MO‐Co@N‐Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn–Air Battery

A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 27; číslo 37
Hlavní autoři: Chen, Biaohua, He, Xiaobo, Yin, Fengxiang, Wang, Hao, Liu, Di‐Jia, Shi, Ruixing, Chen, Jinnan, Yin, Hongwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 05.10.2017
Wiley
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2. MO‐Co@N‐doped carbon (M = Zn or Co) are prepared by using a bimetal metal–organic framework (containing Zn and Co) as precursor, showing excellent activity (EORR − EOER ≈ 0.78 V) and durability toward both oxygen reduction and evolution reactions as well as prominent Zn–air battery performance. It is revealed that inactive Zn plays vital roles in developing these highly efficient bifunctional catalysts.
AbstractList A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2. MO‐Co@N‐doped carbon (M = Zn or Co) are prepared by using a bimetal metal–organic framework (containing Zn and Co) as precursor, showing excellent activity (EORR − EOER ≈ 0.78 V) and durability toward both oxygen reduction and evolution reactions as well as prominent Zn–air battery performance. It is revealed that inactive Zn plays vital roles in developing these highly efficient bifunctional catalysts.
A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-x and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.
A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.
A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–N x and Co 3+ /Co 2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO 2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO 2 .
Author Chen, Biaohua
Shi, Ruixing
Liu, Di‐Jia
Yin, Hongwei
Yin, Fengxiang
Chen, Jinnan
He, Xiaobo
Wang, Hao
Author_xml – sequence: 1
  givenname: Biaohua
  surname: Chen
  fullname: Chen, Biaohua
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Xiaobo
  surname: He
  fullname: He, Xiaobo
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Fengxiang
  surname: Yin
  fullname: Yin, Fengxiang
  email: yinfx@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 4
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Argonne National Laboratory
– sequence: 5
  givenname: Di‐Jia
  surname: Liu
  fullname: Liu, Di‐Jia
  organization: Argonne National Laboratory
– sequence: 6
  givenname: Ruixing
  surname: Shi
  fullname: Shi, Ruixing
  organization: Beijing University of Chemical Technology
– sequence: 7
  givenname: Jinnan
  surname: Chen
  fullname: Chen, Jinnan
  organization: Beijing University of Chemical Technology
– sequence: 8
  givenname: Hongwei
  surname: Yin
  fullname: Yin, Hongwei
  organization: Beijing University of Chemical Technology
BackLink https://www.osti.gov/biblio/1411443$$D View this record in Osti.gov
BookMark eNqFkdFqFDEUhoNUsK3eeh30Ri92m0yyk44gdJ1ubaHrwqIi3oQzmWSbMk3WJNs6d30EwQfxnfokZlypIIhX53D-7_9zwtlDO847jdBTSsaUkOIAWnM1LggVhIhq8gDt0pKWI0aKw537nn56hPZivCQZE4zvoh_zxd3tt9ofvcvl2K91i2sIjXf4xRy_xp8d9gHX_uUr_NEm6PDSdzpib_CZA5XstR4QcC0-tauLrsczY6yy2iU8HWSbepz8DYQWL772K-3wUrebrHh3MLv23Wbo8gx-jSI2-bWlVhcQVhqabki_u_0-tQG_gZR06B-jhwa6qJ_8rvvow8nsfX06Ol-8Paun5yPFDulkZHKigIo1FVS8LAQri4IZridZaIUQ3FDaNtrQiptGqIaA5g1pylaVxoCYsH30bJvrY7IyKpvyVso7p1WSlFPKOcvQ8y20Dv7LRsckL_0muLyXzMElqQRjA8W3lAo-xqCNzGkw_DcFsJ2kRA73k8P95P39sm38l20d7BWE_t-Gamu4sZ3u_0PL6fHJ_I_3J338s_c
CitedBy_id crossref_primary_10_1016_j_ijhydene_2020_01_135
crossref_primary_10_3389_fenrg_2021_673923
crossref_primary_10_1016_j_electacta_2019_03_196
crossref_primary_10_1039_D0NR05403H
crossref_primary_10_3390_ma14133754
crossref_primary_10_1039_C9RA08904G
crossref_primary_10_1016_j_cej_2021_132199
crossref_primary_10_1016_j_fuel_2024_131969
crossref_primary_10_1016_j_ijhydene_2021_04_074
crossref_primary_10_1002_admi_201801281
crossref_primary_10_1002_cctc_201801678
crossref_primary_10_1016_j_apsusc_2022_156304
crossref_primary_10_1002_cssc_202102642
crossref_primary_10_1002_adfm_202301527
crossref_primary_10_1016_j_jclepro_2019_119314
crossref_primary_10_1002_aenm_202001287
crossref_primary_10_1016_j_fuel_2024_132770
crossref_primary_10_1007_s40820_021_00669_5
crossref_primary_10_1016_j_jcis_2021_03_142
crossref_primary_10_1039_C8EE03405B
crossref_primary_10_1007_s12274_020_2751_7
crossref_primary_10_1016_j_jpowsour_2019_02_027
crossref_primary_10_1039_C9NR07270E
crossref_primary_10_1016_j_jelechem_2021_115510
crossref_primary_10_1002_er_8719
crossref_primary_10_1016_j_jallcom_2023_169728
crossref_primary_10_1016_j_jcis_2022_01_134
crossref_primary_10_1016_j_cej_2018_06_059
crossref_primary_10_1002_celc_202000038
crossref_primary_10_1016_j_elecom_2020_106700
crossref_primary_10_1016_j_jcat_2019_07_055
crossref_primary_10_1016_j_jcis_2023_04_010
crossref_primary_10_1088_0256_307X_38_1_015201
crossref_primary_10_1007_s40820_022_00959_6
crossref_primary_10_1007_s40843_022_2070_7
crossref_primary_10_1038_s41427_022_00446_9
crossref_primary_10_1016_j_jcis_2021_05_173
crossref_primary_10_1016_j_jallcom_2020_156396
crossref_primary_10_3390_molecules28155885
crossref_primary_10_1016_j_apcatb_2024_124060
crossref_primary_10_1007_s12274_021_3837_6
crossref_primary_10_1016_j_ijhydene_2021_03_086
crossref_primary_10_1016_j_jcis_2020_11_095
crossref_primary_10_1002_ente_202400062
crossref_primary_10_1002_ange_202016882
crossref_primary_10_1016_j_diamond_2023_109776
crossref_primary_10_1007_s40820_020_00468_4
crossref_primary_10_1016_j_ccr_2022_214554
crossref_primary_10_1002_adfm_202007822
crossref_primary_10_1039_C9SC00505F
crossref_primary_10_1016_j_matt_2021_01_004
crossref_primary_10_1039_C9SE01130G
crossref_primary_10_1016_j_jcis_2019_03_079
crossref_primary_10_1016_j_jechem_2022_03_022
crossref_primary_10_1002_batt_202000006
crossref_primary_10_1016_j_ijhydene_2022_05_142
crossref_primary_10_1016_j_apsusc_2022_153250
crossref_primary_10_1016_j_electacta_2019_135531
crossref_primary_10_1016_j_ijhydene_2020_04_018
crossref_primary_10_3390_nano13010171
crossref_primary_10_1002_anie_202016882
crossref_primary_10_1088_2053_1591_acbae7
crossref_primary_10_1002_smll_202400095
crossref_primary_10_1016_j_ccr_2018_07_020
crossref_primary_10_1039_C9NR10943A
crossref_primary_10_1002_cjoc_202100285
crossref_primary_10_1007_s40843_020_1276_8
crossref_primary_10_1016_j_jallcom_2024_174304
crossref_primary_10_1002_adma_202308798
crossref_primary_10_1002_adma_202002292
crossref_primary_10_1016_S1872_2067_18_63017_7
crossref_primary_10_1007_s40820_020_0406_6
crossref_primary_10_1016_j_inoche_2025_114849
crossref_primary_10_1007_s11581_022_04581_9
crossref_primary_10_3389_fnano_2021_659865
crossref_primary_10_1002_advs_201700691
crossref_primary_10_1002_smll_202205940
crossref_primary_10_1016_j_jpowsour_2019_126650
crossref_primary_10_1016_j_carbon_2022_06_015
crossref_primary_10_1016_j_electacta_2018_12_119
crossref_primary_10_1007_s12274_022_4154_4
crossref_primary_10_1088_1361_6528_ac3702
crossref_primary_10_1016_j_apsusc_2025_162479
crossref_primary_10_1002_celc_202100584
crossref_primary_10_1002_celc_202101310
crossref_primary_10_1002_smll_201903760
crossref_primary_10_1016_j_apsusc_2019_144758
crossref_primary_10_1016_j_cej_2021_130481
crossref_primary_10_1021_jacs_2c11446
crossref_primary_10_1039_C8CC02500B
crossref_primary_10_1002_smll_202302727
crossref_primary_10_1002_adfm_202313307
crossref_primary_10_1016_j_gee_2021_05_008
crossref_primary_10_1039_D4EE00134F
crossref_primary_10_3390_nano12224069
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1016_j_cej_2020_127112
crossref_primary_10_1016_j_jechem_2021_05_011
crossref_primary_10_1016_j_jpowsour_2020_229393
crossref_primary_10_1016_j_electacta_2019_134942
crossref_primary_10_1016_j_compositesb_2020_108058
crossref_primary_10_1039_C9QI00334G
crossref_primary_10_1016_j_electacta_2020_135825
crossref_primary_10_1016_j_apsusc_2019_03_021
crossref_primary_10_1016_j_colsurfa_2022_129766
crossref_primary_10_3390_nano13030543
crossref_primary_10_1039_C8MH01397G
crossref_primary_10_1002_slct_201800247
crossref_primary_10_1002_adma_202211603
crossref_primary_10_1007_s12274_020_3212_z
crossref_primary_10_1016_j_cej_2024_155822
crossref_primary_10_1002_chem_201800075
crossref_primary_10_1002_batt_201900052
crossref_primary_10_1016_j_jcis_2022_05_076
crossref_primary_10_1016_j_jcat_2019_07_013
crossref_primary_10_1002_advs_202104768
crossref_primary_10_1002_adfm_202000503
crossref_primary_10_1016_j_snb_2018_11_010
crossref_primary_10_1002_aenm_201900375
crossref_primary_10_1039_D5NJ00965K
crossref_primary_10_1002_celc_201902070
crossref_primary_10_1016_j_jiec_2023_11_055
crossref_primary_10_1002_sstr_202100144
crossref_primary_10_1016_j_applthermaleng_2021_117366
crossref_primary_10_1016_j_jechem_2020_04_067
crossref_primary_10_1016_j_jcat_2018_10_034
crossref_primary_10_1039_D1NR07913A
crossref_primary_10_1002_anie_201916507
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1039_C9NR09020G
crossref_primary_10_1016_j_colsurfa_2022_129417
crossref_primary_10_1016_j_ccr_2020_213468
crossref_primary_10_1002_cssc_202002137
crossref_primary_10_1016_j_cej_2025_159694
crossref_primary_10_1016_j_apsusc_2020_147659
crossref_primary_10_1002_celc_201800805
crossref_primary_10_1007_s40843_022_2376_7
crossref_primary_10_1039_D3MH01130E
crossref_primary_10_1016_j_ces_2022_118433
crossref_primary_10_1016_j_jallcom_2025_178835
crossref_primary_10_1002_adfm_202103360
crossref_primary_10_1016_j_jelechem_2022_116765
crossref_primary_10_1016_j_diamond_2024_111326
crossref_primary_10_1002_ange_201916507
crossref_primary_10_1016_j_cej_2019_03_147
crossref_primary_10_1016_j_jssc_2020_121185
crossref_primary_10_1016_j_ccr_2020_213214
crossref_primary_10_1002_aenm_201901997
crossref_primary_10_1002_batt_201800143
crossref_primary_10_3390_ma15020458
crossref_primary_10_1002_adma_201704898
crossref_primary_10_1016_j_cej_2022_135852
crossref_primary_10_1007_s40843_018_9359_7
crossref_primary_10_1002_smll_201801929
crossref_primary_10_1016_j_cej_2018_04_208
crossref_primary_10_1038_s41427_018_0063_0
crossref_primary_10_1039_D0QM00526F
crossref_primary_10_1016_j_carbon_2020_04_042
crossref_primary_10_1039_D0RA03222K
crossref_primary_10_1002_aenm_201801257
crossref_primary_10_1016_j_jallcom_2024_174103
crossref_primary_10_1002_cctc_202000410
Cites_doi 10.1038/natrevmats.2016.64
10.1002/aenm.201400337
10.1021/ja400555q
10.1002/adma.201601406
10.1021/ja104587v
10.1149/04521.0059ecst
10.1126/science.1168049
10.1002/anie.201610413
10.1021/nl904286r
10.1021/acs.chemrev.5b00073
10.1002/advs.201400015
10.1039/c3ee44059a
10.1002/anie.201306588
10.1039/C5CC01123J
10.1021/ja505186m
10.1002/anie.201411125
10.1002/aenm.201602068
10.1038/ncomms12876
10.1002/adfm.201401264
10.1149/1.3456630
10.1002/adma.201304867
10.1002/anie.201505320
10.1039/C5TA00078E
10.1002/anie.201604802
10.1021/ja7106146
10.1002/adma.201506112
10.1039/C4CS00015C
10.1021/acscatal.5b02325
10.1038/nnano.2015.48
10.1039/C4EE02281E
10.1002/aenm.201600423
10.1021/ic501631h
10.1002/aenm.201500936
10.1002/anie.201500569
10.1126/science.1212858
10.1016/j.electacta.2016.04.001
10.1016/j.electacta.2014.04.036
10.1002/adma.201505045
10.1021/jacs.6b13100
10.1002/chem.201003080
10.1039/c3cc44342f
10.1002/anie.201504830
10.1021/am900219g
10.1038/ncomms3390
10.1002/cctc.201000397
10.1073/pnas.1210315109
10.1039/C6CC04776A
10.1039/C4CS00470A
10.1021/cs5014442
10.1126/science.aad0832
10.1021/ja407115p
10.1002/anie.201206720
10.1016/j.nanoen.2015.11.027
10.1021/ja203184k
10.1021/cm202554j
10.1126/sciadv.1501122
10.1021/la904112j
10.1039/C4CC06446A
10.1002/er.3230
10.1038/nenergy.2015.6
10.1021/acsami.5b02670
10.1007/s12274-014-0591-z
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1002/adfm.201700795
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1411443
10_1002_adfm_201700795
ADFM201700795
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: buctrc201526; PYCC1706
– fundername: Changzhou Sci &Tech Program
  funderid: CJ20159006; CJ20160007
– fundername: Natural Science Foundation of Jiangsu Province of China
  funderid: BK20161200
– fundername: National Natural Science Foundation of China
  funderid: 21276018
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
AAHHS
AAPBV
ABHUG
ACCFJ
ACXME
ADAWD
ADDAD
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AFVGU
AGJLS
AIWBW
AJBDE
OTOTI
RWI
WRC
ID FETCH-LOGICAL-c3815-feac7a93b9a9462736223f4e5fead7774f11dbef194fb7cb0ae4b0b6dc6ffa753
IEDL.DBID DRFUL
ISICitedReferencesCount 354
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412324200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Fri May 19 00:34:58 EDT 2023
Fri Jul 25 05:45:00 EDT 2025
Sat Nov 29 07:21:03 EST 2025
Tue Nov 18 21:58:20 EST 2025
Wed Aug 20 07:25:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3815-feac7a93b9a9462736223f4e5fead7774f11dbef194fb7cb0ae4b0b6dc6ffa753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China (NNSFC)
PQID 1946097333
PQPubID 2045204
PageCount 14
ParticipantIDs osti_scitechconnect_1411443
proquest_journals_1946097333
crossref_citationtrail_10_1002_adfm_201700795
crossref_primary_10_1002_adfm_201700795
wiley_primary_10_1002_adfm_201700795_ADFM201700795
PublicationCentury 2000
PublicationDate October 5, 2017
PublicationDateYYYYMMDD 2017-10-05
PublicationDate_xml – month: 10
  year: 2017
  text: October 5, 2017
  day: 05
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2010; 10
2017; 7
2015; 39
2013; 4
2014; 26
2014; 24
2011; 17
2014; 136
2012; 52
2010; 26
2014; 4
2015; 44
2010; 157
2012; 24
2014; 7
2014; 50
2009; 323
2016; 351
2014; 53
2015; 2
2011; 334
2015; 5
2015; 3
2013; 49
2016; 19
2015; 51
2013; 45
2015; 54
2015; 10
2016; 201
2016; 52
2011; 3
2015; 8
2015; 7
2011; 133
2014; 43
2012; 109
2017; 139
2016; 55
2016; 6
2016; 7
2016; 1
2016; 2
2015; 115
2017; 56
2010; 132
2013; 135
2014; 140
2016; 28
2009; 1
2008; 130
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 135
  start-page: 4516
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 2047
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 23
  year: 2015
  publication-title: Nano Res.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 1623
  year: 2009
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2390
  year: 2013
  publication-title: Nat. Commun.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 3336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 19569
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 4646
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 1324
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 24
  start-page: 5956
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1602068
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 359
  year: 2014
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 10102
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 15006
  year: 2016
  publication-title: Nat. Energy
– volume: 136
  start-page: 11452
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 8171
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 751
  year: 2010
  publication-title: Nano Lett.
– volume: 201
  start-page: 172
  year: 2016
  publication-title: Electrochim. Acta
– volume: 132
  start-page: 13612
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 9869
  year: 2015
  publication-title: Chem. Rev.
– volume: 1
  start-page: 16064
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 39
  start-page: 303
  year: 2015
  publication-title: Int. J. Energy Res.
– volume: 7
  start-page: 2017
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 9500
  year: 2013
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1400337
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 9106
  year: 2014
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 1668
  year: 2016
  publication-title: Adv. Mater.
– volume: 52
  start-page: 11947
  year: 2016
  publication-title: Chem. Commun.
– volume: 130
  start-page: 5390
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 373
  year: 2016
  publication-title: Nano Energy
– volume: 55
  start-page: 10800
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 6762
  year: 2010
  publication-title: Langmuir
– volume: 2
  start-page: 1400015
  year: 2015
  publication-title: Adv. Sci.
– volume: 133
  start-page: 11854
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 157
  start-page: B1263
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 51
  start-page: 6773
  year: 2015
  publication-title: Chem. Commun.
– volume: 2
  start-page: e1501122
  year: 2016
  publication-title: Sci. Adv.
– volume: 5
  start-page: 1500936
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 2650
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 11231
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 464
  year: 2012
  publication-title: Chem. Mater.
– volume: 6
  start-page: 1600423
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 11496
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 14760
  year: 2014
  publication-title: Chem. Commun.
– volume: 5
  start-page: 73
  year: 2015
  publication-title: ACS Catal.
– volume: 53
  start-page: 102
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 12876
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 12930
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 8
  start-page: 568
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 7068
  year: 2015
  publication-title: ACS Catal.
– volume: 135
  start-page: 16977
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 45
  start-page: 59
  year: 2013
  publication-title: ECS Trans.
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 28
  start-page: 6845
  year: 2016
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2063
  year: 2011
  publication-title: Chem. – Eur. J.
– ident: e_1_2_7_10_1
  doi: 10.1038/natrevmats.2016.64
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.201400337
– ident: e_1_2_7_58_1
  doi: 10.1021/ja400555q
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201601406
– ident: e_1_2_7_41_1
  doi: 10.1021/ja104587v
– ident: e_1_2_7_14_1
  doi: 10.1149/04521.0059ecst
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1168049
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.201610413
– ident: e_1_2_7_25_1
  doi: 10.1021/nl904286r
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.chemrev.5b00073
– ident: e_1_2_7_60_1
  doi: 10.1002/advs.201400015
– ident: e_1_2_7_3_1
  doi: 10.1039/c3ee44059a
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201306588
– ident: e_1_2_7_43_1
  doi: 10.1039/C5CC01123J
– ident: e_1_2_7_34_1
  doi: 10.1021/ja505186m
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.201411125
– ident: e_1_2_7_61_1
  doi: 10.1002/aenm.201602068
– ident: e_1_2_7_45_1
  doi: 10.1038/ncomms12876
– ident: e_1_2_7_47_1
  doi: 10.1002/adfm.201401264
– ident: e_1_2_7_38_1
  doi: 10.1149/1.3456630
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201304867
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201505320
– ident: e_1_2_7_13_1
  doi: 10.1039/C5TA00078E
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_7_24_1
  doi: 10.1021/ja7106146
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_7_1_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_7_20_1
  doi: 10.1021/acscatal.5b02325
– ident: e_1_2_7_30_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_7_28_1
  doi: 10.1039/C4EE02281E
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201600423
– ident: e_1_2_7_35_1
  doi: 10.1021/ic501631h
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.201500936
– ident: e_1_2_7_55_1
  doi: 10.1002/anie.201500569
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1212858
– ident: e_1_2_7_5_1
  doi: 10.1016/j.electacta.2016.04.001
– ident: e_1_2_7_15_1
  doi: 10.1016/j.electacta.2014.04.036
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201505045
– ident: e_1_2_7_51_1
  doi: 10.1021/jacs.6b13100
– ident: e_1_2_7_17_1
  doi: 10.1002/chem.201003080
– ident: e_1_2_7_23_1
  doi: 10.1039/c3cc44342f
– ident: e_1_2_7_49_1
  doi: 10.1002/anie.201504830
– ident: e_1_2_7_29_1
  doi: 10.1021/am900219g
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms3390
– ident: e_1_2_7_59_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_7_16_1
  doi: 10.1073/pnas.1210315109
– ident: e_1_2_7_53_1
  doi: 10.1039/C6CC04776A
– ident: e_1_2_7_8_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_7_57_1
  doi: 10.1021/cs5014442
– ident: e_1_2_7_56_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_37_1
  doi: 10.1021/ja407115p
– ident: e_1_2_7_62_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_7_44_1
  doi: 10.1016/j.nanoen.2015.11.027
– ident: e_1_2_7_18_1
  doi: 10.1021/ja203184k
– ident: e_1_2_7_19_1
  doi: 10.1021/cm202554j
– ident: e_1_2_7_46_1
  doi: 10.1126/sciadv.1501122
– ident: e_1_2_7_26_1
  doi: 10.1021/la904112j
– ident: e_1_2_7_54_1
  doi: 10.1039/C4CC06446A
– ident: e_1_2_7_2_1
  doi: 10.1002/er.3230
– ident: e_1_2_7_31_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_7_42_1
  doi: 10.1021/acsami.5b02670
– ident: e_1_2_7_11_1
  doi: 10.1007/s12274-014-0591-z
SSID ssj0017734
Score 2.6570756
Snippet A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction...
A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bimetals
Carbon dioxide
catalysis
Catalysts
Charge transfer
Cobalt
ENERGY STORAGE
Materials science
Metal air batteries
metal–organic frameworks
Multi wall carbon nanotubes
Oxygen evolution reactions
oxygen reduction reactions
Platinum
Porosity
Pyrolysis
Rechargeable batteries
Zinc-oxygen batteries
zinc–air batteries
Title MO‐Co@N‐Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn–Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700795
https://www.proquest.com/docview/1946097333
https://www.osti.gov/biblio/1411443
Volume 27
WOSCitedRecordID wos000412324200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bi9NAFMcH7fqgD663xbqrnAdBfQjNZZJ0BGFLLyhsu1JcKb6EuWRgYUmWtC72bT-C4AfxO-0n8ZxJGtsHEfQpt8kkYc6Z-U_mzG8Ye5koKXxrU8_Xxvd4YrWndD_xotBIX3FhIuvo-ifpbNZfLMTHrVn8NR-i_eFGnuHqa3JwqZa939BQaSzNJCe-XCri22wvROONO2xvNJ-cnbQjCWlajywnAcV4BYsNuNEPe7s57DRMnRIdbEd0bktX1_ZM9v__rR-w-43uhEFtKA_Zrbx4xO5t0Qgfs5_T05vr78PyeIabUXmZGxjKSpUFvJ7CO_hSQFnBsHzzFj7TSiMwJxYUlBY-FNLVmpREFgYoduRiDWNHp8BGDQa6XqMCVi5IF06_rdFuYU7YWDKM3viq8QA8V8-0WAKqaTxyJKec5ndh7jfXPwbnFdRM0PUTdjYZfxq-95r1HDyNuiD2LOaQShEpIQVPUDclqE0sz2O8YFLUoTYIjMptILhVqVa-zLnyVWJ0Yq3EftUB6xRlkT9lENmob3yVBrkQXEWxREvz-5JrSbSewHSZtynMTDewc1pz4yKrMc1hRgWRtQXRZa_a9Jc15uOPKQ_JNjIUKETZ1RSOpFfYg8KOJY-67GhjMllTGSwz_J6EqEgRXg6dcfzlGdlgNJm2R8_-5aZDdpf2XdhhfMQ6q-pr_pzd0Ver82X1onGSX91WFkg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3ditNAFMcH7Qrqhd9i3VXPhaBehCbNJOkIgqUf7GLblbIrZW-G-cjAwpIsaV3s3T6C4IP4TvsknpOkcXshgnhVkkwnLfM_M_9JzvyGsdexVsJ3LvF8Y32Px8542vRiL-xa5WsubOhKuv4kmc16i4X4XGcT0lqYig_RPHCjyCj7awpweiDd-U0NVdbRUnICzCUiusl2OGoJRb4znI-PJ82rhCSpXi3HASV5BYsNudHvdrZr2BqZWjlG2JbrvO5dy8FnfP8__OwH7F7tPKFfSeUhu5Fmj9jdazzCx-zn9PDq8vsg_zjDj2F-nloYqELnGbydwgc4ySAvYJC_ew9faK8RmBMNCnIHB5kq-00qojILlD1ytoZRyafAYQ36ptqlAlZlmi4cflujcmFO4FiSRmd0UccAnqvWWiwB_TQelSynlFZ4Ye1Xlz_6pwVUVND1E3Y8Hh0N9r16RwfPoDOIPIc1JEqEWijBY3ROMboTx9MIL9gEnagLAqtTFwjudGK0r1KufR1bEzuncGb1lLWyPEufMQhd2LO-ToJUCK7DSKHW_J7iRhGvJ7Bt5m1aU5oad067bpzJCtTcldQQsmmINnvTlD-vQB9_LLlL4pBoUYizayghyaxwDoVTSx622d5GM7LuDpYS_09MXKQQL3dLdfzlHrI_HE-bo-f_8qVX7Pb-0XQiJwezT7vsDp0vkxCjPdZaFV_TF-yWuVidLouXdcT8AnwZGjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3ditNAFMcH7Yrohd9i3VXPhaBehCbNNOkIgqVtcLHtLsWV4k2YT1hYkpLWxd7tIwg-iO-0T-I5SRq3FyKIVyHJZJIw58z8JznzO4y9jJQUvnOx52vjezxy2lO6H3lh10hfcWFCV9L1J_Fs1l8sxHEdTUhrYSo-RPPBjTyj7K_Jwe3SuM5vaqg0jpaSE2AuFr3rbI9TJpkW2xvNk5NJ8yshjqtfy1FAQV7BYktu9Lud3Rp2RqZWjh62ozqvatdy8Enu_ofHvsfu1MoTBpWp3GfXbPaA3b7CI3zIfk6PLi--D_P3M9yM8qU1MJSFyjN4PYV38CWDvIBh_uYtfKZcIzAnGhTkDg4zWfabVERmBih65GwD45JPgcMaDHSVpQLWZZguHH3boOXCnMCxZBqd8XntA3isWmuxAtTTuFeynCyt8MLaLy9-DE4LqKigm0fsJBl_Gn7w6owOnkZl0PMc1hBLESohBY9QOUWoThy3PTxhYlSiLgiMsi4Q3KlYK19arnwVGR05J3Fm9Zi1sjyzTxiELuwbX8WBFYKrsCfR1vy-5FoSrycwbeZtWzPVNe6csm6cpRWouZtSQ6RNQ7TZq6b8sgJ9_LHkPhlHihKFOLuaApL0GudQOLXkYZsdbG0mrbuDVYrvExEXKcTT3dI6_nKPdDBKps3e03-56AW7eTxK0snh7OM-u0WHyxjE3gFrrYuv9hm7oc_Xp6viee0wvwDhOBmz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MO-Co%40N-Doped+Carbon+%28M+%3D+Zn+or+Co%29%3A+Vital+Roles+of+Inactive+Zn+and+Highly+Efficient+Activity+toward+Oxygen+Reduction%2FEvolution+Reactions+for+Rechargeable+Zn-Air+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Biaohua&rft.au=He%2C+Xiaobo&rft.au=Yin%2C+Fengxiang&rft.au=Wang%2C+Hao&rft.date=2017-10-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=37&rft_id=info:doi/10.1002%2Fadfm.201700795&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon