MO‐Co@N‐Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn–Air Battery
A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a...
Saved in:
| Published in: | Advanced functional materials Vol. 27; no. 37 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
05.10.2017
Wiley |
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.
MO‐Co@N‐doped carbon (M = Zn or Co) are prepared by using a bimetal metal–organic framework (containing Zn and Co) as precursor, showing excellent activity (EORR − EOER ≈ 0.78 V) and durability toward both oxygen reduction and evolution reactions as well as prominent Zn–air battery performance. It is revealed that inactive Zn plays vital roles in developing these highly efficient bifunctional catalysts. |
|---|---|
| AbstractList | A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.
MO‐Co@N‐doped carbon (M = Zn or Co) are prepared by using a bimetal metal–organic framework (containing Zn and Co) as precursor, showing excellent activity (EORR − EOER ≈ 0.78 V) and durability toward both oxygen reduction and evolution reactions as well as prominent Zn–air battery performance. It is revealed that inactive Zn plays vital roles in developing these highly efficient bifunctional catalysts. A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-x and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2. A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2. A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–N x and Co 3+ /Co 2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO 2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO 2 . |
| Author | Chen, Biaohua Shi, Ruixing Liu, Di‐Jia Yin, Hongwei Yin, Fengxiang Chen, Jinnan He, Xiaobo Wang, Hao |
| Author_xml | – sequence: 1 givenname: Biaohua surname: Chen fullname: Chen, Biaohua organization: Beijing University of Chemical Technology – sequence: 2 givenname: Xiaobo surname: He fullname: He, Xiaobo organization: Beijing University of Chemical Technology – sequence: 3 givenname: Fengxiang surname: Yin fullname: Yin, Fengxiang email: yinfx@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 4 givenname: Hao surname: Wang fullname: Wang, Hao organization: Argonne National Laboratory – sequence: 5 givenname: Di‐Jia surname: Liu fullname: Liu, Di‐Jia organization: Argonne National Laboratory – sequence: 6 givenname: Ruixing surname: Shi fullname: Shi, Ruixing organization: Beijing University of Chemical Technology – sequence: 7 givenname: Jinnan surname: Chen fullname: Chen, Jinnan organization: Beijing University of Chemical Technology – sequence: 8 givenname: Hongwei surname: Yin fullname: Yin, Hongwei organization: Beijing University of Chemical Technology |
| BackLink | https://www.osti.gov/biblio/1411443$$D View this record in Osti.gov |
| BookMark | eNqFkdFqFDEUhoNUsK3eeh30Ri92m0yyk44gdJ1ubaHrwqIi3oQzmWSbMk3WJNs6d30EwQfxnfokZlypIIhX53D-7_9zwtlDO847jdBTSsaUkOIAWnM1LggVhIhq8gDt0pKWI0aKw537nn56hPZivCQZE4zvoh_zxd3tt9ofvcvl2K91i2sIjXf4xRy_xp8d9gHX_uUr_NEm6PDSdzpib_CZA5XstR4QcC0-tauLrsczY6yy2iU8HWSbepz8DYQWL772K-3wUrebrHh3MLv23Wbo8gx-jSI2-bWlVhcQVhqabki_u_0-tQG_gZR06B-jhwa6qJ_8rvvow8nsfX06Ol-8Paun5yPFDulkZHKigIo1FVS8LAQri4IZridZaIUQ3FDaNtrQiptGqIaA5g1pylaVxoCYsH30bJvrY7IyKpvyVso7p1WSlFPKOcvQ8y20Dv7LRsckL_0muLyXzMElqQRjA8W3lAo-xqCNzGkw_DcFsJ2kRA73k8P95P39sm38l20d7BWE_t-Gamu4sZ3u_0PL6fHJ_I_3J338s_c |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2020_01_135 crossref_primary_10_3389_fenrg_2021_673923 crossref_primary_10_1016_j_electacta_2019_03_196 crossref_primary_10_1039_D0NR05403H crossref_primary_10_3390_ma14133754 crossref_primary_10_1039_C9RA08904G crossref_primary_10_1016_j_cej_2021_132199 crossref_primary_10_1016_j_fuel_2024_131969 crossref_primary_10_1016_j_ijhydene_2021_04_074 crossref_primary_10_1002_admi_201801281 crossref_primary_10_1002_cctc_201801678 crossref_primary_10_1016_j_apsusc_2022_156304 crossref_primary_10_1002_cssc_202102642 crossref_primary_10_1002_adfm_202301527 crossref_primary_10_1016_j_jclepro_2019_119314 crossref_primary_10_1002_aenm_202001287 crossref_primary_10_1016_j_fuel_2024_132770 crossref_primary_10_1007_s40820_021_00669_5 crossref_primary_10_1016_j_jcis_2021_03_142 crossref_primary_10_1039_C8EE03405B crossref_primary_10_1007_s12274_020_2751_7 crossref_primary_10_1016_j_jpowsour_2019_02_027 crossref_primary_10_1039_C9NR07270E crossref_primary_10_1016_j_jelechem_2021_115510 crossref_primary_10_1002_er_8719 crossref_primary_10_1016_j_jallcom_2023_169728 crossref_primary_10_1016_j_jcis_2022_01_134 crossref_primary_10_1016_j_cej_2018_06_059 crossref_primary_10_1002_celc_202000038 crossref_primary_10_1016_j_elecom_2020_106700 crossref_primary_10_1016_j_jcat_2019_07_055 crossref_primary_10_1016_j_jcis_2023_04_010 crossref_primary_10_1088_0256_307X_38_1_015201 crossref_primary_10_1007_s40820_022_00959_6 crossref_primary_10_1007_s40843_022_2070_7 crossref_primary_10_1038_s41427_022_00446_9 crossref_primary_10_1016_j_jcis_2021_05_173 crossref_primary_10_1016_j_jallcom_2020_156396 crossref_primary_10_3390_molecules28155885 crossref_primary_10_1016_j_apcatb_2024_124060 crossref_primary_10_1007_s12274_021_3837_6 crossref_primary_10_1016_j_ijhydene_2021_03_086 crossref_primary_10_1016_j_jcis_2020_11_095 crossref_primary_10_1002_ente_202400062 crossref_primary_10_1002_ange_202016882 crossref_primary_10_1016_j_diamond_2023_109776 crossref_primary_10_1007_s40820_020_00468_4 crossref_primary_10_1016_j_ccr_2022_214554 crossref_primary_10_1002_adfm_202007822 crossref_primary_10_1039_C9SC00505F crossref_primary_10_1016_j_matt_2021_01_004 crossref_primary_10_1039_C9SE01130G crossref_primary_10_1016_j_jcis_2019_03_079 crossref_primary_10_1016_j_jechem_2022_03_022 crossref_primary_10_1002_batt_202000006 crossref_primary_10_1016_j_ijhydene_2022_05_142 crossref_primary_10_1016_j_apsusc_2022_153250 crossref_primary_10_1016_j_electacta_2019_135531 crossref_primary_10_1016_j_ijhydene_2020_04_018 crossref_primary_10_3390_nano13010171 crossref_primary_10_1002_anie_202016882 crossref_primary_10_1088_2053_1591_acbae7 crossref_primary_10_1002_smll_202400095 crossref_primary_10_1016_j_ccr_2018_07_020 crossref_primary_10_1039_C9NR10943A crossref_primary_10_1002_cjoc_202100285 crossref_primary_10_1007_s40843_020_1276_8 crossref_primary_10_1016_j_jallcom_2024_174304 crossref_primary_10_1002_adma_202308798 crossref_primary_10_1002_adma_202002292 crossref_primary_10_1016_S1872_2067_18_63017_7 crossref_primary_10_1007_s40820_020_0406_6 crossref_primary_10_1016_j_inoche_2025_114849 crossref_primary_10_1007_s11581_022_04581_9 crossref_primary_10_3389_fnano_2021_659865 crossref_primary_10_1002_advs_201700691 crossref_primary_10_1002_smll_202205940 crossref_primary_10_1016_j_jpowsour_2019_126650 crossref_primary_10_1016_j_carbon_2022_06_015 crossref_primary_10_1016_j_electacta_2018_12_119 crossref_primary_10_1007_s12274_022_4154_4 crossref_primary_10_1088_1361_6528_ac3702 crossref_primary_10_1016_j_apsusc_2025_162479 crossref_primary_10_1002_celc_202100584 crossref_primary_10_1002_celc_202101310 crossref_primary_10_1002_smll_201903760 crossref_primary_10_1016_j_apsusc_2019_144758 crossref_primary_10_1016_j_cej_2021_130481 crossref_primary_10_1021_jacs_2c11446 crossref_primary_10_1039_C8CC02500B crossref_primary_10_1002_smll_202302727 crossref_primary_10_1002_adfm_202313307 crossref_primary_10_1016_j_gee_2021_05_008 crossref_primary_10_1039_D4EE00134F crossref_primary_10_3390_nano12224069 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1016_j_cej_2020_127112 crossref_primary_10_1016_j_jechem_2021_05_011 crossref_primary_10_1016_j_jpowsour_2020_229393 crossref_primary_10_1016_j_electacta_2019_134942 crossref_primary_10_1016_j_compositesb_2020_108058 crossref_primary_10_1039_C9QI00334G crossref_primary_10_1016_j_electacta_2020_135825 crossref_primary_10_1016_j_apsusc_2019_03_021 crossref_primary_10_1016_j_colsurfa_2022_129766 crossref_primary_10_3390_nano13030543 crossref_primary_10_1039_C8MH01397G crossref_primary_10_1002_slct_201800247 crossref_primary_10_1002_adma_202211603 crossref_primary_10_1007_s12274_020_3212_z crossref_primary_10_1016_j_cej_2024_155822 crossref_primary_10_1002_chem_201800075 crossref_primary_10_1002_batt_201900052 crossref_primary_10_1016_j_jcis_2022_05_076 crossref_primary_10_1016_j_jcat_2019_07_013 crossref_primary_10_1002_advs_202104768 crossref_primary_10_1002_adfm_202000503 crossref_primary_10_1016_j_snb_2018_11_010 crossref_primary_10_1002_aenm_201900375 crossref_primary_10_1039_D5NJ00965K crossref_primary_10_1002_celc_201902070 crossref_primary_10_1016_j_jiec_2023_11_055 crossref_primary_10_1002_sstr_202100144 crossref_primary_10_1016_j_applthermaleng_2021_117366 crossref_primary_10_1016_j_jechem_2020_04_067 crossref_primary_10_1016_j_jcat_2018_10_034 crossref_primary_10_1039_D1NR07913A crossref_primary_10_1002_anie_201916507 crossref_primary_10_1002_celc_202100687 crossref_primary_10_1039_C9NR09020G crossref_primary_10_1016_j_colsurfa_2022_129417 crossref_primary_10_1016_j_ccr_2020_213468 crossref_primary_10_1002_cssc_202002137 crossref_primary_10_1016_j_cej_2025_159694 crossref_primary_10_1016_j_apsusc_2020_147659 crossref_primary_10_1002_celc_201800805 crossref_primary_10_1007_s40843_022_2376_7 crossref_primary_10_1039_D3MH01130E crossref_primary_10_1016_j_ces_2022_118433 crossref_primary_10_1016_j_jallcom_2025_178835 crossref_primary_10_1002_adfm_202103360 crossref_primary_10_1016_j_jelechem_2022_116765 crossref_primary_10_1016_j_diamond_2024_111326 crossref_primary_10_1002_ange_201916507 crossref_primary_10_1016_j_cej_2019_03_147 crossref_primary_10_1016_j_jssc_2020_121185 crossref_primary_10_1016_j_ccr_2020_213214 crossref_primary_10_1002_aenm_201901997 crossref_primary_10_1002_batt_201800143 crossref_primary_10_3390_ma15020458 crossref_primary_10_1002_adma_201704898 crossref_primary_10_1016_j_cej_2022_135852 crossref_primary_10_1007_s40843_018_9359_7 crossref_primary_10_1002_smll_201801929 crossref_primary_10_1016_j_cej_2018_04_208 crossref_primary_10_1038_s41427_018_0063_0 crossref_primary_10_1039_D0QM00526F crossref_primary_10_1016_j_carbon_2020_04_042 crossref_primary_10_1039_D0RA03222K crossref_primary_10_1002_aenm_201801257 crossref_primary_10_1016_j_jallcom_2024_174103 crossref_primary_10_1002_cctc_202000410 |
| Cites_doi | 10.1038/natrevmats.2016.64 10.1002/aenm.201400337 10.1021/ja400555q 10.1002/adma.201601406 10.1021/ja104587v 10.1149/04521.0059ecst 10.1126/science.1168049 10.1002/anie.201610413 10.1021/nl904286r 10.1021/acs.chemrev.5b00073 10.1002/advs.201400015 10.1039/c3ee44059a 10.1002/anie.201306588 10.1039/C5CC01123J 10.1021/ja505186m 10.1002/anie.201411125 10.1002/aenm.201602068 10.1038/ncomms12876 10.1002/adfm.201401264 10.1149/1.3456630 10.1002/adma.201304867 10.1002/anie.201505320 10.1039/C5TA00078E 10.1002/anie.201604802 10.1021/ja7106146 10.1002/adma.201506112 10.1039/C4CS00015C 10.1021/acscatal.5b02325 10.1038/nnano.2015.48 10.1039/C4EE02281E 10.1002/aenm.201600423 10.1021/ic501631h 10.1002/aenm.201500936 10.1002/anie.201500569 10.1126/science.1212858 10.1016/j.electacta.2016.04.001 10.1016/j.electacta.2014.04.036 10.1002/adma.201505045 10.1021/jacs.6b13100 10.1002/chem.201003080 10.1039/c3cc44342f 10.1002/anie.201504830 10.1021/am900219g 10.1038/ncomms3390 10.1002/cctc.201000397 10.1073/pnas.1210315109 10.1039/C6CC04776A 10.1039/C4CS00470A 10.1021/cs5014442 10.1126/science.aad0832 10.1021/ja407115p 10.1002/anie.201206720 10.1016/j.nanoen.2015.11.027 10.1021/ja203184k 10.1021/cm202554j 10.1126/sciadv.1501122 10.1021/la904112j 10.1039/C4CC06446A 10.1002/er.3230 10.1038/nenergy.2015.6 10.1021/acsami.5b02670 10.1007/s12274-014-0591-z |
| ContentType | Journal Article |
| Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
| DOI | 10.1002/adfm.201700795 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 1411443 10_1002_adfm_201700795 ADFM201700795 |
| Genre | article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: buctrc201526; PYCC1706 – fundername: Changzhou Sci &Tech Program funderid: CJ20159006; CJ20160007 – fundername: Natural Science Foundation of Jiangsu Province of China funderid: BK20161200 – fundername: National Natural Science Foundation of China funderid: 21276018 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M AAHHS AAPBV ABHUG ACCFJ ACXME ADAWD ADDAD ADZOD AEEZP AEQDE AEUQT AFPWT AFVGU AGJLS AIWBW AJBDE OTOTI RWI WRC |
| ID | FETCH-LOGICAL-c3815-feac7a93b9a9462736223f4e5fead7774f11dbef194fb7cb0ae4b0b6dc6ffa753 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 354 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412324200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Fri May 19 00:34:58 EDT 2023 Fri Jul 25 05:45:00 EDT 2025 Sat Nov 29 07:21:03 EST 2025 Tue Nov 18 21:58:20 EST 2025 Wed Aug 20 07:25:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3815-feac7a93b9a9462736223f4e5fead7774f11dbef194fb7cb0ae4b0b6dc6ffa753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-06CH11357 Fundamental Research Funds for the Central Universities National Natural Science Foundation of China (NNSFC) |
| PQID | 1946097333 |
| PQPubID | 2045204 |
| PageCount | 14 |
| ParticipantIDs | osti_scitechconnect_1411443 proquest_journals_1946097333 crossref_citationtrail_10_1002_adfm_201700795 crossref_primary_10_1002_adfm_201700795 wiley_primary_10_1002_adfm_201700795_ADFM201700795 |
| PublicationCentury | 2000 |
| PublicationDate | October 5, 2017 |
| PublicationDateYYYYMMDD | 2017-10-05 |
| PublicationDate_xml | – month: 10 year: 2017 text: October 5, 2017 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2010; 10 2017; 7 2015; 39 2013; 4 2014; 26 2014; 24 2011; 17 2014; 136 2012; 52 2010; 26 2014; 4 2015; 44 2010; 157 2012; 24 2014; 7 2014; 50 2009; 323 2016; 351 2014; 53 2015; 2 2011; 334 2015; 5 2015; 3 2013; 49 2016; 19 2015; 51 2013; 45 2015; 54 2015; 10 2016; 201 2016; 52 2011; 3 2015; 8 2015; 7 2011; 133 2014; 43 2012; 109 2017; 139 2016; 55 2016; 6 2016; 7 2016; 1 2016; 2 2015; 115 2017; 56 2010; 132 2013; 135 2014; 140 2016; 28 2009; 1 2008; 130 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 135 start-page: 4516 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 2047 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 23 year: 2015 publication-title: Nano Res. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 1623 year: 2009 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2390 year: 2013 publication-title: Nat. Commun. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 3336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 19569 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 4646 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 1324 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 24 start-page: 5956 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1602068 year: 2017 publication-title: Adv. Energy Mater. – volume: 140 start-page: 359 year: 2014 publication-title: Electrochim. Acta – volume: 54 start-page: 10102 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 15006 year: 2016 publication-title: Nat. Energy – volume: 136 start-page: 11452 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 8171 year: 2015 publication-title: J. Mater. Chem. A – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 751 year: 2010 publication-title: Nano Lett. – volume: 201 start-page: 172 year: 2016 publication-title: Electrochim. Acta – volume: 132 start-page: 13612 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 9869 year: 2015 publication-title: Chem. Rev. – volume: 1 start-page: 16064 year: 2016 publication-title: Nat. Rev. Mater. – volume: 39 start-page: 303 year: 2015 publication-title: Int. J. Energy Res. – volume: 7 start-page: 2017 year: 2014 publication-title: Energy Environ. Sci. – volume: 49 start-page: 9500 year: 2013 publication-title: Chem. Commun. – volume: 4 start-page: 1400337 year: 2014 publication-title: Adv. Energy Mater. – volume: 53 start-page: 9106 year: 2014 publication-title: Inorg. Chem. – volume: 28 start-page: 1668 year: 2016 publication-title: Adv. Mater. – volume: 52 start-page: 11947 year: 2016 publication-title: Chem. Commun. – volume: 130 start-page: 5390 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 373 year: 2016 publication-title: Nano Energy – volume: 55 start-page: 10800 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 6762 year: 2010 publication-title: Langmuir – volume: 2 start-page: 1400015 year: 2015 publication-title: Adv. Sci. – volume: 133 start-page: 11854 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 157 start-page: B1263 year: 2010 publication-title: J. Electrochem. Soc. – volume: 51 start-page: 6773 year: 2015 publication-title: Chem. Commun. – volume: 2 start-page: e1501122 year: 2016 publication-title: Sci. Adv. – volume: 5 start-page: 1500936 year: 2015 publication-title: Adv. Energy Mater. – volume: 55 start-page: 2650 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 11231 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 464 year: 2012 publication-title: Chem. Mater. – volume: 6 start-page: 1600423 year: 2016 publication-title: Adv. Energy Mater. – volume: 52 start-page: 11496 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 14760 year: 2014 publication-title: Chem. Commun. – volume: 5 start-page: 73 year: 2015 publication-title: ACS Catal. – volume: 53 start-page: 102 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 12876 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 12930 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 8 start-page: 568 year: 2015 publication-title: Energy Environ. Sci. – volume: 5 start-page: 7068 year: 2015 publication-title: ACS Catal. – volume: 135 start-page: 16977 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 45 start-page: 59 year: 2013 publication-title: ECS Trans. – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 28 start-page: 6845 year: 2016 publication-title: Adv. Mater. – volume: 17 start-page: 2063 year: 2011 publication-title: Chem. – Eur. J. – ident: e_1_2_7_10_1 doi: 10.1038/natrevmats.2016.64 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.201400337 – ident: e_1_2_7_58_1 doi: 10.1021/ja400555q – ident: e_1_2_7_6_1 doi: 10.1002/adma.201601406 – ident: e_1_2_7_41_1 doi: 10.1021/ja104587v – ident: e_1_2_7_14_1 doi: 10.1149/04521.0059ecst – ident: e_1_2_7_9_1 doi: 10.1126/science.1168049 – ident: e_1_2_7_52_1 doi: 10.1002/anie.201610413 – ident: e_1_2_7_25_1 doi: 10.1021/nl904286r – ident: e_1_2_7_48_1 doi: 10.1021/acs.chemrev.5b00073 – ident: e_1_2_7_60_1 doi: 10.1002/advs.201400015 – ident: e_1_2_7_3_1 doi: 10.1039/c3ee44059a – ident: e_1_2_7_4_1 doi: 10.1002/anie.201306588 – ident: e_1_2_7_43_1 doi: 10.1039/C5CC01123J – ident: e_1_2_7_34_1 doi: 10.1021/ja505186m – ident: e_1_2_7_39_1 doi: 10.1002/anie.201411125 – ident: e_1_2_7_61_1 doi: 10.1002/aenm.201602068 – ident: e_1_2_7_45_1 doi: 10.1038/ncomms12876 – ident: e_1_2_7_47_1 doi: 10.1002/adfm.201401264 – ident: e_1_2_7_38_1 doi: 10.1149/1.3456630 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201304867 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201505320 – ident: e_1_2_7_13_1 doi: 10.1039/C5TA00078E – ident: e_1_2_7_22_1 doi: 10.1002/anie.201604802 – ident: e_1_2_7_24_1 doi: 10.1021/ja7106146 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201506112 – ident: e_1_2_7_1_1 doi: 10.1039/C4CS00015C – ident: e_1_2_7_20_1 doi: 10.1021/acscatal.5b02325 – ident: e_1_2_7_30_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_7_28_1 doi: 10.1039/C4EE02281E – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201600423 – ident: e_1_2_7_35_1 doi: 10.1021/ic501631h – ident: e_1_2_7_50_1 doi: 10.1002/aenm.201500936 – ident: e_1_2_7_55_1 doi: 10.1002/anie.201500569 – ident: e_1_2_7_36_1 doi: 10.1126/science.1212858 – ident: e_1_2_7_5_1 doi: 10.1016/j.electacta.2016.04.001 – ident: e_1_2_7_15_1 doi: 10.1016/j.electacta.2014.04.036 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201505045 – ident: e_1_2_7_51_1 doi: 10.1021/jacs.6b13100 – ident: e_1_2_7_17_1 doi: 10.1002/chem.201003080 – ident: e_1_2_7_23_1 doi: 10.1039/c3cc44342f – ident: e_1_2_7_49_1 doi: 10.1002/anie.201504830 – ident: e_1_2_7_29_1 doi: 10.1021/am900219g – ident: e_1_2_7_33_1 doi: 10.1038/ncomms3390 – ident: e_1_2_7_59_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_7_16_1 doi: 10.1073/pnas.1210315109 – ident: e_1_2_7_53_1 doi: 10.1039/C6CC04776A – ident: e_1_2_7_8_1 doi: 10.1039/C4CS00470A – ident: e_1_2_7_57_1 doi: 10.1021/cs5014442 – ident: e_1_2_7_56_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_37_1 doi: 10.1021/ja407115p – ident: e_1_2_7_62_1 doi: 10.1002/anie.201206720 – ident: e_1_2_7_44_1 doi: 10.1016/j.nanoen.2015.11.027 – ident: e_1_2_7_18_1 doi: 10.1021/ja203184k – ident: e_1_2_7_19_1 doi: 10.1021/cm202554j – ident: e_1_2_7_46_1 doi: 10.1126/sciadv.1501122 – ident: e_1_2_7_26_1 doi: 10.1021/la904112j – ident: e_1_2_7_54_1 doi: 10.1039/C4CC06446A – ident: e_1_2_7_2_1 doi: 10.1002/er.3230 – ident: e_1_2_7_31_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_7_42_1 doi: 10.1021/acsami.5b02670 – ident: e_1_2_7_11_1 doi: 10.1007/s12274-014-0591-z |
| SSID | ssj0017734 |
| Score | 2.6570756 |
| Snippet | A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction... A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Bimetals Carbon dioxide catalysis Catalysts Charge transfer Cobalt ENERGY STORAGE Materials science Metal air batteries metal–organic frameworks Multi wall carbon nanotubes Oxygen evolution reactions oxygen reduction reactions Platinum Porosity Pyrolysis Rechargeable batteries Zinc-oxygen batteries zinc–air batteries |
| Title | MO‐Co@N‐Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn–Air Battery |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700795 https://www.proquest.com/docview/1946097333 https://www.osti.gov/biblio/1411443 |
| Volume | 27 |
| WOSCitedRecordID | wos000412324200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBZttof20N0-lqb7YA6FtgeT-CE5KhQ25EELm2wJ3RJ6MZItwcJiL066NLf9CYX-kP6n_SWdkR1vciiF9mTLkmUbzUjfWDPfMPYqViaMeMg9pTUaKAoxnJRZz7OCdrW41sY4yvzTeDrtzefy00YUf8UP0fxwI81w8zUpuNKLzh1pqMosRZITv1ws-X22E6Dw8hbbGc7G56fNTkIcVzvLwicfL3--Jm7sBp3tHrYWplaBCrYFOjehq1t7xrv__9Z77HGNO6FfCcoTds_kT9mjDTbCZ-zX5Oz25segOJniYVhcmQwGqtRFDm8m8B6-5lCUMCjevoMvlGkEZsQFBYWFj7lysyY1UXkG5DtyuYKRY6fARQ36aZWjApbOSRfOvq9QbmFGtLEkGJ3Rda0BeK2KtFgAomksOSYnQ_Fd2Pvtzc_-RQkVJ-jqOTsfjz4PPnh1PgcvRVzAPYs9xEqGWioZCcRNArGJjQzHiixGHGp9P9PG-jKyOk51V5lId7XIUmGtQrtqn7XyIjcvGAjy2KIgWyEkAkIuEdd1M-n3TKh7gVZt5q0HM0lrsnPKuXGZVDTNQUIDkTQD0Wavm_ZXFc3HH1sekGwkCFCIZTcld6R0iRYUGpZR2GaHa5FJ6slgkeD3CGJFCrE6cMLxl2ck_eF40pRe_stNB-whnTu3Q37IWsvymzliD9Lr5cWiPK6V5DdyVxSN |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swEBdbOtj20P1nWbvtHgbbHkzi2JajwWAhf2hZko7QjtAXIdkSFIpdnKwsb_0IhX6Qfad-kt7Jjtc8jMHYk5Elyza6k34n3f2OsXexMkEYBZGntEYDRSGGEyLtepbTqVaktTGOMn8cT6fd-Vx8q7wJKRam5IeoN9xIM9x8TQpOG9Kt36yhKrUUSk4Ec7GI7rKtEGUJhXxrMBsdjeujhDguj5a5T05e_nzN3NjutDZ72FiZGjlq2AbqvI1d3eIzevQfPvsx266QJ_RKUXnC7pjsKXt4i4_wGfs1Obi-uOznX6Z4GeRnJoW-KnSewYcJfIbjDPIC-vnHT_Cdco3AjNigILewnyk3b1ITlaVA3iOnKxg6fgpc1qCXlFkqYOncdOHg5wolF2ZEHEui0RqeVzqA98pYiwUgnsaS43IyFOGFvV9fXPVOCihZQVfP2dFoeNjf86qMDl6CyCDyLPYQKxFooUTIETlxRCc2NBFWpDEiUev7qTbWF6HVcaLbyoS6rXmacGsVWlYvWCPLM_OSASefLQqz5VwgJIwEIrt2KvyuCXS3o1WTeevRlElFd05ZN05lSdTckTQQsh6IJntftz8riT7-2HKHhEMiRCGe3YQckpIl2lBoWoZBk-2uZUZW08FC4v9w4kUKsLrjpOMv75C9wWhSl179y0Nv2f29w8lYjvenX3fYA7rvnBCjXdZYFj_Ma3YvOV-eLIo3lcbcAPs3GH0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9NAEF-0J6IP_hfrnToPgvoQ2jTJpisIlrbBw7Z3FE-KL8tudhcOjqSk9bBv9xEEP4jf6T6JM0karw8iiE9h_2STsDO7v8nO_Iaxl7GyQRgFkae0RgNFIYYTwvQ9x-lUK9La2pIyfxLPZv3FQhzX3oQUC1PxQzQ_3EgzyvWaFNwujev8Zg1VxlEoORHMxSK6zvZCyiTTYnujeXIyaY4S4rg6WuY-OXn5iy1zY7fX2R1hZ2dq5ahhO6jzKnYtN5_k7n947XvsTo08YVCJyn12zWYP2O0rfIQP2c_p0eXF92H-foaXUb60Boaq0HkGr6fwDr5kkBcwzN-8hc-UawTmxAYFuYPDTJXrJnVRmQHyHjnbwLjkp8BtDQZplaUC1qWbLhx926DkwpyIY0k0OuPzWgewroq1WAHiaSyVXE6WIrxw9MuLH4PTAipW0M0jdpKMPw0_eHVGBy9FZBB5DkeIlQi0UCLkiJw4ohMX2ggbTIxI1Pm-0db5InQ6TnVX2VB3NTcpd06hZfWYtbI8s08YcPLZojBbzgVCwkggsusa4fdtoPs9rdrM286mTGu6c8q6cSYrouaepImQzUS02aum_7Ii-vhjz30SDokQhXh2U3JIStdoQ6FpGQZtdrCVGVkvByuJ38OJFynA5l4pHX95hhyMkmlTevovN71gN49HiZwczj7us1tUXfogRgestS6-2mfsRnq-Pl0Vz2uF-QViIBf4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MO%E2%80%90Co%40N%E2%80%90Doped+Carbon+%28M+%3D+Zn+or+Co%29%3A+Vital+Roles+of+Inactive+Zn+and+Highly+Efficient+Activity+toward+Oxygen+Reduction%2FEvolution+Reactions+for+Rechargeable+Zn%E2%80%93Air+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Biaohua&rft.au=He%2C+Xiaobo&rft.au=Yin%2C+Fengxiang&rft.au=Wang%2C+Hao&rft.date=2017-10-05&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=37&rft_id=info:doi/10.1002%2Fadfm.201700795&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201700795 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |