2020.104618_bib0175) 2013; 211 Lin (10.1016/j.still.2020.104618_bib0085) 1989; 45 Monteiro Santos (10.1016/j.still.2020.104618_bib0130) 2011; 76 |
| References_xml | – volume: 18 start-page: 330 year: 2002 end-page: 339 ident: bib0180 article-title: Application of a mobile electromagnetic sensing system (MESS) to assess cause and management of soil salinization in an irrigated cotton-growing field publication-title: Soil Use Manag. – volume: 41 start-page: 1207 year: 1977 end-page: 1208 ident: bib0035 article-title: A mechanically controlled variable rate leaching device publication-title: Soil Sci. Soc. Am. J. – volume: 47 start-page: 651 year: 2009 end-page: 663 ident: bib0185 article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model publication-title: Soil Res. – volume: 211 start-page: 28 year: 2013 end-page: 38 ident: bib0175 article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil) publication-title: Geoderma – volume: 74 start-page: 4 year: 2006 ident: bib0060 article-title: Spatial characteristics of Claypan soil properties in an agricultural field publication-title: Soil Sci. Soc. Am. J. – volume: 97 start-page: 39 year: 2000 end-page: 60 ident: bib0015 article-title: Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics publication-title: Geoderma – volume: 76 start-page: B43 year: 2011 end-page: B53 ident: bib0130 article-title: A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: application to DUALEM-421 data collected in a riverine plain publication-title: Geophysics. – year: 1998 ident: bib0100 article-title: SOILpak for Cotton Growers – volume: 33 start-page: 425 year: 2017 end-page: 436 ident: bib0135 article-title: Field level digital mapping of soil mineralogy using proximal and remote‐sensed data publication-title: Soil Use Manage. – volume: 54 start-page: 254 year: 1989 end-page: 262 ident: bib0150 article-title: Two-dimensional joint inversion of magnetotelluric and dipole–dipole resistivity data publication-title: Geophysics – year: 1980 ident: bib0110 article-title: Electrical Conductivity of Soils and Rock – volume: 30 start-page: 241 year: 2014 end-page: 250 ident: bib0040 article-title: Spatial prediction of the exchangeable sodium percentage at multiple depths using electromagnetic inversion modelling publication-title: Soil Use Manage – year: 1983 ident: bib0065 article-title: Frequency and Transient Soundings. Meth. Geochem. Geophys. 16 – volume: 103 start-page: 149 year: 2001 end-page: 160 ident: bib0005 article-title: A comparison of prediction methods for the creation of field-extent soil property maps publication-title: Geoderma – year: 2020 ident: bib0030 article-title: 1745 Meyerside Drive, Unit 8, Mississauga, Ontario L5T 1C6, Canada – year: 2018 ident: bib0200 article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil publication-title: Soil Sci. Soc. Am. J. – year: 2018 ident: bib0080 article-title: Mapping soil cation-exchange capacity using bayesian modeling and proximal sensors at the field scale publication-title: Soil Sci. Soc. Am. J. – volume: 19 start-page: 3936 year: 2019 ident: bib0070 article-title: Three-dimensional mapping of clay and cation exchange capacity of Sandy and infertile soil using EM38 and inversion software publication-title: Sensors – year: 2016 ident: bib0140 article-title: R: A Language and Environment for Statistical Computing – volume: 33 start-page: 413 year: 2017 end-page: 424 ident: bib0165 article-title: Utilizing a DUALEM‐421 and inversion modelling to map baseline soil salinity along toposequences in the Hunter Valley Wine district publication-title: Soil Use Manage. – volume: 599 start-page: 2156 year: 2017 end-page: 2165 ident: bib0075 article-title: Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software publication-title: Sci. Total Environ. – year: 1990 ident: bib0120 article-title: Geonics EM38 Ground Conductivity Meter: EM38 Operating Manual – volume: 56 start-page: 123 year: 2004 end-page: 134 ident: bib0125 article-title: 1-D laterally constrained inversion of EM34 profiling data publication-title: J. Appl. Geophys. – volume: 33 start-page: 191 year: 2017 end-page: 204 ident: bib0050 article-title: Time‐lapse monitoring of soil water content using electromagnetic conductivity imaging publication-title: Soil Use Manage. – volume: 57 start-page: 329 year: 1993 end-page: 355 ident: bib0105 article-title: A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation publication-title: Geoderma – year: 1974 ident: bib0190 article-title: Laboratory Procedure for Cation Exchange Measurements in Soils. CSIRO Division of Soils, Technical Paper No. 23 – year: 2017 ident: bib0090 article-title: Using R for Digital Soil Mapping, Progress in Soil Science – volume: 97 start-page: 293 year: 2000 end-page: 327 ident: bib0095 article-title: An overview of pedometric techniques for use in soil survey publication-title: Geoderma – year: 2018 ident: bib0155 article-title: NUTRIpak: A Practical Guidance to Cotton Nutrition – volume: 45 start-page: 255 year: 1989 end-page: 268 ident: bib0085 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – year: 1980 ident: bib0115 article-title: Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers – volume: 55 start-page: 1613 year: 1990 end-page: 1624 ident: bib0020 article-title: Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data publication-title: Geophysics – year: 1999 ident: bib0145 article-title: Soil Salinity Assessment. Methods and Interpretation of Electrical Conductivity Measurements. FAO Irrigation and Drainage Paper 57 – year: 2014 ident: bib0025 article-title: EM4Soil Version 2. EMTOMO, R. Alice Cruz 4, Odivelas, Lisboa, Portugal. – year: 2015 ident: bib0010 article-title: Scheffer/Schachtschabel Soil Science – volume: 46 start-page: 263 year: 2005 end-page: 283 ident: bib0170 article-title: Relating apparent electrical conductivity to soil properties across the north-central USA publication-title: Comput Electron Agr. – year: 1977 ident: bib0160 article-title: The Irrigation Potential of the Lower Namoi Valley – volume: 79 start-page: 1729 year: 2015 end-page: 1740 ident: bib0195 article-title: Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software publication-title: Soil Sci. Soc. Am. J. – volume: 163 start-page: 285 year: 2016 end-page: 294 ident: bib0045 article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging publication-title: Agric. Water Manag. – volume: 63 start-page: 284 year: 2012 end-page: 298 ident: bib0055 article-title: Spatial prediction of USDA -great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types publication-title: Eur. J. Soil Sci. – year: 1999 ident: 10.1016/j.still.2020.104618_bib0145 – volume: 74 start-page: 4 year: 2006 ident: 10.1016/j.still.2020.104618_bib0060 article-title: Spatial characteristics of Claypan soil properties in an agricultural field publication-title: Soil Sci. Soc. Am. J. – year: 1998 ident: 10.1016/j.still.2020.104618_bib0100 – year: 2018 ident: 10.1016/j.still.2020.104618_bib0155 – volume: 41 start-page: 1207 year: 1977 ident: 10.1016/j.still.2020.104618_bib0035 article-title: A mechanically controlled variable rate leaching device publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1977.03615995004100060041x – volume: 19 start-page: 3936 issue: 18 year: 2019 ident: 10.1016/j.still.2020.104618_bib0070 article-title: Three-dimensional mapping of clay and cation exchange capacity of Sandy and infertile soil using EM38 and inversion software publication-title: Sensors doi: 10.3390/s19183936 – volume: 33 start-page: 413 issue: 3 year: 2017 ident: 10.1016/j.still.2020.104618_bib0165 article-title: Utilizing a DUALEM‐421 and inversion modelling to map baseline soil salinity along toposequences in the Hunter Valley Wine district publication-title: Soil Use Manage. doi: 10.1111/sum.12352 – volume: 103 start-page: 149 issue: 1–2 year: 2001 ident: 10.1016/j.still.2020.104618_bib0005 article-title: A comparison of prediction methods for the creation of field-extent soil property maps publication-title: Geoderma doi: 10.1016/S0016-7061(01)00074-X – year: 2015 ident: 10.1016/j.still.2020.104618_bib0010 – volume: 56 start-page: 123 issue: 2 year: 2004 ident: 10.1016/j.still.2020.104618_bib0125 article-title: 1-D laterally constrained inversion of EM34 profiling data publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2004.04.005 – volume: 76 start-page: B43 year: 2011 ident: 10.1016/j.still.2020.104618_bib0130 article-title: A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: application to DUALEM-421 data collected in a riverine plain publication-title: Geophysics. doi: 10.1190/1.3537834 – volume: 97 start-page: 39 issue: 1–2 year: 2000 ident: 10.1016/j.still.2020.104618_bib0015 article-title: Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics publication-title: Geoderma doi: 10.1016/S0016-7061(00)00025-2 – volume: 163 start-page: 285 year: 2016 ident: 10.1016/j.still.2020.104618_bib0045 article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.09.003 – volume: 57 start-page: 329 issue: 4 year: 1993 ident: 10.1016/j.still.2020.104618_bib0105 article-title: A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation publication-title: Geoderma doi: 10.1016/0016-7061(93)90049-Q – year: 1977 ident: 10.1016/j.still.2020.104618_bib0160 – year: 1990 ident: 10.1016/j.still.2020.104618_bib0120 – year: 1980 ident: 10.1016/j.still.2020.104618_bib0110 – volume: 97 start-page: 293 issue: 3–4 year: 2000 ident: 10.1016/j.still.2020.104618_bib0095 article-title: An overview of pedometric techniques for use in soil survey publication-title: Geoderma doi: 10.1016/S0016-7061(00)00043-4 – volume: 55 start-page: 1613 year: 1990 ident: 10.1016/j.still.2020.104618_bib0020 article-title: Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data publication-title: Geophysics doi: 10.1190/1.1442813 – year: 1980 ident: 10.1016/j.still.2020.104618_bib0115 – volume: 47 start-page: 651 issue: 7 year: 2009 ident: 10.1016/j.still.2020.104618_bib0185 article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model publication-title: Soil Res. doi: 10.1071/SR08240 – volume: 33 start-page: 191 issue: 2 year: 2017 ident: 10.1016/j.still.2020.104618_bib0050 article-title: Time‐lapse monitoring of soil water content using electromagnetic conductivity imaging publication-title: Soil Use Manage. doi: 10.1111/sum.12261 – volume: 599 start-page: 2156 year: 2017 ident: 10.1016/j.still.2020.104618_bib0075 article-title: Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.074 – year: 1983 ident: 10.1016/j.still.2020.104618_bib0065 – volume: 211 start-page: 28 year: 2013 ident: 10.1016/j.still.2020.104618_bib0175 article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil) publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.001 – volume: 33 start-page: 425 issue: 3 year: 2017 ident: 10.1016/j.still.2020.104618_bib0135 article-title: Field level digital mapping of soil mineralogy using proximal and remote‐sensed data publication-title: Soil Use Manage. doi: 10.1111/sum.12353 – year: 2014 ident: 10.1016/j.still.2020.104618_bib0025 – volume: 54 start-page: 254 year: 1989 ident: 10.1016/j.still.2020.104618_bib0150 article-title: Two-dimensional joint inversion of magnetotelluric and dipole–dipole resistivity data publication-title: Geophysics doi: 10.1190/1.1442649 – volume: 46 start-page: 263 issue: 1–3 year: 2005 ident: 10.1016/j.still.2020.104618_bib0170 article-title: Relating apparent electrical conductivity to soil properties across the north-central USA publication-title: Comput Electron Agr. doi: 10.1016/j.compag.2004.11.010 – year: 2020 ident: 10.1016/j.still.2020.104618_bib0030 – volume: 63 start-page: 284 year: 2012 ident: 10.1016/j.still.2020.104618_bib0055 article-title: Spatial prediction of USDA -great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2012.01425.x – year: 1974 ident: 10.1016/j.still.2020.104618_bib0190 – volume: 18 start-page: 330 issue: 4 year: 2002 ident: 10.1016/j.still.2020.104618_bib0180 article-title: Application of a mobile electromagnetic sensing system (MESS) to assess cause and management of soil salinization in an irrigated cotton-growing field publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2002.tb00249.x – volume: 45 start-page: 255 year: 1989 ident: 10.1016/j.still.2020.104618_bib0085 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – year: 2018 ident: 10.1016/j.still.2020.104618_bib0080 article-title: Mapping soil cation-exchange capacity using bayesian modeling and proximal sensors at the field scale publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.10.0356 – year: 2017 ident: 10.1016/j.still.2020.104618_bib0090 – volume: 30 start-page: 241 issue: 2 year: 2014 ident: 10.1016/j.still.2020.104618_bib0040 article-title: Spatial prediction of the exchangeable sodium percentage at multiple depths using electromagnetic inversion modelling publication-title: Soil Use Manage doi: 10.1111/sum.12106 – volume: 79 start-page: 1729 issue: 6 year: 2015 ident: 10.1016/j.still.2020.104618_bib0195 article-title: Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.06.0238 – year: 2016 ident: 10.1016/j.still.2020.104618_bib0140 – year: 2018 ident: 10.1016/j.still.2020.104618_bib0200 article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.03.0100 |
| SSID | ssj0004328 |
| Score | 2.506196 |
| Snippet | •Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion... Cation exchange capacity (CEC, cmol(+) kg⁻¹) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104618 |
| SubjectTerms | algorithms Cation exchange capacity cations computer software Digital soil mapping Electromagnetic inversion EM38 Fertility prediction regression analysis soil electrical conductivity subsoil topsoil |
| Title | Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data |
| URI | https://dx.doi.org/10.1016/j.still.2020.104618 https://www.proquest.com/docview/2388763439 |
| Volume | 200 |
| WOSCitedRecordID | wos000528029900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004328 issn: 0167-1987 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BygEOFU9RCmiRuAVHfqxfxwgFQdVWSBSam7XeXaeOKjuKkyo_n5l9OKEVET1wsdbWerTJfB6Pv50HIR9ZwOKISeXJMqg8pliJQQDKU0lSpmUQy0rX0vt1mp6fZ9Np_t2GBHW6nUDaNNlmky_-q6rhGigbU2fvoe5eKFyAMSgdjqB2OP6T4s_4QudAGS5uqDYmtxfO4fMYfe61pgc45lN2tRfJ4bytG-wUcGO4Mx1seBZlel8BBsHQJrD1XuyPtr7WmFlhz6IZdl7ZIcUMDd0a97yZbdY9dk5ra9D7edxQ4JOrndigS0thn9Rql5MI_W3slKMpwfwinbFrZ01JUmcpcW_ZWN47RtzwCfNRhz9ihPJH29l_lsy-9SrrAwxd7Nq80EIKFFIYIQ_JQZjGeTYgB-Nvk-nJNos20p14-7W7GlU6GvDOWv7mx9x6o2s35eIpObTfF3RscPGMPFDNc_JkPFvaGivqBbm0CKEGIdQhhDqEUI0QyqlDCNUIoT1CaFtRRAgFhOAgoIiQl-Tnl8nF56-e7a_hCfDTVl6QVLySSpasymSQyyT0OUtKP-eRLzKuGOd5HPGIy5RLrHQnYhYKX5VcCFUlfvSKDJq2Ua8JFaJKpAr9PIwFyzG7OktiFcM8nvM440ckdP9WIWzxeeyBcl3s0dQR-dTftDC1V_ZPT5waCus-GrewAGDtv_GDU1oBxhV3zHij2nVXgD-LFRvBaX9zv7Uck8fb5-ItGayWa_WOPBI3q7pbvrfI-w2ec5tj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+cation+exchange+capacity+using+a+quasi-3d+joint+inversion+of+EM38+and+EM31+data&rft.jtitle=Soil+%26+tillage+research&rft.au=Zhao%2C+Dongxue&rft.au=Li%2C+Nan&rft.au=Zare%2C+Ehsan&rft.au=Wang%2C+Jie&rft.date=2020-06-01&rft.issn=0167-1987&rft.volume=200&rft.spage=104618&rft_id=info:doi/10.1016%2Fj.still.2020.104618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2020_104618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |