Realising transfer learning through convolutional neural network and support vector machine for mental task classification

Electroencephalogram (EEG) measures brainwaves that have been the widely used modality for brain–computer interface (BCI) applications. EEG signal with machine learning has gained substantial success in the BCI. However, the availability of limited training data, appropriate model selection and high...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters Vol. 56; no. 25; pp. 1375 - 1378
Main Authors: Singh, D, Singh, S
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 10.12.2020
Subjects:
BCI
BCI
ISSN:0013-5194, 1350-911X, 1350-911X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electroencephalogram (EEG) measures brainwaves that have been the widely used modality for brain–computer interface (BCI) applications. EEG signal with machine learning has gained substantial success in the BCI. However, the availability of limited training data, appropriate model selection and high false-positive rates are the challenges that need immediate attention. Therefore, in this Letter, the authors present a mental task classification model based on the notion of transfer learning that addresses the issue of data scarcity, model selection and misclassification ratio. In the framework, the proposed model uses pre-trained network for the extraction of diverse feature and classify using support vector machine. The authors employed four pre-trained networks to identify the optimal network for the proposed framework: Vgg16, Vgg19, Resnet18 and Resnet50. The highest classification accuracy of 86.85% (using Resnet50) was achieved using transfer learning. Comparison results showed that convolutional neural network-based approach outperformed conventional machine learning approaches and hence it can be concluded that the EEG-based classification of the mental task using transfer learning model could be used in developing a superior model despite the limited data availability.
AbstractList Electroencephalogram (EEG) measures brainwaves that have been the widely used modality for brain–computer interface (BCI) applications. EEG signal with machine learning has gained substantial success in the BCI. However, the availability of limited training data, appropriate model selection and high false‐positive rates are the challenges that need immediate attention. Therefore, in this Letter, the authors present a mental task classification model based on the notion of transfer learning that addresses the issue of data scarcity, model selection and misclassification ratio. In the framework, the proposed model uses pre‐trained network for the extraction of diverse feature and classify using support vector machine. The authors employed four pre‐trained networks to identify the optimal network for the proposed framework: Vgg16, Vgg19, Resnet18 and Resnet50. The highest classification accuracy of 86.85% (using Resnet50) was achieved using transfer learning. Comparison results showed that convolutional neural network‐based approach outperformed conventional machine learning approaches and hence it can be concluded that the EEG‐based classification of the mental task using transfer learning model could be used in developing a superior model despite the limited data availability.
Author Singh, S
Singh, D
Author_xml – sequence: 1
  givenname: D
  surname: Singh
  fullname: Singh, D
  email: Deepak.singh1@bennett.edu.in
  organization: Department of Computer Science and Engineering, Bennett University, Greater Noida 201310, India
– sequence: 2
  givenname: S
  surname: Singh
  fullname: Singh, S
  organization: Department of Computer Science and Engineering, MATS University, Raipur 492004, India
BookMark eNp9kE9LAzEQxYMoWKs3P0AOHjy4Nf922z2qtCoUBFHwtsTspI1Nk5Jklfrp3W09iFRPMwy_N_PmHaF95x0gdErJgBJRXoIdMMLIgBWc7aEe5TnJSkpf9lGPEMqznJbiEJ3EaF4JFVQURNAe-nwEaU00boZTkC5qCNiCDG4zmQffzOZYeffubZOMd9JiB03YlPThwwJLV-PYrFY-JPwOKvmAl1LNjQOsux5caukk4wIrK9vz2ijZrTpGB1raCCfftY-eJ-Onm7ts-nB7f3M1zRQfUZEJSaWmZS2JqGsuQI2AFLUYSaBiyLguVQmMCQ1aaFJrTgkpcqaHQyYBVF7yPmLbvSr4GAPoSpm0cdB-bGxFSdUFWIGtugCrLsBWdPFLtApmKcP6Lzzf4h_GwvpfthpPp-x6Qoa8EK3ubKszkKo334Q24NgSP_BV-1Mfne_Adjr5AjQmoFk
CitedBy_id crossref_primary_10_1109_JIOT_2022_3232481
crossref_primary_10_4018_IJBCE_301215
crossref_primary_10_1111_coin_70112
crossref_primary_10_1155_2022_6889564
crossref_primary_10_1109_ACCESS_2022_3158940
crossref_primary_10_1109_ACCESS_2021_3086807
crossref_primary_10_1109_ACCESS_2025_3571437
Cites_doi 10.1109/ICASSP.2018.8462115
10.1109/ICOSP.2004.1442216
10.1109/EMBC44109.2020.9175344
10.1109/10.64464
10.1007/s10916‐008‐9215‐z
10.1007/s00500‐014‐1443‐1
10.1109/EMBC.2019.8857359
10.1109/TSMC.2019.2917599
10.1007/978-3-030-01424-7_27
10.1109/TCDS.2020.3007453
10.1016/j.neucom.2020.07.050
10.1109/TNSRE.2003.814441
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2632
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1378
ExternalDocumentID 10_1049_el_2020_2632
ELL2BF07364
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3814-4a1af19da04dd34ec8e06d48ae14723f9c9e224fef4f0df3100652f772aeec593
IEDL.DBID 24P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Wed Oct 29 21:14:12 EDT 2025
Tue Nov 18 22:27:20 EST 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 06:33:42 EST 2021
Wed Jan 06 04:41:12 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords brain-computer interfaces
misclassification ratio
Resnet50
classification accuracy
diverse feature extraction
brain-computer interface applications
mental task classification model
data scarcity
optimal network
feature extraction
pre-trained network
data availability
training data
conventional machine learning approaches
learning (artificial intelligence)
EEG-based classification
electroencephalography
brainwaves
support vector machines
model selection
BCI
false-positive rates
EEG signal
transfer learning model
electroencephalogram
signal classification
medical signal processing
Vgg19
support vector machine
Resnet18
Vgg16
convolutional neural nets
convolutional neural network-based approach
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3814-4a1af19da04dd34ec8e06d48ae14723f9c9e224fef4f0df3100652f772aeec593
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.2632
PageCount 4
ParticipantIDs crossref_citationtrail_10_1049_el_2020_2632
iet_journals_10_1049_el_2020_2632
wiley_primary_10_1049_el_2020_2632_ELL2BF07364
crossref_primary_10_1049_el_2020_2632
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Garrett, D.; Peterson, D.A.; Anderson, C.W. (C4) 2003; 11
Keirn, Z.A.; Aunon, J.I. (C12) 1990; 37
Zhang, L.; He, W.; He, C. (C14) 2010; 34
Gupta, A.; Khan, R.U.; Singh, V.K. (C2) 2020
Gupta, A.; Agrawal, R.K.; Kirar, J.S. (C13) 2019
Gupta, A.; Agrawal, R.K.; Kaur, B. (C5) 2015; 19
Nandish, M.; Stafford, M.; Kumar, P.H. (C3) 2012; 2
2010; 34
2019
2018
2012; 2
2004
2015; 19
1990; 37
2020
2018; 11141
2003; 11
e_1_2_5_14_2
e_1_2_5_13_2
e_1_2_5_9_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_6_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_11_2
e_1_2_5_3_2
e_1_2_5_2_2
Nandish M. (e_1_2_5_4_2) 2012; 2
References_xml – volume: 37
  start-page: 1209
  issue: 12
  year: 1990
  end-page: 1214
  ident: C12
  article-title: A new mode of communication between man and his surroundings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  end-page: 144
  ident: C4
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification’
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 1
  year: 2019
  end-page: 13
  ident: C13
  article-title: On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 34
  start-page: 51
  issue: 1
  year: 2010
  end-page: 60
  ident: C14
  article-title: Improving mental task classification by adding high frequency band information
  publication-title: J. Med. Syst.
– volume: 2
  start-page: 1
  issue: 4
  year: 2012
  end-page: 5
  ident: C3
  article-title: Feature extraction and classification of EEG signal using neural network based techniques
  publication-title: Int. J. Eng. Innov. Technol.
– start-page: 558
  year: 2020
  end-page: 584
  ident: C2
  article-title: A novel approach for classification of mental tasks using multiview ensemble learning (MEL)’
  publication-title: Neurocomputing
– volume: 19
  start-page: 2799
  issue: 10
  year: 2015
  end-page: 2812
  ident: C5
  article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
  publication-title: Soft Comput..
– volume: 2
  start-page: 1
  issue: 4
  year: 2012
  end-page: 5
  article-title: Feature extraction and classification of EEG signal using neural network based techniques
  publication-title: Int. J. Eng. Innov. Technol.
– start-page: 2206
  year: 2004
  end-page: 2209
  article-title: Classification of mental tasks using de‐noised EEG signals
– volume: 34
  start-page: 51
  issue: 1
  year: 2010
  end-page: 60
  article-title: Improving mental task classification by adding high frequency band information
  publication-title: J. Med. Syst.
– start-page: 1
  year: 2019
  end-page: 13
  article-title: On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 37
  start-page: 1209
  issue: 12
  year: 1990
  end-page: 1214
  article-title: A new mode of communication between man and his surroundings
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 3040
  year: 2020
  end-page: 3045
– start-page: 2547
  year: 2019
  end-page: 2550
  article-title: A convolutional neural network based framework for classification of seizure types
– volume: 19
  start-page: 2799
  issue: 10
  year: 2015
  end-page: 2812
  article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
  publication-title: Soft Comput..
– start-page: 558
  year: 2020
  end-page: 584
  article-title: A novel approach for classification of mental tasks using multiview ensemble learning (MEL)’
  publication-title: Neurocomputing
– start-page: 1
  year: 2020
  end-page: 16
– start-page: 1
  year: 2020
  end-page: 9
– volume: 11141
  start-page: 270
  year: 2018
  end-page: 279
  article-title: A survey on deep transfer learning
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  end-page: 144
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification’
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 916
  year: 2018
  end-page: 920
– ident: e_1_2_5_12_2
  doi: 10.1109/ICASSP.2018.8462115
– ident: e_1_2_5_7_2
  doi: 10.1109/ICOSP.2004.1442216
– ident: e_1_2_5_2_2
– ident: e_1_2_5_8_2
  doi: 10.1109/EMBC44109.2020.9175344
– ident: e_1_2_5_13_2
  doi: 10.1109/10.64464
– ident: e_1_2_5_15_2
  doi: 10.1007/s10916‐008‐9215‐z
– ident: e_1_2_5_6_2
  doi: 10.1007/s00500‐014‐1443‐1
– ident: e_1_2_5_11_2
  doi: 10.1109/EMBC.2019.8857359
– ident: e_1_2_5_14_2
  doi: 10.1109/TSMC.2019.2917599
– ident: e_1_2_5_10_2
  doi: 10.1007/978-3-030-01424-7_27
– volume: 2
  start-page: 1
  issue: 4
  year: 2012
  ident: e_1_2_5_4_2
  article-title: Feature extraction and classification of EEG signal using neural network based techniques
  publication-title: Int. J. Eng. Innov. Technol.
– ident: e_1_2_5_9_2
  doi: 10.1109/TCDS.2020.3007453
– ident: e_1_2_5_3_2
  doi: 10.1016/j.neucom.2020.07.050
– ident: e_1_2_5_5_2
  doi: 10.1109/TNSRE.2003.814441
SSID ssib014146041
ssj0012997
Score 2.4079998
Snippet Electroencephalogram (EEG) measures brainwaves that have been the widely used modality for brain–computer interface (BCI) applications. EEG signal with machine...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1375
SubjectTerms BCI
brainwaves
brain‐computer interface applications
brain‐computer interfaces
classification accuracy
conventional machine learning approaches
convolutional neural nets
convolutional neural network‐based approach
data availability
data scarcity
diverse feature extraction
EEG signal
EEG‐based classification
electroencephalogram
electroencephalography
false‐positive rates
feature extraction
learning (artificial intelligence)
medical signal processing
mental task classification model
misclassification ratio
model selection
optimal network
pre‐trained network
Resnet18
Resnet50
signal classification
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
support vector machine
support vector machines
training data
transfer learning model
Vgg16
Vgg19
Title Realising transfer learning through convolutional neural network and support vector machine for mental task classification
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2632
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2632
Volume 56
WOSCitedRecordID wos000604957700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9uetCD3-LUSQQ9STVt048cVTYUxhDxY7eSJi8w1Dm2uoN_vXlpne4wQby0JXlpS95HHnkvv0fIcW4MjyGNPMMMeBwY80ScKk9yLnypEpAOZ_uxk3S7aa8nbqsNNzwLU-JDTDfcUDOcvUYFl3lZhcQ6tchEDBwE7AwBx2tk0ffDFEs3BPx2GkWwptYVVwkjhkrdqxLf7fjzn6NnlqRaH4pZR9WtNO21__7jOlmtfEx6UQrFBlmAwSZZ-YE8uEU-7gCRD-0zLZzrCiNaFZCwLWXtHooZ6ZVk2tch8qW7ubxxKgeajt-H6L7Tidv6p68uMROowWd3zJIWcvxMFXromJLkpGCbPLRb91fXXlWGwVN2Oecel740vtCSca1DDioFFmueSvB5EoRGKAHWETBguGHaYMQgjgJj3XYJoCIR7pD64G0Au4RKles8SqxNMJqzVEnbr1WucpHISASqQU6_OJGpCqMcS2W8ZC5WzkUGLxnOaIYz2iAnU-phic0xh-7IMjWrlHM8h6Y5Q9PqfPdlQ20apGT0rx-yozrBZdtazZjv_XXAPlnGdkyV8dkBqRejd2iSJTUp-uPRoRNse3266X4C_Wf7uw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NhgR7YHxq3cYwEjyhgJM6H35kExWIUCHER98ixz5LFVCqNu3D_vr5nFDoA5OmPcWK75LIvjtffOffAeyX1ooEsziw3GIgkPNAJpkOlBAyVDpF5XG27_K02816PXnV1DmlszA1PsRsw400w9trUnDakK5_OAWBZCJFDiJ-RIjjC_BROF-Dajfcn3dnYQRna311lXbMSat7Tea74z9-yz23Ji30sZr3VP1S0_n83x-5BquNl8lOarFYhw842IBPb7AHN-H3NRL2oWuzyjuvOGJNCQl3p67ewygnvZFN9zjCvvQXnznO1MCw8WRIDjyb-s1_9uRTM5FZavuDlqxS4wemyUenpCQvB1tw2zm9-XUWNIUYAu0WdBEIFSobSqO4MKYtUGfIEyMyhaFIo7aVWqJzBSxaYbmxFDNI4sg6x10h6li2t2Fx8DzAL8CULk0Zp84qWCN4ppXrN7rUpUxVLCPdgsOXqSh0g1JOxTIeCx8tF7LAx4JGtKARbcHBjHpYo3O8Q7fnZrVo1HP8Ds3OHM1p_tpXDI1tQT3Tf32R48qjnx1nNxPx9V8ZdmH57OYyL_Lz7sU3WCEaSpwJ-XdYrEYT3IElPa3649EPL-V_AK7Y_wQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t3YTYA-NTFOgwEjyhDCe9fPgRtlVDVFU1DdS3yLHPUkUpVZvtgb9-Pid060OR0J5ixXdJ5LuzL77z7wDeV85hRkUaOekoQpIyUllhIo2oYm1y0gFn-8cwH42KyUSN2zqnfBamwYdYb7ixZYT5mg2cFtY1P5zIIJnEkYNEHjPi-C7sYZrHrNYJjtdhBD_Xhuoq_VSyVU_azHfP_-ku98aatDuletNTDUvN4PDeH_kYHrVepvjcqMUT2KH5Uzi4gz34DP5cEGMf-raog_NKS9GWkPB3muo9gnPSW930j2Psy3AJmeNCz61YXS3YgRfXYfNf_AqpmSQct8NBS1Hr1U9h2EfnpKSgB8_h--Ds8uQ8agsxRMYv6BihjrWLldUSre0jmYJkZrHQFGOe9J0yirwr4Mihk9ZxzCBLE-cdd01kUtV_AZ357zm9BKFNZas097OCsygLo32_NZWpVK5TlZgufPwritK0KOVcLGNWhmg5qpJmJY9oySPahQ9r6kWDzrGF7p2Xatma52oLTW-D5mx421d6oXahkfQ_X-S5hsmXgZ83M3z1vwxv4cH4dFAOv46-vYaHTMJ5M7F8A516eUU92DfX9XS1PApKfgO6Zv4b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realising+transfer+learning+through+convolutional+neural+network+and+support+vector+machine+for+mental+task+classification&rft.jtitle=Electronics+letters&rft.au=Singh%2C+D&rft.au=Singh%2C+S&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1375&rft.epage=1378&rft_id=info:doi/10.1049%2Fel.2020.2632&rft.externalDocID=10_1049_el_2020_2632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon