Emotion recognition with deep learning using GAMEEMO data set

Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. Howev...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters Vol. 56; no. 25; pp. 1364 - 1367
Main Authors: Alakus, T. B, Turkoglu, I
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 10.12.2020
Subjects:
ISSN:0013-5194, 1350-911X, 1350-911X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an abstract concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long-short term memory architecture in the third stage. In the last stage, the performance of the deep-learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained.
AbstractList Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an abstract concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long-short term memory architecture in the third stage. In the last stage, the performance of the deep-learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained.
Emotion recognition is actively used in brain–computer interface, health care, security, e‐commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision‐making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long‐short term memory architecture in the third stage. In the last stage, the performance of the deep‐learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained.
Author Alakus, T. B
Turkoglu, I
Author_xml – sequence: 1
  givenname: T. B
  orcidid: 0000-0003-3136-3341
  surname: Alakus
  fullname: Alakus, T. B
  email: talhaburakalakus@klu.edu.tr
  organization: Kirklareli University, Faculty of Engineering, Department of Software Engineering, Kirklareli, Turkey
– sequence: 2
  givenname: I
  surname: Turkoglu
  fullname: Turkoglu, I
  organization: Firat University, Faculty of Technology, Department of Software Engineering, Elazig, Turkey
BookMark eNp9kD9PwzAQxS1UJErpxgfIwMBAyp3t_PHAUKq0IKXqAhKbZSdOMUqTyklV9duTUAaEKMvdDb_37uldkkFVV4aQa4QJAhf3ppxQoDChPIQzMkQWgC8Q3wZkCIDMD1DwCzJuGqsBOXYUxyF5SDZ1a-vKcyar15X9uve2ffdyY7ZeaZSrbLX2dk0_F9NlkixXXq5a5TWmvSLnhSobM_7eI_I6T15mT366WjzPpqmfsRhjX1OOCoHFOo9RCS0ilfEwj5TgQuUmKkKtWWQo10UBvIsHApBmoCOAQoQBGxF69M1c3TTOFDKzreqztk7ZUiLIvgNpStl3IPsOOtHdL9HW2Y1yh1N4cMT3tjSHf1mZpCl9nEPEgrjT3R511rTyo965qmvi1IubP9Ak_eG8zQv2Cb6jhnY
CitedBy_id crossref_primary_10_1155_2022_6000989
crossref_primary_10_3390_app112311344
crossref_primary_10_3390_app121910028
crossref_primary_10_1007_s10586_024_04590_5
crossref_primary_10_1007_s11042_023_16696_w
crossref_primary_10_1016_j_compbiomed_2021_104867
crossref_primary_10_1109_TG_2024_3435339
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1049_ell2_12605
crossref_primary_10_1080_03091902_2025_2544802
crossref_primary_10_1007_s10044_025_01501_1
crossref_primary_10_1038_s41598_024_80448_5
crossref_primary_10_1016_j_asoc_2024_112301
crossref_primary_10_1109_ACCESS_2022_3181887
crossref_primary_10_1016_j_bspc_2021_103407
crossref_primary_10_1016_j_jii_2025_100789
crossref_primary_10_1016_j_jksuci_2021_08_021
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1007_s11760_025_04656_w
Cites_doi 10.1186/s40708‐019‐0100‐y
10.1109/72.279188
10.1007/s11760‐013‐0591‐6
10.1109/TELFOR.2011.6143635
10.1097/00000542-200407000-00008
10.14569/IJACSA.2017.081046
10.1109/DSAA.2016.92
10.1177/1754073912439763
10.1109/BHI.2017.7897275
10.1097/JTO.0b013e3181ec173d
10.1111/j.0001‐5172.2004.00323.x
10.1109/IJCNN.2016.7727453
10.1243/09544062JMES1224
10.1007/11550907_126
10.1016/j.jksuci.2019.11.003
10.1155/2014/627892
10.1016/j.proeng.2016.05.131
10.16984/saufenbilder.501799
10.1016/j.bspc.2020.101951
10.1037/0033-295X.110.1.145
10.1016/j.ijforecast.2020.06.008
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2460
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 1350-911X
EndPage 1367
ExternalDocumentID 10_1049_el_2020_2460
ELL2BF07358
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3818-b241a1038bd81a9b97ac46d7a949ade7f6bb37e24bff04b0109012c0b700f9653
IEDL.DBID 24P
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:44:06 EST 2025
Wed Oct 29 21:27:59 EDT 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 04:41:12 EST 2021
Wed Jan 06 06:33:42 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords electroencephalography
education
electroencephalography signals
negative emotions
GAMEEMO data set
brain–computer interface
emotion recognition
abstract concept
medical signal processing
internal factors
deep learning
entertainment applications
entropy
emotion analysis
decision making
human computer interaction
human–machine interaction
EEG signals
learning (artificial intelligence)
positive emotions
health care
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3818-b241a1038bd81a9b97ac46d7a949ade7f6bb37e24bff04b0109012c0b700f9653
ORCID 0000-0003-3136-3341
OpenAccessLink https://hdl.handle.net/20.500.11857/3215
PageCount 4
ParticipantIDs crossref_primary_10_1049_el_2020_2460
crossref_citationtrail_10_1049_el_2020_2460
wiley_primary_10_1049_el_2020_2460_ELL2BF07358
iet_journals_10_1049_el_2020_2460
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Alakus, T.B.; Turkoglu, I. (C4) 2019; 23
Mason, W.A.; Capitanio, J.P. (C9) 2012; 4
Vakkuri, A.; Yli-Hankala, A.; Talja, P. (C19) 2004; 48
Mandrekar, J.N. (C24) 2010; 5
Alakus, T.B.; Turkoglu, I. (C6) 2019; 12
Naji, M.; Firoozabadi, M.; Azadfallah, P. (C1) 2015; 9
Turnip, A.; Simbolon, A.I.; Amri, M.F. (C5) 2017; 9
Sharma, V.; Parey, A. (C17) 2016; 144
Alakus, T.B.; Gonen, M.; Turkoglu, I. (C14) 2020; 60
Alakus, T.B.; Turkoglu, I. (C2) 2018; 11
Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. (C13) 2014; 2014
Hewamalage, H.; Bergmeir, C.; Bandara, K. (C20) 2020; 2020
Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. (C11) 2017; 8
Pandey, P.; Seeja, K.R. (C12) 2019; 2019
Vanluchene, A.L.G.; Vereecke, H.; Thas, O. (C15) 2004; 101
Pan, Y.N.; Chen, J.; Li, X.L. (C16) 2009; 223
Connor, J.T.; Martin, R.D.; Atlas, L.E. (C22) 1994; 5
Yan, J.; Chen, S.; Deng, S. (C7) 2019; 6
Russel, A. (C10) 2003; 110
2004; 101
October 2016
2017; 8
2019; 2019
2019; 6
2020; 2020
November 2011
September 2005
July 2016
2020; 60
2019; 23
2019; 12
2004; 48
2016; 144
2009; 223
2014; 2014
2015; 9
2018; 11
2012; 4
2010; 5
February 2017
2017; 9
1994; 5
2003; 110
e_1_2_6_20_2
e_1_2_6_8_2
Turnip A. (e_1_2_6_6_2) 2017; 9
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_19_2
e_1_2_6_4_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_24_2
Alakus T.B. (e_1_2_6_7_2) 2019; 12
e_1_2_6_13_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_22_2
e_1_2_6_11_2
e_1_2_6_21_2
e_1_2_6_16_2
Alakus T.B. (e_1_2_6_3_2) 2018; 11
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_25_2
References_xml – volume: 223
  start-page: 1223
  issue: 5
  year: 2009
  end-page: 1231
  ident: C16
  article-title: Spectral entropy: a complementary index for rolling element bearing performance degradation assessment
  publication-title: Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci.
– volume: 9
  start-page: 53
  issue: 1
  year: 2017
  end-page: 57
  ident: C5
  article-title: Backpropagation neural networks training for EEG-SSVEP classification of emotion recognition
  publication-title: Internetwork. Indonesia J.
– volume: 12
  start-page: 229
  issue: 3
  year: 2019
  end-page: 237
  ident: C6
  article-title: Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines
  publication-title: Int. J. Inform. Technol.
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  end-page: 358
  ident: C11
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 60
  start-page: 1
  year: 2020
  end-page: 12
  ident: C14
  article-title: Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO
  publication-title: Biomed. Signal Proc. Control
– volume: 11
  start-page: 26
  issue: 1
  year: 2018
  end-page: 39
  ident: C2
  article-title: EEG based emotion analysis systems
  publication-title: TBV J. Comput. Sci. Eng.
– volume: 48
  start-page: 145
  issue: 2
  year: 2004
  end-page: 153
  ident: C19
  article-title: Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia
  publication-title: Acta Anaesthesiol. Scand.
– volume: 9
  start-page: 1365
  year: 2015
  end-page: 1375
  ident: C1
  article-title: Emotion classification during music listening from forehead biosignals
  publication-title: Signal. Image. Video. Process.
– volume: 2019
  start-page: 53
  year: 2019
  end-page: 58
  ident: C12
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: J. King Saud Univ. – Comput. Inform. Sci.
– volume: 4
  start-page: 238
  issue: 3
  year: 2012
  end-page: 244
  ident: C9
  article-title: Basic emotions: a reconstruction
  publication-title: Emot. Rev.
– volume: 5
  start-page: 240
  issue: 2
  year: 1994
  end-page: 254
  ident: C22
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans. Neural Netw.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 40
  ident: C20
  article-title: Recurrent neural networks for time series forecasting: current status and future directions
  publication-title: Int. J. Forecast.
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  ident: C7
  article-title: A EEG-based emotion recognition model with rhythm and time characteristics
  publication-title: Brain. Inform.
– volume: 101
  start-page: 34
  issue: 1
  year: 2004
  end-page: 42
  ident: C15
  article-title: Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response
  publication-title: Anesthesiology
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 10
  ident: C13
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
– volume: 5
  start-page: 1315
  issue: 9
  year: 2010
  end-page: 1316
  ident: C24
  article-title: Receiver operating characteristic curve in diagnostic test assessment
  publication-title: J. Thorac. Oncol.
– volume: 110
  start-page: 145
  issue: 1
  year: 2003
  end-page: 150
  ident: C10
  article-title: Core affect and psychological construction of emotion
  publication-title: Psychol. Rev.
– volume: 23
  start-page: 1096
  issue: 6
  year: 2019
  end-page: 1105
  ident: C4
  article-title: Feature selection with sequential forward selection algorithm from emotion estimation based on EEG signals
  publication-title: Sakarya Univ. J. Sci.
– volume: 144
  start-page: 256
  year: 2016
  end-page: 263
  ident: C17
  article-title: A review of gear fault diagnosis using various condition indicators
  publication-title: Procedia Eng.
– start-page: 341
  year: February 2017
  end-page: 344
  article-title: Application of multiscale entropy on EEG signals for emotion detection
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  end-page: 358
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 223
  start-page: 1223
  issue: 5
  year: 2009
  end-page: 1231
  article-title: Spectral entropy: a complementary index for rolling element bearing performance degradation assessment
  publication-title: Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci.
– volume: 110
  start-page: 145
  issue: 1
  year: 2003
  end-page: 150
  article-title: Core affect and psychological construction of emotion
  publication-title: Psychol. Rev.
– volume: 60
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO
  publication-title: Biomed. Signal Proc. Control
– volume: 5
  start-page: 240
  issue: 2
  year: 1994
  end-page: 254
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans. Neural Netw.
– volume: 4
  start-page: 238
  issue: 3
  year: 2012
  end-page: 244
  article-title: Basic emotions: a reconstruction
  publication-title: Emot. Rev.
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  article-title: A EEG‐based emotion recognition model with rhythm and time characteristics
  publication-title: Brain. Inform.
– volume: 48
  start-page: 145
  issue: 2
  year: 2004
  end-page: 153
  article-title: Time‐frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia
  publication-title: Acta Anaesthesiol. Scand.
– volume: 23
  start-page: 1096
  issue: 6
  year: 2019
  end-page: 1105
  article-title: Feature selection with sequential forward selection algorithm from emotion estimation based on EEG signals
  publication-title: Sakarya Univ. J. Sci.
– volume: 5
  start-page: 1315
  issue: 9
  year: 2010
  end-page: 1316
  article-title: Receiver operating characteristic curve in diagnostic test assessment
  publication-title: J. Thorac. Oncol.
– start-page: 667
  year: November 2011
  end-page: 670
  article-title: Entropy‐based algorithm for speech recognition in noisy environment
– volume: 11
  start-page: 26
  issue: 1
  year: 2018
  end-page: 39
  article-title: EEG based emotion analysis systems
  publication-title: TBV J. Comput. Sci. Eng.
– volume: 144
  start-page: 256
  year: 2016
  end-page: 263
  article-title: A review of gear fault diagnosis using various condition indicators
  publication-title: Procedia Eng.
– volume: 9
  start-page: 53
  issue: 1
  year: 2017
  end-page: 57
  article-title: Backpropagation neural networks training for EEG‐SSVEP classification of emotion recognition
  publication-title: Internetwork. Indonesia J.
– volume: 101
  start-page: 34
  issue: 1
  year: 2004
  end-page: 42
  article-title: Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response
  publication-title: Anesthesiology
– start-page: 816
  year: October 2016
  end-page: 825
  article-title: Robust online time series prediction with recurrent neural networks
– volume: 9
  start-page: 1365
  year: 2015
  end-page: 1375
  article-title: Emotion classification during music listening from forehead biosignals
  publication-title: Signal. Image. Video. Process.
– volume: 2019
  start-page: 53
  year: 2019
  end-page: 58
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: J. King Saud Univ. – Comput. Inform. Sci.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 40
  article-title: Recurrent neural networks for time series forecasting: current status and future directions
  publication-title: Int. J. Forecast.
– volume: 12
  start-page: 229
  issue: 3
  year: 2019
  end-page: 237
  article-title: Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines
  publication-title: Int. J. Inform. Technol.
– start-page: 2063
  year: July 2016
  end-page: 2067
  article-title: An EEG‐based brain‐computer interface for emotion recognition
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 10
  article-title: EEG‐based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
– year: September 2005
  article-title: Bidirectional LSTM networks for improved phoneme classification and recognition
– volume: 11
  start-page: 26
  issue: 1
  year: 2018
  ident: e_1_2_6_3_2
  article-title: EEG based emotion analysis systems
  publication-title: TBV J. Comput. Sci. Eng.
– ident: e_1_2_6_8_2
  doi: 10.1186/s40708‐019‐0100‐y
– ident: e_1_2_6_23_2
  doi: 10.1109/72.279188
– ident: e_1_2_6_2_2
  doi: 10.1007/s11760‐013‐0591‐6
– ident: e_1_2_6_19_2
  doi: 10.1109/TELFOR.2011.6143635
– ident: e_1_2_6_16_2
  doi: 10.1097/00000542-200407000-00008
– ident: e_1_2_6_12_2
  doi: 10.14569/IJACSA.2017.081046
– ident: e_1_2_6_22_2
  doi: 10.1109/DSAA.2016.92
– ident: e_1_2_6_10_2
  doi: 10.1177/1754073912439763
– ident: e_1_2_6_4_2
  doi: 10.1109/BHI.2017.7897275
– ident: e_1_2_6_25_2
  doi: 10.1097/JTO.0b013e3181ec173d
– volume: 9
  start-page: 53
  issue: 1
  year: 2017
  ident: e_1_2_6_6_2
  article-title: Backpropagation neural networks training for EEG‐SSVEP classification of emotion recognition
  publication-title: Internetwork. Indonesia J.
– ident: e_1_2_6_20_2
  doi: 10.1111/j.0001‐5172.2004.00323.x
– ident: e_1_2_6_9_2
  doi: 10.1109/IJCNN.2016.7727453
– ident: e_1_2_6_17_2
  doi: 10.1243/09544062JMES1224
– ident: e_1_2_6_24_2
  doi: 10.1007/11550907_126
– ident: e_1_2_6_13_2
  doi: 10.1016/j.jksuci.2019.11.003
– ident: e_1_2_6_14_2
  doi: 10.1155/2014/627892
– ident: e_1_2_6_18_2
  doi: 10.1016/j.proeng.2016.05.131
– volume: 12
  start-page: 229
  issue: 3
  year: 2019
  ident: e_1_2_6_7_2
  article-title: Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines
  publication-title: Int. J. Inform. Technol.
– ident: e_1_2_6_5_2
  doi: 10.16984/saufenbilder.501799
– ident: e_1_2_6_15_2
  doi: 10.1016/j.bspc.2020.101951
– ident: e_1_2_6_11_2
  doi: 10.1037/0033-295X.110.1.145
– ident: e_1_2_6_21_2
  doi: 10.1016/j.ijforecast.2020.06.008
SSID ssib014146041
ssj0012997
Score 2.4836717
Snippet Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and...
Emotion recognition is actively used in brain–computer interface, health care, security, e‐commerce, education and entertainment applications to increase and...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1364
SubjectTerms abstract concept
brain–computer interface
decision making
deep learning
education
EEG signals
electroencephalography
electroencephalography signals
emotion analysis
emotion recognition
entertainment applications
entropy
GAMEEMO data set
health care
human computer interaction
human–machine interaction
internal factors
learning (artificial intelligence)
medical signal processing
negative emotions
positive emotions
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
Title Emotion recognition with deep learning using GAMEEMO data set
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2460
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2460
Volume 56
WOSCitedRecordID wos000604957700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAo4AoUGQkmFAgDzuJB4aCUkBqSwce3SLbcapKVanawO_nLgmlHYqEWKIouVMiX87-bH-5j5BzCaOEUCq1RKi4xbjkllIus6TRhhsA_F7O8n1tBZ1O2OuJbrnghv_CFPUhZgtumBl5f40JLlWhQgKgFoOIGweufeUyH6bsa47jhSjd4LLubBcButpcXMXjNiZ1ryS-g__1vPfCkLQ6MNkiUM1Hmub2f99xh2yVGJM2io9il6yYURXlmUsqR5VszlUh3CM3USHlQ2dkIjjH9VmaGDOmpa5EnyJFvk_vG-0oaj9RpJbSqcn2yUszer57sEpVBUvj6GxBJByJZdFVEjpSKBFIzfwkkIIJmZgg9ZXyAuMylaY2Uzlz03G1rQLbToXPvQNSGb2PzCGhXHoa4IfkgBIBCKhQAXoxKcxYWKp1omvk8rthY12WHEfli2Gcb30zEZthjA0UYwPVyMXMelyU2lhidwYxistcmy6xqS_YRK2fe_E4SWukiNuvDwKvlnvbhE6Qh0d_dTgmG3gdmS-OfUIq2eTD1Mm6_swG08lp_p3C8e2x8wWVEeQt
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86BfXgx1ScnxH0JNV-JG1z8DClc8Nuepi6W0nSdAzGHFv17zevrXU7TBBvhb5HS5KX90vyy_shdMF1lmBCJAbzBTUI5dQQwiYGV1JRpQG_k7F8X0Ov0_F7PfZc6JzCXZi8PkS54QaRkc3XEOCwIZ0vOAkUyVRwcmCb1zZx9Zp9hWisAdoNb61OeYyg59pMXcWhJkR1r2C-a_-bWe-5nLQ8UOk8Us1STWPr3z-5jTYLlInr-bDYQUtqVAWB5oLMUUUbM3UId9FtkIv54JJOpJ9hhxbHSo1xoSzRx0CS7-OHejsI2k8YyKV4qtI99NIIuvdNo9BVMCTkZ0P3hcWhMLqIfYszwTwuiRt7nBHGY-UlrhCOp2wiksQkIuNuWrY0hWeaCXOps48qo_eROkCYckdqAMKpxokaCghfaPyiEr1mIYmUsayhq--WjWRRdBy0L4ZRdvhNWKSGETRQBA1UQ5el9TgvtrHA7lx3UlRE23SBzcmcTRD-vIvGcVJDecf9-iHtFdp3DT0NUv_wrw5naK3ZbYdR2Oo8HqF1sAEejGUeo0o6-VAnaFV-poPp5DQbtF99Red2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagIAQDjwKiPI0EEwrkYSfxwFAgAURaOgDqFtmOU1WqStUGfj--JIR2KBJii5Q7JfL5fJ_jL_chdMZ1lWBCpAbzBTUI5dQQwiYGV1JRpQG_k7N83yKv3fa7XdYpdU7hX5iiP0T1wQ0yI1-vIcHVKEmLDSeBJpkKTg5s89Imrt6zLxHqWTCtbdKpjhH0WpurqzjUhKzulsx37X817T1Tkxb7KptFqnmpCTf-_ZKbaL1EmbhZTIsttKCGdRBoLskcdbQ21YdwG10HhZgPruhE-hq-0OJEqREulSV6GEjyPXzfbAVB6xkDuRRPVLaDXsPg5fbBKHUVDAn12dCxsDg0RheJb3EmmMclcROPM8J4orzUFcLxlE1EmppE5NxNy5am8EwzZS51dlFt-D5UewhT7kgNQDjVOFFDAeELjV9UqvcsJJUykQ108T2ysSybjoP2xSDOD78Ji9UghgGKYYAa6LyyHhXNNubYneogxWW2TebYHM3YBNHPvVjHqIGKwP36IO0V2TehXgapv_9XhxO00rkL4-ix_XSAVsEEaDCWeYhq2fhDHaFl-Zn1J-PjfM5-AbCm5o0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+with+deep+learning+using+GAMEEMO+data+set&rft.jtitle=Electronics+letters&rft.au=Alakus%2C+T.+B.&rft.au=Turkoglu%2C+I.&rft.date=2020-12-10&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1364&rft.epage=1367&rft_id=info:doi/10.1049%2Fel.2020.2460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2020_2460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon