Emotion recognition with deep learning using GAMEEMO data set
Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. Howev...
Saved in:
| Published in: | Electronics letters Vol. 56; no. 25; pp. 1364 - 1367 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
The Institution of Engineering and Technology
10.12.2020
|
| Subjects: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an abstract concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long-short term memory architecture in the third stage. In the last stage, the performance of the deep-learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained. |
|---|---|
| AbstractList | Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an abstract concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long-short term memory architecture in the third stage. In the last stage, the performance of the deep-learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained. Emotion recognition is actively used in brain–computer interface, health care, security, e‐commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision‐making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long‐short term memory architecture in the third stage. In the last stage, the performance of the deep‐learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained. |
| Author | Alakus, T. B Turkoglu, I |
| Author_xml | – sequence: 1 givenname: T. B orcidid: 0000-0003-3136-3341 surname: Alakus fullname: Alakus, T. B email: talhaburakalakus@klu.edu.tr organization: Kirklareli University, Faculty of Engineering, Department of Software Engineering, Kirklareli, Turkey – sequence: 2 givenname: I surname: Turkoglu fullname: Turkoglu, I organization: Firat University, Faculty of Technology, Department of Software Engineering, Elazig, Turkey |
| BookMark | eNp9kD9PwzAQxS1UJErpxgfIwMBAyp3t_PHAUKq0IKXqAhKbZSdOMUqTyklV9duTUAaEKMvdDb_37uldkkFVV4aQa4QJAhf3ppxQoDChPIQzMkQWgC8Q3wZkCIDMD1DwCzJuGqsBOXYUxyF5SDZ1a-vKcyar15X9uve2ffdyY7ZeaZSrbLX2dk0_F9NlkixXXq5a5TWmvSLnhSobM_7eI_I6T15mT366WjzPpqmfsRhjX1OOCoHFOo9RCS0ilfEwj5TgQuUmKkKtWWQo10UBvIsHApBmoCOAQoQBGxF69M1c3TTOFDKzreqztk7ZUiLIvgNpStl3IPsOOtHdL9HW2Y1yh1N4cMT3tjSHf1mZpCl9nEPEgrjT3R511rTyo965qmvi1IubP9Ak_eG8zQv2Cb6jhnY |
| CitedBy_id | crossref_primary_10_1155_2022_6000989 crossref_primary_10_3390_app112311344 crossref_primary_10_3390_app121910028 crossref_primary_10_1007_s10586_024_04590_5 crossref_primary_10_1007_s11042_023_16696_w crossref_primary_10_1016_j_compbiomed_2021_104867 crossref_primary_10_1109_TG_2024_3435339 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1049_ell2_12605 crossref_primary_10_1080_03091902_2025_2544802 crossref_primary_10_1007_s10044_025_01501_1 crossref_primary_10_1038_s41598_024_80448_5 crossref_primary_10_1016_j_asoc_2024_112301 crossref_primary_10_1109_ACCESS_2022_3181887 crossref_primary_10_1016_j_bspc_2021_103407 crossref_primary_10_1016_j_jii_2025_100789 crossref_primary_10_1016_j_jksuci_2021_08_021 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1007_s11760_025_04656_w |
| Cites_doi | 10.1186/s40708‐019‐0100‐y 10.1109/72.279188 10.1007/s11760‐013‐0591‐6 10.1109/TELFOR.2011.6143635 10.1097/00000542-200407000-00008 10.14569/IJACSA.2017.081046 10.1109/DSAA.2016.92 10.1177/1754073912439763 10.1109/BHI.2017.7897275 10.1097/JTO.0b013e3181ec173d 10.1111/j.0001‐5172.2004.00323.x 10.1109/IJCNN.2016.7727453 10.1243/09544062JMES1224 10.1007/11550907_126 10.1016/j.jksuci.2019.11.003 10.1155/2014/627892 10.1016/j.proeng.2016.05.131 10.16984/saufenbilder.501799 10.1016/j.bspc.2020.101951 10.1037/0033-295X.110.1.145 10.1016/j.ijforecast.2020.06.008 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2020.2460 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education |
| EISSN | 1350-911X |
| EndPage | 1367 |
| ExternalDocumentID | 10_1049_el_2020_2460 ELL2BF07358 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3818-b241a1038bd81a9b97ac46d7a949ade7f6bb37e24bff04b0109012c0b700f9653 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Tue Nov 18 22:44:06 EST 2025 Wed Oct 29 21:27:59 EDT 2025 Wed Jan 22 16:31:52 EST 2025 Wed Jan 06 04:41:12 EST 2021 Wed Jan 06 06:33:42 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | electroencephalography education electroencephalography signals negative emotions GAMEEMO data set brain–computer interface emotion recognition abstract concept medical signal processing internal factors deep learning entertainment applications entropy emotion analysis decision making human computer interaction human–machine interaction EEG signals learning (artificial intelligence) positive emotions health care |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3818-b241a1038bd81a9b97ac46d7a949ade7f6bb37e24bff04b0109012c0b700f9653 |
| ORCID | 0000-0003-3136-3341 |
| OpenAccessLink | https://hdl.handle.net/20.500.11857/3215 |
| PageCount | 4 |
| ParticipantIDs | crossref_primary_10_1049_el_2020_2460 crossref_citationtrail_10_1049_el_2020_2460 wiley_primary_10_1049_el_2020_2460_ELL2BF07358 iet_journals_10_1049_el_2020_2460 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Alakus, T.B.; Turkoglu, I. (C4) 2019; 23 Mason, W.A.; Capitanio, J.P. (C9) 2012; 4 Vakkuri, A.; Yli-Hankala, A.; Talja, P. (C19) 2004; 48 Mandrekar, J.N. (C24) 2010; 5 Alakus, T.B.; Turkoglu, I. (C6) 2019; 12 Naji, M.; Firoozabadi, M.; Azadfallah, P. (C1) 2015; 9 Turnip, A.; Simbolon, A.I.; Amri, M.F. (C5) 2017; 9 Sharma, V.; Parey, A. (C17) 2016; 144 Alakus, T.B.; Gonen, M.; Turkoglu, I. (C14) 2020; 60 Alakus, T.B.; Turkoglu, I. (C2) 2018; 11 Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. (C13) 2014; 2014 Hewamalage, H.; Bergmeir, C.; Bandara, K. (C20) 2020; 2020 Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. (C11) 2017; 8 Pandey, P.; Seeja, K.R. (C12) 2019; 2019 Vanluchene, A.L.G.; Vereecke, H.; Thas, O. (C15) 2004; 101 Pan, Y.N.; Chen, J.; Li, X.L. (C16) 2009; 223 Connor, J.T.; Martin, R.D.; Atlas, L.E. (C22) 1994; 5 Yan, J.; Chen, S.; Deng, S. (C7) 2019; 6 Russel, A. (C10) 2003; 110 2004; 101 October 2016 2017; 8 2019; 2019 2019; 6 2020; 2020 November 2011 September 2005 July 2016 2020; 60 2019; 23 2019; 12 2004; 48 2016; 144 2009; 223 2014; 2014 2015; 9 2018; 11 2012; 4 2010; 5 February 2017 2017; 9 1994; 5 2003; 110 e_1_2_6_20_2 e_1_2_6_8_2 Turnip A. (e_1_2_6_6_2) 2017; 9 e_1_2_6_18_2 e_1_2_6_9_2 e_1_2_6_19_2 e_1_2_6_4_2 e_1_2_6_5_2 e_1_2_6_12_2 e_1_2_6_24_2 Alakus T.B. (e_1_2_6_7_2) 2019; 12 e_1_2_6_13_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_22_2 e_1_2_6_11_2 e_1_2_6_21_2 e_1_2_6_16_2 Alakus T.B. (e_1_2_6_3_2) 2018; 11 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_25_2 |
| References_xml | – volume: 223 start-page: 1223 issue: 5 year: 2009 end-page: 1231 ident: C16 article-title: Spectral entropy: a complementary index for rolling element bearing performance degradation assessment publication-title: Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci. – volume: 9 start-page: 53 issue: 1 year: 2017 end-page: 57 ident: C5 article-title: Backpropagation neural networks training for EEG-SSVEP classification of emotion recognition publication-title: Internetwork. Indonesia J. – volume: 12 start-page: 229 issue: 3 year: 2019 end-page: 237 ident: C6 article-title: Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines publication-title: Int. J. Inform. Technol. – volume: 8 start-page: 355 issue: 10 year: 2017 end-page: 358 ident: C11 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 60 start-page: 1 year: 2020 end-page: 12 ident: C14 article-title: Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO publication-title: Biomed. Signal Proc. Control – volume: 11 start-page: 26 issue: 1 year: 2018 end-page: 39 ident: C2 article-title: EEG based emotion analysis systems publication-title: TBV J. Comput. Sci. Eng. – volume: 48 start-page: 145 issue: 2 year: 2004 end-page: 153 ident: C19 article-title: Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia publication-title: Acta Anaesthesiol. Scand. – volume: 9 start-page: 1365 year: 2015 end-page: 1375 ident: C1 article-title: Emotion classification during music listening from forehead biosignals publication-title: Signal. Image. Video. Process. – volume: 2019 start-page: 53 year: 2019 end-page: 58 ident: C12 article-title: Subject independent emotion recognition from EEG using VMD and deep learning publication-title: J. King Saud Univ. – Comput. Inform. Sci. – volume: 4 start-page: 238 issue: 3 year: 2012 end-page: 244 ident: C9 article-title: Basic emotions: a reconstruction publication-title: Emot. Rev. – volume: 5 start-page: 240 issue: 2 year: 1994 end-page: 254 ident: C22 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans. Neural Netw. – volume: 2020 start-page: 1 year: 2020 end-page: 40 ident: C20 article-title: Recurrent neural networks for time series forecasting: current status and future directions publication-title: Int. J. Forecast. – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 8 ident: C7 article-title: A EEG-based emotion recognition model with rhythm and time characteristics publication-title: Brain. Inform. – volume: 101 start-page: 34 issue: 1 year: 2004 end-page: 42 ident: C15 article-title: Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response publication-title: Anesthesiology – volume: 2014 start-page: 1 year: 2014 end-page: 10 ident: C13 article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Sci. World J. – volume: 5 start-page: 1315 issue: 9 year: 2010 end-page: 1316 ident: C24 article-title: Receiver operating characteristic curve in diagnostic test assessment publication-title: J. Thorac. Oncol. – volume: 110 start-page: 145 issue: 1 year: 2003 end-page: 150 ident: C10 article-title: Core affect and psychological construction of emotion publication-title: Psychol. Rev. – volume: 23 start-page: 1096 issue: 6 year: 2019 end-page: 1105 ident: C4 article-title: Feature selection with sequential forward selection algorithm from emotion estimation based on EEG signals publication-title: Sakarya Univ. J. Sci. – volume: 144 start-page: 256 year: 2016 end-page: 263 ident: C17 article-title: A review of gear fault diagnosis using various condition indicators publication-title: Procedia Eng. – start-page: 341 year: February 2017 end-page: 344 article-title: Application of multiscale entropy on EEG signals for emotion detection – volume: 8 start-page: 355 issue: 10 year: 2017 end-page: 358 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 223 start-page: 1223 issue: 5 year: 2009 end-page: 1231 article-title: Spectral entropy: a complementary index for rolling element bearing performance degradation assessment publication-title: Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci. – volume: 110 start-page: 145 issue: 1 year: 2003 end-page: 150 article-title: Core affect and psychological construction of emotion publication-title: Psychol. Rev. – volume: 60 start-page: 1 year: 2020 end-page: 12 article-title: Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO publication-title: Biomed. Signal Proc. Control – volume: 5 start-page: 240 issue: 2 year: 1994 end-page: 254 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans. Neural Netw. – volume: 4 start-page: 238 issue: 3 year: 2012 end-page: 244 article-title: Basic emotions: a reconstruction publication-title: Emot. Rev. – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 8 article-title: A EEG‐based emotion recognition model with rhythm and time characteristics publication-title: Brain. Inform. – volume: 48 start-page: 145 issue: 2 year: 2004 end-page: 153 article-title: Time‐frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia publication-title: Acta Anaesthesiol. Scand. – volume: 23 start-page: 1096 issue: 6 year: 2019 end-page: 1105 article-title: Feature selection with sequential forward selection algorithm from emotion estimation based on EEG signals publication-title: Sakarya Univ. J. Sci. – volume: 5 start-page: 1315 issue: 9 year: 2010 end-page: 1316 article-title: Receiver operating characteristic curve in diagnostic test assessment publication-title: J. Thorac. Oncol. – start-page: 667 year: November 2011 end-page: 670 article-title: Entropy‐based algorithm for speech recognition in noisy environment – volume: 11 start-page: 26 issue: 1 year: 2018 end-page: 39 article-title: EEG based emotion analysis systems publication-title: TBV J. Comput. Sci. Eng. – volume: 144 start-page: 256 year: 2016 end-page: 263 article-title: A review of gear fault diagnosis using various condition indicators publication-title: Procedia Eng. – volume: 9 start-page: 53 issue: 1 year: 2017 end-page: 57 article-title: Backpropagation neural networks training for EEG‐SSVEP classification of emotion recognition publication-title: Internetwork. Indonesia J. – volume: 101 start-page: 34 issue: 1 year: 2004 end-page: 42 article-title: Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response publication-title: Anesthesiology – start-page: 816 year: October 2016 end-page: 825 article-title: Robust online time series prediction with recurrent neural networks – volume: 9 start-page: 1365 year: 2015 end-page: 1375 article-title: Emotion classification during music listening from forehead biosignals publication-title: Signal. Image. Video. Process. – volume: 2019 start-page: 53 year: 2019 end-page: 58 article-title: Subject independent emotion recognition from EEG using VMD and deep learning publication-title: J. King Saud Univ. – Comput. Inform. Sci. – volume: 2020 start-page: 1 year: 2020 end-page: 40 article-title: Recurrent neural networks for time series forecasting: current status and future directions publication-title: Int. J. Forecast. – volume: 12 start-page: 229 issue: 3 year: 2019 end-page: 237 article-title: Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines publication-title: Int. J. Inform. Technol. – start-page: 2063 year: July 2016 end-page: 2067 article-title: An EEG‐based brain‐computer interface for emotion recognition – volume: 2014 start-page: 1 year: 2014 end-page: 10 article-title: EEG‐based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Sci. World J. – year: September 2005 article-title: Bidirectional LSTM networks for improved phoneme classification and recognition – volume: 11 start-page: 26 issue: 1 year: 2018 ident: e_1_2_6_3_2 article-title: EEG based emotion analysis systems publication-title: TBV J. Comput. Sci. Eng. – ident: e_1_2_6_8_2 doi: 10.1186/s40708‐019‐0100‐y – ident: e_1_2_6_23_2 doi: 10.1109/72.279188 – ident: e_1_2_6_2_2 doi: 10.1007/s11760‐013‐0591‐6 – ident: e_1_2_6_19_2 doi: 10.1109/TELFOR.2011.6143635 – ident: e_1_2_6_16_2 doi: 10.1097/00000542-200407000-00008 – ident: e_1_2_6_12_2 doi: 10.14569/IJACSA.2017.081046 – ident: e_1_2_6_22_2 doi: 10.1109/DSAA.2016.92 – ident: e_1_2_6_10_2 doi: 10.1177/1754073912439763 – ident: e_1_2_6_4_2 doi: 10.1109/BHI.2017.7897275 – ident: e_1_2_6_25_2 doi: 10.1097/JTO.0b013e3181ec173d – volume: 9 start-page: 53 issue: 1 year: 2017 ident: e_1_2_6_6_2 article-title: Backpropagation neural networks training for EEG‐SSVEP classification of emotion recognition publication-title: Internetwork. Indonesia J. – ident: e_1_2_6_20_2 doi: 10.1111/j.0001‐5172.2004.00323.x – ident: e_1_2_6_9_2 doi: 10.1109/IJCNN.2016.7727453 – ident: e_1_2_6_17_2 doi: 10.1243/09544062JMES1224 – ident: e_1_2_6_24_2 doi: 10.1007/11550907_126 – ident: e_1_2_6_13_2 doi: 10.1016/j.jksuci.2019.11.003 – ident: e_1_2_6_14_2 doi: 10.1155/2014/627892 – ident: e_1_2_6_18_2 doi: 10.1016/j.proeng.2016.05.131 – volume: 12 start-page: 229 issue: 3 year: 2019 ident: e_1_2_6_7_2 article-title: Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines publication-title: Int. J. Inform. Technol. – ident: e_1_2_6_5_2 doi: 10.16984/saufenbilder.501799 – ident: e_1_2_6_15_2 doi: 10.1016/j.bspc.2020.101951 – ident: e_1_2_6_11_2 doi: 10.1037/0033-295X.110.1.145 – ident: e_1_2_6_21_2 doi: 10.1016/j.ijforecast.2020.06.008 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.4836717 |
| Snippet | Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and... Emotion recognition is actively used in brain–computer interface, health care, security, e‐commerce, education and entertainment applications to increase and... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1364 |
| SubjectTerms | abstract concept brain–computer interface decision making deep learning education EEG signals electroencephalography electroencephalography signals emotion analysis emotion recognition entertainment applications entropy GAMEEMO data set health care human computer interaction human–machine interaction internal factors learning (artificial intelligence) medical signal processing negative emotions positive emotions Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications |
| Title | Emotion recognition with deep learning using GAMEEMO data set |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.2460 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2460 |
| Volume | 56 |
| WOSCitedRecordID | wos000604957700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Journals customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access Collection customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAo4AoLxkJJhRwEieOB4aCUkBqSwcQ3SI7dqpKVanawO_Hl5jQDkVCLFGU3CmRz-dz7r7ch9BFFJkYSylzmFKpQ33NHcmk70gZEGiHFvi0JJtg3W7U7_OeTbjBvzBlf4gq4QaeUazX4OBCliwkZlMLRoTCgUeuPRqaT_Y11_UjoG7waK-qIpiltiBX8QMCTt23wHejfzOvvRCSVoc6X9yoFpGmtf3fd9xBW3aPiZvlpNhFK3pcB3pmC-Woo825LoR76DYuqXxwBSYy55CfxUrrCba8EgMMEPkBfmh24rjzjAFaimc630evrfjl_tGxrApOCtHZkSZmC2iLLlXkCi45EykNFROccqE0y0IpfaY9KrOMUFkgN10vJZIRknFjvANUG7-P9SHCJFQi1Nq4eEqh_splCM1tdBZyxVJBG-jqe2CT1LYcB-aLUVKUvilP9CiBAUpggBrospKelK02lsidGxsl1tdmS2ROF2Ti9s-9ZKKyBirt9uuDjFbbu2uZRTCIjv6qcIw24DogX1xygmr59EOfovX0Mx_OpmfFPDXHt6fuF7mo4zA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46BfXgj6k4dRpBT1LN2rRpDh6mdG7YVQ8TdytNk47BmGOr_v3mtbVuhwnirdD3aEny8pK8L9-H0KXr6hxLKTOYlLFBLcUNwYRlCGEToEOzLZqLTbAgcPt9_lLonMJdmJwfojxwg8jI5msIcDiQzjecFEgyFVQOTHJjUkfv2deoXmuAdsNbJyjLCHquzdRVLJtAVPcL5Lv2v533XshJq0OVLq5Us1TT2vn3T-6i7WKViZv5sNhDK2pcBYHmAsxRRVtzPIT76M7LxXxwCSfSz3BCi6VSE1woSwwwgOQH-LHZ9bzuMwZwKZ6p9AC9trzeQ9sodBWMGPKzIXTWjoAYXUi3EXHBWRRTR7KIUx5JxRJHCIspk4okIVRk2M2GGRPBCEm47r5DVBm_j9URwsSRkaOUDvKYQgWWCwfobVTicMniiNbQ9XfLhnFBOg7aF6MwK35THqpRCA0UQgPV0FVpPcnJNpbYXehOCotomy2xqS_YeP7Pu3AikxrKO-7XD2kv37xv6WnQdo__6nCONtq9rh_6neDpBG2CDeBgGuQUVdLph6qj9fgzHc6mZ9mg_QKaKOZ5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46RfTgj6k4dRpBT1JN27RpDh6mtipucweF3UrTpGMw5tiqf795bZzbYYJ4K_Q9WvLy8pK-r9-H0HkQ6BpLKbOYlKlFXcUtwYRrCeERoEPzXFqKTbB2O-h2ecfonMK_MCU_xPSDG2RGsV5DgquRzMoDJwWSTAWdA4dcOdTXZ_YV6jEbprVDO9M2gl5rC3UV1yOQ1V2DfNf-17PeczVpua_y-Z1qUWqirX-_5DbaNLtM3CinxQ5aUsMqCDQbMEcVbczwEO6im7AU88FTOJG-hi-0WCo1wkZZoocBJN_DD41WGLZeMIBL8UTle-gtCl_vHi2jq2ClUJ8toat2AsToQgZ2wgVnSUp9yRJOeSIVy3whXKYcKrKMUFFgN20nJYIRknEdvn1UGb4P1QHCxJeJr5RO8pRCB5YLH-htVOZzydKE1tDl98jGqSEdB-2LQVw0vymP1SCGAYphgGroYmo9Ksk2Ftid6SDFJtsmC2zqczZh8-derGNUQ2Xgfn2Q9mo6t5FeBr3g8K8Op2itcx_Fzaf28xFaBxOAwdjkGFXy8Yeqo9X0M-9PxifFnP0CzoblkA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+with+deep+learning+using+GAMEEMO+data+set&rft.jtitle=Electronics+letters&rft.au=Alakus%2C+T.+B.&rft.au=Turkoglu%2C+I.&rft.date=2020-12-10&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1364&rft.epage=1367&rft_id=info:doi/10.1049%2Fel.2020.2460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2020_2460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |