Mapping cation exchange capacity and exchangeable potassium using proximal soil sensing data at the multiple-field scale

Cation exchange capacity (CEC – cmol (+) kg−1) is the capacity of a soil to hold exchangeable cations, one of which is exchangeable potassium (K). The data from both CEC and exchangeable cations are frequently useful for fertiliser recommendations; however, they are expensive to measure in the labor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil & tillage research Jg. 232; S. 105735
Hauptverfasser: Fung, Evangeline, Wang, Jie, Zhao, Xueyu, Farzamian, Mohammad, Allred, Barry, Clevenger, William Bruce, Levison, Philip, Triantafilis, John
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2023
Schlagworte:
ISSN:0167-1987, 1879-3444
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cation exchange capacity (CEC – cmol (+) kg−1) is the capacity of a soil to hold exchangeable cations, one of which is exchangeable potassium (K). The data from both CEC and exchangeable cations are frequently useful for fertiliser recommendations; however, they are expensive to measure in the laboratory. To add value to limited CEC and K data, digital data can be beneficial where large amounts can be acquired expeditiously and are often strongly correlated. In this research, we seek to develop a linear regression (LR) between apparent soil electrical conductivity (ECa – mS m–1) from Veris-3100 shallow (0 – 0.3 m) and deep (0 – 0.9 m) array configurations and measured topsoil (0 – 0.2 m) and subsoil (0.5 – 0.7 m) CEC. Moreover, we compare these LRs, with a LR between estimates of σ derived from the inversion of ECa using a quasi-three-dimensional algorithm (invVeris V1.1) and topsoil and subsoil CEC. We also want to determine the minimum number of calibration sample sites (i.e., 45, 40, 35, …, 5) required to produce a strong LR (i.e., coefficient of determination: R2 > 0.7) and substantial (Lin’s concordance correlation coefficient; LCCC > 0.8) or consistent prediction agreement. This requires dividing the n = 60 sample sites into calibration (n = 45) and validation (n = 15) sets. A similar approach was used to develop a multiple LR (MLR) to predict topsoil K considering digital data (i.e., ECa, elevation and trend surface parameters). While the LRs between topsoil CEC with shallow ECa (R2 = 0.38), and subsoil CEC with deep ECa (0.36) were weak (0.5 > R2 > 0.3), the LR (0.75) between σ and CEC was strong (using the S2 algorithm and a damping factor [λ] = 1). A poor LR (0.47) was also found between K and ECa; however, a MLR model (ECa, elevation and trend surface parameters) was strong (0.73). In terms of minimum calibration sample size for CEC, it was found that n = 10 sites (i.e., at 2 depths) or more were required. With respect to K, the minimum calibration sample size was n = 10 (i.e., single depth). To improve calibration equations and areal prediction agreement of CEC and K, and reduce confidence intervals (CI) across the four fields, we recommend the use of tighter transect spacings (< 6 m), and the inclusion of soil (i.e., small CEC and K) and digital (e.g., small ECa) data from adjacent fields and on nearby farms. The final DSM of CEC and K could be used to prescribe potash (K2O) fertilisers. •A linear regression (LR) could not be developed between ECa and measured CEC at different depths.•LR model was built between CEC and inverted σ.•Identify optimal calibration sample size.•Prescribe potash (K2O) fertilisers based on CEC and K.
AbstractList Cation exchange capacity (CEC – cmol (+) kg−1) is the capacity of a soil to hold exchangeable cations, one of which is exchangeable potassium (K). The data from both CEC and exchangeable cations are frequently useful for fertiliser recommendations; however, they are expensive to measure in the laboratory. To add value to limited CEC and K data, digital data can be beneficial where large amounts can be acquired expeditiously and are often strongly correlated. In this research, we seek to develop a linear regression (LR) between apparent soil electrical conductivity (ECa – mS m–1) from Veris-3100 shallow (0 – 0.3 m) and deep (0 – 0.9 m) array configurations and measured topsoil (0 – 0.2 m) and subsoil (0.5 – 0.7 m) CEC. Moreover, we compare these LRs, with a LR between estimates of σ derived from the inversion of ECa using a quasi-three-dimensional algorithm (invVeris V1.1) and topsoil and subsoil CEC. We also want to determine the minimum number of calibration sample sites (i.e., 45, 40, 35, …, 5) required to produce a strong LR (i.e., coefficient of determination: R2 > 0.7) and substantial (Lin’s concordance correlation coefficient; LCCC > 0.8) or consistent prediction agreement. This requires dividing the n = 60 sample sites into calibration (n = 45) and validation (n = 15) sets. A similar approach was used to develop a multiple LR (MLR) to predict topsoil K considering digital data (i.e., ECa, elevation and trend surface parameters). While the LRs between topsoil CEC with shallow ECa (R2 = 0.38), and subsoil CEC with deep ECa (0.36) were weak (0.5 > R2 > 0.3), the LR (0.75) between σ and CEC was strong (using the S2 algorithm and a damping factor [λ] = 1). A poor LR (0.47) was also found between K and ECa; however, a MLR model (ECa, elevation and trend surface parameters) was strong (0.73). In terms of minimum calibration sample size for CEC, it was found that n = 10 sites (i.e., at 2 depths) or more were required. With respect to K, the minimum calibration sample size was n = 10 (i.e., single depth). To improve calibration equations and areal prediction agreement of CEC and K, and reduce confidence intervals (CI) across the four fields, we recommend the use of tighter transect spacings (< 6 m), and the inclusion of soil (i.e., small CEC and K) and digital (e.g., small ECa) data from adjacent fields and on nearby farms. The final DSM of CEC and K could be used to prescribe potash (K2O) fertilisers. •A linear regression (LR) could not be developed between ECa and measured CEC at different depths.•LR model was built between CEC and inverted σ.•Identify optimal calibration sample size.•Prescribe potash (K2O) fertilisers based on CEC and K.
The cation exchange capacity (CEC - cmol (+) kg⁻¹) is the capacity of a soil to hold exchangeable cations, such as exchangeable potassium (K). Knowledge of these properties is often used to provide recommendations for fertilizers; however, they are expensive to measure in the laboratory. To create maps, proximal sensed instruments can be used. In this research, we explore the potential to develop a linear regression (LR) between apparent soil electrical conductivity (ECₐ - mS/m⁻¹) from Veris-3100 shallow (0-0.3 m) and deep (0-0.9 m) array configurations and measured topsoil (0-0.2 m) and subsoil (0.5-0.7 m) CEC. We compare these with a LR between estimates of ' from inversion of Veris-3100 ECₐ using a quasi-three-dimensional algorithm (invVeris V1.1). We also determine the minimum number of calibration sample sites (i.e., 45, 40, 35, 5) required to produce a strong LR (i.e., coefficient of determination: R² > 0.7) and substantial (Lin's concordance correlation coefficient; LCCC > 0.8) or consistent prediction agreement. We do this by dividing the n = 60 sample sites into calibration (n = 45) and validation (n = 15) sets. A similar approach is used to develop a multiple-LR (MLR) to predict topsoil K considering digital data (i.e., ECₐ, elevation and trend surface parameters). The LR between topsoil CEC and shallow ECa (R² = 0.38) and subsoil CEC with deep ECₐ (0.36) were poor (0.5 > R² > 0.3). However, LR (0.75) between s and CEC was strong (using S2 algorithm and a damping factor ['] = 1). A poor LR (0.47) was also found between K and ECₐ, however, a MLR model (ECₐ, elevation and trend surface parameters) was strong (0.73). In terms of minimum calibration sample size for CEC, it was found n = 10 sites (i.e., at 2 depths) or more were required. With respect to K, the minimum calibration sample size was n = 10 (i.e., single depth). To improve areal prediction agreement of CEC and K and reduce CI across the four fields, we recommend the use of tighter transect spacings (< 6m), and inclusion of soil (i.e., small CEC and K) and digital (e.g., small ECₐ) data from adjacent fields and on nearby farms to improve calibration equations. The final DSM of CEC and K could be used to prescribe potash (K₂O) fertilizers.
ArticleNumber 105735
Author Fung, Evangeline
Levison, Philip
Triantafilis, John
Zhao, Xueyu
Farzamian, Mohammad
Allred, Barry
Clevenger, William Bruce
Wang, Jie
Author_xml – sequence: 1
  givenname: Evangeline
  surname: Fung
  fullname: Fung, Evangeline
  organization: School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia
– sequence: 2
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia
– sequence: 3
  givenname: Xueyu
  surname: Zhao
  fullname: Zhao, Xueyu
  organization: School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia
– sequence: 4
  givenname: Mohammad
  surname: Farzamian
  fullname: Farzamian, Mohammad
  organization: Instituto Nacional de Investigação Agrária e Veterinária, Ministério da Agricultura, Oeiras 2780-157, Portugal
– sequence: 5
  givenname: Barry
  surname: Allred
  fullname: Allred, Barry
  organization: US Department of Agriculture - Agricultural Research Service, Soil Drainage Research Unit, Columbus, OH, United States
– sequence: 6
  givenname: William Bruce
  surname: Clevenger
  fullname: Clevenger, William Bruce
  organization: Ohio State University Extension Defiance County, Defiance, OH 43512, United States
– sequence: 7
  givenname: Philip
  surname: Levison
  fullname: Levison, Philip
  organization: USDA ARS, Columbus Ohio, OH 43210, United States
– sequence: 8
  givenname: John
  surname: Triantafilis
  fullname: Triantafilis, John
  email: triantafilisj@landcareresearch.co.nz
  organization: Manaaki Whenua – Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
BookMark eNqFkE1PxCAURYnRxPHjF7hh6aYjlGmhCxfG-JVo3Lgnr_ShTBhaCzXjv5eZMS5c6AbCzT0vj3NE9kMfkJAzzuac8fpiOY_JeT8vWSlyUklR7ZEZV7IpxGKx2Cez3JIFb5Q8JEcxLhljC1GqGVk_wTC48EoNJNcHimvzBuEV83sA49InhdD9pNB6pEOfIEY3regUN-Qw9mu3Ak9j7_KBYZt2kIBCoukN6WryyQ0eC-vQdzQa8HhCDiz4iKff9zF5ub15ub4vHp_vHq6vHgsjFE8F57aSZVOzthMVE6qpmsqKWnayNqUQDOqqlIaVtgLJoGGqbVuwpgZlleVKHJPz3di85fuEMemViwa9h4D9FHWplKy5zJNytdlVzdjHOKLV-f9bK2kE5zVneiNbL_VWtt7I1jvZmRW_2GHMTsbPf6jLHYVZwIfDUUfjMBjs3Igm6a53f_Jfalmd7A
CitedBy_id crossref_primary_10_3390_plants14020169
crossref_primary_10_1016_j_still_2024_106429
crossref_primary_10_1016_j_compag_2025_110448
crossref_primary_10_3390_agriculture15151627
crossref_primary_10_3390_su16167002
Cites_doi 10.1111/sum.12778
10.1016/j.proeng.2012.01.1223
10.1111/j.1365-2389.2012.01425.x
10.1016/S0016-7061(00)00043-4
10.13031/2013.23153
10.1111/j.1752-1688.2005.tb03740.x
10.1016/j.jenvman.2021.113357
10.2136/sssaj2003.9190
10.1016/j.cageo.2005.12.009
10.1071/SR08240
10.1016/j.compag.2021.106640
10.1016/j.catena.2022.106843
10.1152/advan.00006.2009
10.1016/j.compag.2004.11.006
10.1190/1.1442813
10.1190/1.1442649
10.1080/00103624.2018.1499765
10.1016/j.geoderma.2013.06.001
10.1111/sum.12094
10.2136/sssaj1991.03615995005500030026x
10.1016/S0016-7061(00)00025-2
10.1007/s11119-005-0681-8
10.1016/j.scitotenv.2017.05.074
10.1016/S0016-7061(01)00074-X
10.2136/sssaj2001.6551547x
10.2136/sssaj2005.0273
10.1016/j.still.2020.104618
10.1016/j.geoderma.2022.115972
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2023.105735
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2023_105735
S0167198723001022
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c381t-11f572960bd350389595f367d76c2330a6527c02f5a70a908bbbafc6a8f8f183
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001511500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-1987
IngestDate Sat Sep 27 16:03:12 EDT 2025
Sat Nov 29 07:28:16 EST 2025
Tue Nov 18 22:18:52 EST 2025
Fri Feb 23 02:37:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Quasi-3d inversion algorithm
Cation exchange capacity
Electrical conductivity
Digital soil mapping
Electromagnetic inversion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-11f572960bd350389595f367d76c2330a6527c02f5a70a908bbbafc6a8f8f183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/1959.4/101485
PQID 2887617330
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2887617330
crossref_citationtrail_10_1016_j_still_2023_105735
crossref_primary_10_1016_j_still_2023_105735
elsevier_sciencedirect_doi_10_1016_j_still_2023_105735
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhao, Zhao, Triantafilis (bib37) 2021; 296
Jafari, Finke, Vande Wauw, Ayoubi, Khademi (bib12) 2012; 63
Lawrence, Lin (bib16) 1989; 255–268
Ross, Ketterings (bib26) 1995; 493
Khongnawang, Zare, Srihabun, Khunthong, Triantafilis (bib14) 2022
Veris Technologies, Inc. (1925). Veris 3100 Manual Clay Ridge Court, Salina, KS 67401. (Support@VerisTech.com).
DeGroot-Hedlin, Constable (bib8) 1990; 55
Triantafilis, Lesch (bib31) 2005
Warncke, Brown (bib38) 1998; 1001
Seyedmohammadi, Matinfar (bib29) 2018; 49
Manrique, Jones, Dyke (bib17) 1991; 55
Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib24) 2007; 50
EMTOMO L.D.A., 2017. InvVERIS Version-1.1, Lisbon, Portugal (emtomog@gmail.com).
Zhao, Li, Zare, Wang, Triantafilis (bib40) 2020; 200
De Caires, Martin, Wuddivira, Farrick, Zebarth (bib7) 2023; 222
Asadzadeh, Akbarzadeh, Zolfaghari, Taghizadeh-Mehrjardi, Mehrabanian, Rahimi-Lake, Sabeti-Amirhandeh (bib1) 2012
Wang, Zhao, Zare, Sefton, Triantafilis (bib36) 2022; 193
Bishop, McBratney (bib2) 2001; 103
Triantafilis, Lesch, La Lau, Buchanan (bib33) 2009; 47
Gooley, Huang, Pagé, Triantafilis (bib10) 2014; 30
Singh, Knapp, Arnold, Demissie (bib30) 2005; 41
Monteiro Santos, Triantafilis, Bruzgulis, Roe (bib22) 2010
Moore, Kirkland (bib23) 2007; Vol. 2
Hazelton, Murphy (bib11) 2016
McBride, G.B. (2005). A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report: HAM2005–062, 45, 307–310.
Minasny, B., McBratney, A.B., and Whelan, B.M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006.
Wang, Zhao, Deuss, Cohen, Triantafilis (bib35) 2022; 424
Culman, S., Fulford, A., Camberato, J., & Steinke, K. (2020). Tri-State Fertilizer Recommendations. Bulletin 974. College of Food, Agricultural, and Environmental Sciences. Columbus, OH: The Ohio State University.
Saidi (bib27) 2012; 33
Sasaki (bib28) 1989; 54
Jung, Kitchen, Sudduth, Anderson (bib13) 2006; 70
Koganti, Moral, Rebollo, Huang, Triantafilis (bib15) 2017; 599
McBratney, Odeh, Bishop, Dunbar, Shatar (bib18) 2000; 97
http://www.usyd.edu.au/su/agric/acpa).
Carson (bib3) 1980; 499
Triantafilis, Santos (bib32) 2013; 211
Castrignanò, Giugliarini, Risaliti, Martinelli (bib4) 2000; 97
Mueller, Pierce, Schabenberger, Warncke (bib25) 2001; 65
Wu, Norvell, Hopkins, Smith, Ulmer, Welch (bib39) 2003; 67
Minasny, McBratney (bib20) 2006; 32
Curran-Everett (bib6) 2009; 33
Mueller (10.1016/j.still.2023.105735_bib25) 2001; 65
Jung (10.1016/j.still.2023.105735_bib13) 2006; 70
Khongnawang (10.1016/j.still.2023.105735_bib14) 2022
10.1016/j.still.2023.105735_bib5
Lawrence (10.1016/j.still.2023.105735_bib16) 1989; 255–268
Koganti (10.1016/j.still.2023.105735_bib15) 2017; 599
Bishop (10.1016/j.still.2023.105735_bib2) 2001; 103
Curran-Everett (10.1016/j.still.2023.105735_bib6) 2009; 33
De Caires (10.1016/j.still.2023.105735_bib7) 2023; 222
10.1016/j.still.2023.105735_bib21
10.1016/j.still.2023.105735_bib9
Singh (10.1016/j.still.2023.105735_bib30) 2005; 41
McBratney (10.1016/j.still.2023.105735_bib18) 2000; 97
Saidi (10.1016/j.still.2023.105735_bib27) 2012; 33
Triantafilis (10.1016/j.still.2023.105735_bib31) 2005
Hazelton (10.1016/j.still.2023.105735_bib11) 2016
DeGroot-Hedlin (10.1016/j.still.2023.105735_bib8) 1990; 55
Gooley (10.1016/j.still.2023.105735_bib10) 2014; 30
Warncke (10.1016/j.still.2023.105735_bib38) 1998; 1001
Asadzadeh (10.1016/j.still.2023.105735_bib1) 2012
Castrignanò (10.1016/j.still.2023.105735_bib4) 2000; 97
Moriasi (10.1016/j.still.2023.105735_bib24) 2007; 50
Wang (10.1016/j.still.2023.105735_bib35) 2022; 424
10.1016/j.still.2023.105735_bib19
Carson (10.1016/j.still.2023.105735_bib3) 1980; 499
Jafari (10.1016/j.still.2023.105735_bib12) 2012; 63
Triantafilis (10.1016/j.still.2023.105735_bib32) 2013; 211
Minasny (10.1016/j.still.2023.105735_bib20) 2006; 32
Seyedmohammadi (10.1016/j.still.2023.105735_bib29) 2018; 49
Sasaki (10.1016/j.still.2023.105735_bib28) 1989; 54
Triantafilis (10.1016/j.still.2023.105735_bib33) 2009; 47
Moore (10.1016/j.still.2023.105735_bib23) 2007; Vol. 2
Ross (10.1016/j.still.2023.105735_bib26) 1995; 493
Zhao (10.1016/j.still.2023.105735_bib40) 2020; 200
Manrique (10.1016/j.still.2023.105735_bib17) 1991; 55
Wang (10.1016/j.still.2023.105735_bib36) 2022; 193
10.1016/j.still.2023.105735_bib34
Wu (10.1016/j.still.2023.105735_bib39) 2003; 67
Monteiro Santos (10.1016/j.still.2023.105735_bib22) 2010
Wang (10.1016/j.still.2023.105735_bib37) 2021; 296
References_xml – volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: bib24
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
– volume: 222
  year: 2023
  ident: bib7
  article-title: Predicting soil depth in a humid tropical watershed: A comparative analysis of best-fit regression and geospatial models
  publication-title: CATENA
– volume: 103
  start-page: 149
  year: 2001
  end-page: 160
  ident: bib2
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
  publication-title: Geoderma
– reference: Veris Technologies, Inc. (1925). Veris 3100 Manual Clay Ridge Court, Salina, KS 67401. (Support@VerisTech.com).
– volume: 599
  start-page: 2156
  year: 2017
  end-page: 2165
  ident: bib15
  article-title: Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 919
  year: 2003
  end-page: 927
  ident: bib39
  article-title: Improved prediction and mapping of soil copper by kriging with auxiliary data for cation‐exchange capacity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 1001
  start-page: 31
  year: 1998
  ident: bib38
  article-title: Potassium and other basic cations
  publication-title: Recomm. Chem. Soil Test. Proced. North Cent. Reg.
– reference: Culman, S., Fulford, A., Camberato, J., & Steinke, K. (2020). Tri-State Fertilizer Recommendations. Bulletin 974. College of Food, Agricultural, and Environmental Sciences. Columbus, OH: The Ohio State University.
– reference: Minasny, B., McBratney, A.B., and Whelan, B.M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006.
– volume: 33
  start-page: 87
  year: 2009
  end-page: 90
  ident: bib6
  article-title: Explorations in statistics: confidence intervals
  publication-title: Adv. Physiol. Educ.
– volume: 493
  start-page: 62
  year: 1995
  ident: bib26
  article-title: Recommended methods for determining soil cation exchange capacity
  publication-title: Recomm. Soil Test. Proced. Northeast. U. S.
– reference: http://www.usyd.edu.au/su/agric/acpa).
– volume: 499
  start-page: 17
  year: 1980
  end-page: 18
  ident: bib3
  article-title: Recommended potassium test
  publication-title: North Dak. Agric. Exp. Station Bull.
– volume: 211
  start-page: 28
  year: 2013
  end-page: 38
  ident: bib32
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil)
  publication-title: Geoderma
– reference: McBride, G.B. (2005). A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report: HAM2005–062, 45, 307–310.
– year: 2010
  ident: bib22
  article-title: Inversion of multiconzuration electromagnetic (DUALEM-421) profiling data using a one-dimensional laterally constrained algorithm
  publication-title: Vadose Zone J.
– volume: Vol. 2
  year: 2007
  ident: bib23
  publication-title: The Basic Practice of Statistics
– volume: 193
  year: 2022
  ident: bib36
  article-title: Unravelling drivers of field-scale digital mapping of topsoil organic carbon and its implications for nitrogen practices
  publication-title: Comput. Electron. Agric.
– volume: 55
  start-page: 787
  year: 1991
  end-page: 794
  ident: bib17
  article-title: Predicting cation‐exchange capacity from soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 47
  start-page: 651
  year: 2009
  end-page: 663
  ident: bib33
  article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Soil Res.
– volume: 296
  year: 2021
  ident: bib37
  article-title: Selecting optimal calibration samples using proximal sensing EM induction and γ-ray spectrometry data: An application to managing lime and magnesium in sugarcane growing soil
  publication-title: J. Environ. Manag.
– start-page: 203
  year: 2005
  end-page: 237
  ident: bib31
  article-title: Mapping clay content variation using electromagnetic induction techniques
  publication-title: Comput. Electron. Agric.
– reference: EMTOMO L.D.A., 2017. InvVERIS Version-1.1, Lisbon, Portugal (emtomog@gmail.com).
– volume: 424
  year: 2022
  ident: bib35
  article-title: Proximal and remote sensor data fusion for 3D imaging of infertile and acidic soil
  publication-title: Geoderma
– volume: 97
  start-page: 39
  year: 2000
  end-page: 60
  ident: bib4
  article-title: Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics
  publication-title: Geoderma
– year: 2022
  ident: bib14
  article-title: Digital soil mapping of soil salinity using EM38 and quasi-3d modelling software (EM4Soil)
  publication-title: Soil Use Manag.
– volume: 97
  start-page: 293
  year: 2000
  end-page: 327
  ident: bib18
  article-title: An overview of pedometric techniques for use in soil survey
  publication-title: Geoderma
– volume: 63
  start-page: 284
  year: 2012
  end-page: 298
  ident: bib12
  article-title: Spatial prediction of USDA‐great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types
  publication-title: Eur. J. Soil Sci.
– volume: 65
  start-page: 1547
  year: 2001
  end-page: 1558
  ident: bib25
  article-title: Map quality for site‐specific fertility management
  publication-title: Soil Sci. Soc. Am. J.
– volume: 33
  start-page: 435
  year: 2012
  end-page: 449
  ident: bib27
  article-title: Importance and role of cation exchange capacity on the physicals properties of the Cheliff saline soils (Algeria)
  publication-title: Procedia Eng.
– volume: 200
  year: 2020
  ident: bib40
  article-title: Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data
  publication-title: Soil Tillage Res.
– volume: 70
  start-page: 1387
  year: 2006
  end-page: 1397
  ident: bib13
  article-title: Spatial characteristics of claypan soil properties in an agricultural field
  publication-title: Soil Sci. Soc. Am. J.
– volume: 55
  start-page: 1613
  year: 1990
  end-page: 1624
  ident: bib8
  article-title: Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data
  publication-title: Geophysics
– volume: 54
  start-page: 254
  year: 1989
  end-page: 262
  ident: bib28
  article-title: Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data
  publication-title: Geophysics
– volume: 255–268
  start-page: 1989
  year: 1989
  ident: bib16
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 30
  start-page: 139
  year: 2014
  end-page: 151
  ident: bib10
  article-title: Digital soil mapping of available water content using proximal and remotely sensed data
  publication-title: Soil Use Manag.
– volume: 49
  start-page: 2301
  year: 2018
  end-page: 2314
  ident: bib29
  article-title: Statistical and geostatistical techniques for geospatial modeling of soil cation exchange capacity
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bib20
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– start-page: 64
  year: 2016
  end-page: 66
  ident: bib11
  article-title: Interpreting soil test results
  publication-title: What do all the Numbers Mean?
– volume: 41
  start-page: 343
  year: 2005
  end-page: 360
  ident: bib30
  article-title: Hydrological modeling of the Iroquois river watershed using HSPF and SWAT 1
  publication-title: J. Am. Water Resour. Assoc.
– start-page: 59
  year: 2012
  ident: bib1
  article-title: Study and comparison of some geostatistical methods for mapping cation exchange capacity (CEC) in soils of northern Iran
  publication-title: Ann. Faculty Eng. Hunedoara
– year: 2022
  ident: 10.1016/j.still.2023.105735_bib14
  article-title: Digital soil mapping of soil salinity using EM38 and quasi-3d modelling software (EM4Soil)
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12778
– volume: 33
  start-page: 435
  year: 2012
  ident: 10.1016/j.still.2023.105735_bib27
  article-title: Importance and role of cation exchange capacity on the physicals properties of the Cheliff saline soils (Algeria)
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.01.1223
– volume: 63
  start-page: 284
  issue: 2
  year: 2012
  ident: 10.1016/j.still.2023.105735_bib12
  article-title: Spatial prediction of USDA‐great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2012.01425.x
– volume: 97
  start-page: 293
  issue: 3–4
  year: 2000
  ident: 10.1016/j.still.2023.105735_bib18
  article-title: An overview of pedometric techniques for use in soil survey
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00043-4
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 10.1016/j.still.2023.105735_bib24
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– ident: 10.1016/j.still.2023.105735_bib5
– volume: 41
  start-page: 343
  issue: 2
  year: 2005
  ident: 10.1016/j.still.2023.105735_bib30
  article-title: Hydrological modeling of the Iroquois river watershed using HSPF and SWAT 1
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2005.tb03740.x
– volume: 296
  year: 2021
  ident: 10.1016/j.still.2023.105735_bib37
  article-title: Selecting optimal calibration samples using proximal sensing EM induction and γ-ray spectrometry data: An application to managing lime and magnesium in sugarcane growing soil
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113357
– volume: 67
  start-page: 919
  issue: 3
  year: 2003
  ident: 10.1016/j.still.2023.105735_bib39
  article-title: Improved prediction and mapping of soil copper by kriging with auxiliary data for cation‐exchange capacity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.9190
– volume: 32
  start-page: 1378
  issue: 9
  year: 2006
  ident: 10.1016/j.still.2023.105735_bib20
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 47
  start-page: 651
  issue: 7
  year: 2009
  ident: 10.1016/j.still.2023.105735_bib33
  article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Soil Res.
  doi: 10.1071/SR08240
– volume: 193
  year: 2022
  ident: 10.1016/j.still.2023.105735_bib36
  article-title: Unravelling drivers of field-scale digital mapping of topsoil organic carbon and its implications for nitrogen practices
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106640
– volume: 255–268
  start-page: 1989
  year: 1989
  ident: 10.1016/j.still.2023.105735_bib16
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 222
  year: 2023
  ident: 10.1016/j.still.2023.105735_bib7
  article-title: Predicting soil depth in a humid tropical watershed: A comparative analysis of best-fit regression and geospatial models
  publication-title: CATENA
  doi: 10.1016/j.catena.2022.106843
– volume: 33
  start-page: 87
  issue: 2
  year: 2009
  ident: 10.1016/j.still.2023.105735_bib6
  article-title: Explorations in statistics: confidence intervals
  publication-title: Adv. Physiol. Educ.
  doi: 10.1152/advan.00006.2009
– start-page: 64
  year: 2016
  ident: 10.1016/j.still.2023.105735_bib11
  article-title: Interpreting soil test results
– start-page: 203
  year: 2005
  ident: 10.1016/j.still.2023.105735_bib31
  article-title: Mapping clay content variation using electromagnetic induction techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2004.11.006
– volume: 55
  start-page: 1613
  issue: 12
  year: 1990
  ident: 10.1016/j.still.2023.105735_bib8
  article-title: Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data
  publication-title: Geophysics
  doi: 10.1190/1.1442813
– volume: 54
  start-page: 254
  issue: 2
  year: 1989
  ident: 10.1016/j.still.2023.105735_bib28
  article-title: Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data
  publication-title: Geophysics
  doi: 10.1190/1.1442649
– volume: 49
  start-page: 2301
  issue: 18
  year: 2018
  ident: 10.1016/j.still.2023.105735_bib29
  article-title: Statistical and geostatistical techniques for geospatial modeling of soil cation exchange capacity
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2018.1499765
– volume: 211
  start-page: 28
  year: 2013
  ident: 10.1016/j.still.2023.105735_bib32
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.001
– volume: 30
  start-page: 139
  issue: 1
  year: 2014
  ident: 10.1016/j.still.2023.105735_bib10
  article-title: Digital soil mapping of available water content using proximal and remotely sensed data
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12094
– volume: 55
  start-page: 787
  issue: 3
  year: 1991
  ident: 10.1016/j.still.2023.105735_bib17
  article-title: Predicting cation‐exchange capacity from soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500030026x
– volume: 493
  start-page: 62
  issue: 101
  year: 1995
  ident: 10.1016/j.still.2023.105735_bib26
  article-title: Recommended methods for determining soil cation exchange capacity
  publication-title: Recomm. Soil Test. Proced. Northeast. U. S.
– volume: 499
  start-page: 17
  year: 1980
  ident: 10.1016/j.still.2023.105735_bib3
  article-title: Recommended potassium test
  publication-title: North Dak. Agric. Exp. Station Bull.
– volume: 97
  start-page: 39
  issue: 1–2
  year: 2000
  ident: 10.1016/j.still.2023.105735_bib4
  article-title: Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00025-2
– ident: 10.1016/j.still.2023.105735_bib21
  doi: 10.1007/s11119-005-0681-8
– volume: 599
  start-page: 2156
  year: 2017
  ident: 10.1016/j.still.2023.105735_bib15
  article-title: Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.074
– ident: 10.1016/j.still.2023.105735_bib9
– volume: 1001
  start-page: 31
  year: 1998
  ident: 10.1016/j.still.2023.105735_bib38
  article-title: Potassium and other basic cations
  publication-title: Recomm. Chem. Soil Test. Proced. North Cent. Reg.
– volume: 103
  start-page: 149
  issue: 1–2
  year: 2001
  ident: 10.1016/j.still.2023.105735_bib2
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00074-X
– year: 2010
  ident: 10.1016/j.still.2023.105735_bib22
  article-title: Inversion of multiconzuration electromagnetic (DUALEM-421) profiling data using a one-dimensional laterally constrained algorithm
  publication-title: Vadose Zone J.
– volume: 65
  start-page: 1547
  issue: 5
  year: 2001
  ident: 10.1016/j.still.2023.105735_bib25
  article-title: Map quality for site‐specific fertility management
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6551547x
– volume: 70
  start-page: 1387
  issue: 4
  year: 2006
  ident: 10.1016/j.still.2023.105735_bib13
  article-title: Spatial characteristics of claypan soil properties in an agricultural field
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0273
– ident: 10.1016/j.still.2023.105735_bib34
– start-page: 59
  year: 2012
  ident: 10.1016/j.still.2023.105735_bib1
  article-title: Study and comparison of some geostatistical methods for mapping cation exchange capacity (CEC) in soils of northern Iran
  publication-title: Ann. Faculty Eng. Hunedoara
– ident: 10.1016/j.still.2023.105735_bib19
– volume: Vol. 2
  year: 2007
  ident: 10.1016/j.still.2023.105735_bib23
– volume: 200
  year: 2020
  ident: 10.1016/j.still.2023.105735_bib40
  article-title: Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104618
– volume: 424
  year: 2022
  ident: 10.1016/j.still.2023.105735_bib35
  article-title: Proximal and remote sensor data fusion for 3D imaging of infertile and acidic soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.115972
SSID ssj0004328
Score 2.4499397
Snippet Cation exchange capacity (CEC – cmol (+) kg−1) is the capacity of a soil to hold exchangeable cations, one of which is exchangeable potassium (K). The data...
The cation exchange capacity (CEC - cmol (+) kg⁻¹) is the capacity of a soil to hold exchangeable cations, such as exchangeable potassium (K). Knowledge of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105735
SubjectTerms algorithms
Cation exchange capacity
digital database
Digital soil mapping
Electrical conductivity
Electromagnetic inversion
exchangeable potassium
prediction
Quasi-3d inversion algorithm
regression analysis
soil electrical conductivity
subsoil
tillage
topsoil
Title Mapping cation exchange capacity and exchangeable potassium using proximal soil sensing data at the multiple-field scale
URI https://dx.doi.org/10.1016/j.still.2023.105735
https://www.proquest.com/docview/2887617330
Volume 232
WOSCitedRecordID wos001001511500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-3444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004328
  issn: 0167-1987
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcKp6iFNAi0VNwlXjj1zGCRFC1AYkgRVxWa3udumpsk9hV4MofZ2YfTsqjKgcuVrLaXSf-Ps_OzM7sEPIqdaWfgN4KRk4gnIGbRo5gYeYEGajXg34q_YFQxSaCySSczaKPnc4PmwtzeREURbheR9V_hRraAGxMnf0HuNtJoQE-A-hwBdjheiPgT0WlcqC0L64r1zq3F76DeYw6N7rKbatKnKrKGlTovFl0m5VOTi_X-QITScocLhjiDq0YS2pSH9swREcFwHVXAPSVkKJPOBBJVWNRozmWZtnymiFdjIxBRX6OKfGbLSLjwD7O26YvZ0I5dGeN_Na0M4jld7HItf_2tDwTi4VIt30YLmsj6Fq3JohrdH9sy2XQ9bqVqkPMPOeP0l47Hs6PVvhnjnBi032zuNkN_ckHPv58csKno9n0kI2rrw4WHsMN-kP2VpPgFtl1Ay8C0bg7fD-aHW_Sa5kq0dv-SHt4lQoT_O3ef1Nwflnqlf4yvUf2jOFBh5ow90lHFg_I3eF8aQ5fkQ_J2lCHaupQSxJqqUOBOnSbOrSlDlXUoZY6FKlDDXUoUoeKmgJ16FXqUEWdR2Q6Hk3fvHNMZQ4nAQ2vdvr9zAOrzO_FKVNHNHqRlzE_SAM_cRnrCR9e_aTnZp4IeiLqhXEciyzxRZiFGSwij8lOURbyCaH9tJ9lofBiCbqkJ6GDx4JYeGCIxLEn433i2qfJE3NqPRZPueA2PPGcKwg4QsA1BPvkdTuo0oe2XN_dtzBxo3dqfZID0a4f-NKCykEq41abKGTZrLgLazfYBvAont6gzwG5s3krnpGdetnI5-R2clnnq-ULQ8efs-ezeg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+cation+exchange+capacity+and+exchangeable+potassium+using+proximal+soil+sensing+data+at+the+multiple-field+scale&rft.jtitle=Soil+%26+tillage+research&rft.au=Fung%2C+Evangeline&rft.au=Wang%2C+Jie&rft.au=Zhao%2C+Xueyu&rft.au=Farzamian%2C+Mohammad&rft.date=2023-08-01&rft.issn=0167-1987&rft.volume=232+p.105735-&rft_id=info:doi/10.1016%2Fj.still.2023.105735&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon