Brain MRI-based Wilson disease tissue classification: an optimised deep transfer learning approach
Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visual...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 56; číslo 25; s. 1395 - 1398 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
10.12.2020
|
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visually, primarily due to subtle differences in WMH. This Letter presents a computer-aided design-based automated classification strategy that uses optimised transfer learning (TL) utilising two novel paradigms known as (i) MobileNet and (ii) the Visual Geometric Group-19 (VGG-19). Further, the authors benchmark TL systems against a machine learning (ML) paradigm. Using four-fold augmentation, VGG-19 is superior to MobileNet demonstrating accuracy and area under the curve (AUC) pairs as 95.46 ± 7.70%, 0.932 (p < 0.0001) and 86.87 ± 2.23%, 0.871 (p < 0.0001), respectively. Further, MobileNet and VGG-19 showed an improvement of 3.4 and 13.5%, respectively, when benchmarked against the ML-based soft classifier – Random Forest. |
|---|---|
| AbstractList | Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visually, primarily due to subtle differences in WMH. This Letter presents a computer‐aided design‐based automated classification strategy that uses optimised transfer learning (TL) utilising two novel paradigms known as (i) MobileNet and (ii) the Visual Geometric Group‐19 (VGG‐19). Further, the authors benchmark TL systems against a machine learning (ML) paradigm. Using four‐fold augmentation, VGG‐19 is superior to MobileNet demonstrating accuracy and area under the curve (AUC) pairs as 95.46 ± 7.70 %, 0.932 (p < 0.0001 ) and 86.87 ± 2.23 %, 0.871 (p < 0.0001 ), respectively. Further, MobileNet and VGG‐19 showed an improvement of 3.4 and 13.5%, respectively, when benchmarked against the ML‐based soft classifier – Random Forest. |
| Author | Sfikakis, P.P Mavrogeni, S Protogerou, A Khanna, N.N Laird, J.R Sinha, G.R Suri, J.S Agarwal, M Gupta, S.K Kitas, G.D Sanagala, S.S Saba, L Viswanathan, V Miner, M Pareek, G Johri, A.M |
| Author_xml | – sequence: 1 givenname: L surname: Saba fullname: Saba, L organization: Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy – sequence: 2 givenname: M surname: Agarwal fullname: Agarwal, M organization: CSE Department, Bennett University, Greater Noida, UP, India – sequence: 3 givenname: S.S surname: Sanagala fullname: Sanagala, S.S organization: Department CSE, CMR College of Engineering & Technology, Hyderabad, India – sequence: 4 givenname: S.K surname: Gupta fullname: Gupta, S.K organization: CSE Department, Bennett University, Greater Noida, UP, India – sequence: 5 givenname: G.R surname: Sinha fullname: Sinha, G.R organization: Myanmar Institute of Information Technology (MIIT), Mandalay, Myanmar – sequence: 6 givenname: A.M surname: Johri fullname: Johri, A.M organization: Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada – sequence: 7 givenname: N.N surname: Khanna fullname: Khanna, N.N organization: Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India – sequence: 8 givenname: S surname: Mavrogeni fullname: Mavrogeni, S organization: Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece – sequence: 9 givenname: J.R surname: Laird fullname: Laird, J.R organization: Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA – sequence: 10 givenname: G surname: Pareek fullname: Pareek, G organization: Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA – sequence: 11 givenname: M surname: Miner fullname: Miner, M organization: Men's Health Center, Miriam Hospital Providence, Rhode Island, USA – sequence: 12 givenname: P.P surname: Sfikakis fullname: Sfikakis, P.P organization: Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece – sequence: 13 givenname: A surname: Protogerou fullname: Protogerou, A organization: Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece – sequence: 14 givenname: V surname: Viswanathan fullname: Viswanathan, V organization: MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India – sequence: 15 givenname: G.D surname: Kitas fullname: Kitas, G.D organization: R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom – sequence: 16 givenname: J.S surname: Suri fullname: Suri, J.S email: Jasjit.Suri@AtheroPoint.com organization: Stroke Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA, USA |
| BookMark | eNp9kMFLwzAUxoNMcM7d_ANy8ODBzqRputSbG5sOKoIM9BbS9FUjXVqSDtl_b-o8iDhP7z34ft_7-E7RwDYWEDqnZEJJkl1DPYlJTCYxJfERGlLGSZRR-jJAQ0IoizjNkhM09t4UhCY0SUlCh6iYOWUsfnhaRYXyUOJnU_vG4tJ4CDfujPdbwLpWAayMVp1p7A1WFjdtZzamR0qAFndOWV-BwzUoZ419xaptXaP02xk6rlTtYfw9R2i9XKzn91H-eLea3-aRZiLkE1wJJpQATkSalomGsqwqnRTAMkp4WqiSq-mUiESFXVQxYVCIIgPKpwUFNkLx3la7xnsHldSm-4oboplaUiL7niTUsu9J9j0F6OoX1DqzUW53SM738g9Tw-5frVzkeTxbkinjLHCXe85AJ9-brbOhiEMvLv6QLvIfzm1ZsU94J5VQ |
| CitedBy_id | crossref_primary_10_1111_exsy_12749 crossref_primary_10_3390_healthcare10122493 crossref_primary_10_3390_diagnostics11112109 crossref_primary_10_3390_diagnostics12071543 crossref_primary_10_3390_cancers14122860 crossref_primary_10_3390_diagnostics11122367 crossref_primary_10_1109_TIM_2021_3052577 crossref_primary_10_1016_j_eswa_2021_115630 crossref_primary_10_3390_diagnostics12051283 crossref_primary_10_3390_jcdd9080268 crossref_primary_10_1007_s11042_023_14979_w crossref_primary_10_1016_j_eswa_2021_116114 crossref_primary_10_4018_IJBCE_301215 crossref_primary_10_1049_ipr2_12619 crossref_primary_10_3390_diagnostics12051249 crossref_primary_10_3390_diagnostics11112025 crossref_primary_10_1007_s11517_021_02322_0 crossref_primary_10_3390_rs15225358 |
| Cites_doi | 10.1016/j.cmpb.2012.09.008 10.1155/2014/468176 10.1016/j.bspc.2020.101903 10.7785/tcrt.2012.500346 10.1007/s10916‐010‐9645‐2 10.1016/j.ejrad.2019.02.038 10.1016/j.jneumeth.2020.108701 10.1016/j.media.2017.01.008 10.1016/j.neucom.2020.03.006 10.2484/rcr.v4i3.312 10.1177/0954411913483637 10.1016/j.ejrad.2017.01.031 10.1016/j.jstrokecerebrovasdis.2018.02.065 10.1016/j.cmpb.2017.12.016 10.1016/S1361-8415(02)00054-3 10.1007/s00500‐014‐1496‐1 10.1016/j.ultras.2011.11.003 10.1016/S0140-6736(07)60196-2 10.1007/s11682‐019‐00066‐y 10.1016/j.ncl.2014.09.006 10.1016/j.patcog.2018.12.001 10.7785/tcrt.2012.500381 10.1016/j.compbiomed.2018.05.014 10.1016/j.cmpb.2015.11.013 10.1053/jhep.2003.50252 10.1142/p547 10.1145/1455770.1455838 10.1007/s11517‐012‐1019‐0 10.1118/1.4725759 10.1016/j.cmpb.2016.03.016 10.7785/tcrtexpress.2013.600273 10.1016/j.dld.2006.12.095 10.1016/j.cmpb.2017.09.004 10.1016/j.cmpb.2013.07.012 10.1016/j.compbiomed.2020.103804 10.1016/j.neulet.2016.10.013 10.1109/TIM.2011.2174897 10.1016/j.cmpb.2019.04.008 10.1016/j.diabres.2013.03.032 10.4103/1817‐1745.97618 10.2741/4725 10.1093/omcr/omu005 10.7326/0003‐4819‐118‐6‐199303150‐00008 10.1166/jbn.2014.1990 10.1007/978-981-10-9035-6_33 10.1201/b19253 10.1016/j.bspc.2013.08.008 10.1016/j.cmpb.2016.02.004 10.1007/s10916‐017‐0745‐0 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2020.2102 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 1398 |
| ExternalDocumentID | 10_1049_el_2020_2102 ELL2BF07353 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3813-85a838a8e50866d4ceddffc4be391056bad5a77084a6ba8f203eb8b9e157b1e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Tue Nov 18 22:32:46 EST 2025 Wed Oct 29 21:26:45 EDT 2025 Wed Jan 22 16:31:52 EST 2025 Wed Jan 06 06:33:42 EST 2021 Wed Jan 06 04:41:12 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | MRI scans biomedical MRI brain MRI-based Wilson disease tissue classification Visual Geometric Group-19 image classification liver biological tissues diseases random forest brain optimised deep transfer learning approach machine learning paradigm computer-aided design-based automated classification strategy white matter hyperintensity AUC pairs MobileNet VGG-19 learning (artificial intelligence) four-fold augmentation ML-based soft classifier medical image processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3813-85a838a8e50866d4ceddffc4be391056bad5a77084a6ba8f203eb8b9e157b1e3 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.2102 |
| PageCount | 4 |
| ParticipantIDs | iet_journals_10_1049_el_2020_2102 crossref_citationtrail_10_1049_el_2020_2102 wiley_primary_10_1049_el_2020_2102_ELL2BF07353 crossref_primary_10_1049_el_2020_2102 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | van Ravenswaaij-Arts, C.M.; Kollee, L.A.; Hopman, J.C. (C25) 1993; 118 Martis, R.J.; Acharya, U.R.; Prasad, H. (C24) 2013; 8 Acharya, U.R.; Faust, O.; Alvin, A. (C28) 2013; 110 Kaden, M.; Riedel, M.; Hermann, W. (C39) 2015; 19 Ala, A.; Walker, A.P.; Ashkan, K. (C3) 2007; 369 Zhang, Y.; Zhang, H.; Chen, X. (C42) 2019; 88 Shattuck, D.W.; Leahy, R.M. (C36) 2002; 6 Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R. (C22) 2013; 112 Suk, H.-I.; Lee, S.-W.; Shen, D. (C40) 2017; 37 Yousaf, M.; Kumar, M.; Ramakrishnaiah, R. (C7) 2009; 4 Liu, J.; Pan, Y.; Wu, F.-X. (C46) 2020; 400 Saba, L.; Ikeda, N.; Deidda, M. (C32) 2013; 100 Maniruzzaman, M.; Kumar, N.; Abedin, M.M. (C20) 2017; 152 Saba, L.; Jain, P.K.; Suri, H.S. (C27) 2017; 41 Acharya, U.; Vinitha Sree, S.; Mookiah, M. (C17) 2013; 227 Acharya, R.U.; Faust, O.; Alvin, A.P.C. (C29) 2012; 36 Dusek, P; Litwin, T.; Czlonkowska, A. (C1) 2015; 33 Acharya, U.R.; Swapna, G.; Sree, S.V. (C16) 2014; 13 Shrivastava, V.K.; Londhe, N.D.; Sonawane, R.S. (C19) 2016; 126 Saba, L.; Biswas, M.; Kuppili, V. (C33) 2019; 114 Singh, P.; Ahluwalia, A.; Saggar, K. (C5) 2011; 6 Abrol, A.; Bhattarai, M.; Fedorov, A. (C43) 2020; 339 Acharya, U.R.; Sree, S.V.; Ribeiro, R. (C14) 2012; 39 Maniruzzaman, M.; Rahman, M.J.; Ahammed, B. (C21) 2019; 176 Saba, L.; Sanfilippo, R.; Porcu, M. (C9) 2017; 89 Parekh, J.R.; Agrawal, P.R. (C6) 2014; 2014 McClure, P.; Elnakib, A.; El-Ghar, M.A. (C12) 2014; 10 Biswas, M.; Kuppili, V.; Saba, L. (C34) 2019; 24 Acharya, U.R.; Sree, S.V.; Kulshreshtha, S. (C13) 2014; 13 Medici, V; Rossaro, L.; Sturniolo, G. (C2) 2007; 39 Tandel, G.S.; Balestrieri, A.; Jujaray, T. (C35) 2020; 122 Rujirakul, K.; So-In, C.; Arnonkijpanich, B. (C37) 2014; 2014 Araki, T.; Ikeda, N.; Shukla, D. (C23) 2016; 128 Jing, R.; Han, Y.; Cheng, H. (C44) 2019; 14 Richhariya, B.; Tanveer, M.; Rashid, A.H. (C45) 2020; 59 Acharya, U.R.; Mookiah, M.R.K.; Sree, S.V. (C26) 2013; 51 Saba, L.; Lucatelli, P.; Anzidei, M. (C8) 2018; 27 Saba, L.; Dey, N.; Ashour, A.S. (C15) 2016; 130 Acharya, U.R.; Faust, O.; Sree, S.V. (C31) 2011; 61 Biswas, M.; Kuppili, V.; Edla, D.R. (C49) 2018; 155 Roberts, E.A. (C4) 2003; 37 Porcu, M.; Balestrieri, A.; Siotto, P. (C10) 2018; 669 Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R. (C18) 2012; 52 Pareek, G.; Acharya, U.R.; Sree, S.V. (C11) 2013; 12 Biswas, M.; Kuppili, V.; Araki, T. (C50) 2018; 98 2007; 39 2017; 41 2007; 369 2015; 19 2011 2018; 669 2002; 6 2015; 33 2017; 89 2013; 227 2011; 61 2019; 14 2013; 100 2008 2003; 37 2020; 59 2016; 128 2020; 122 2014; 2014 2012; 39 2017; 152 2016; 126 2020; 400 2012; 36 2013; 8 2011; 6 2018; 27 2012; 52 2018; 155 1993; 118 2017; 37 2019; 88 2013; 12 2013; 51 2019; 24 2013; 112 2019 2014; 13 2019; 114 2015 2013; 110 2009; 4 2018; 98 2016; 130 2020; 339 2014; 10 2019; 176 e_1_2_11_30_2 e_1_2_11_13_2 e_1_2_11_34_2 e_1_2_11_51_2 e_1_2_11_11_2 e_1_2_11_32_2 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_48_2 e_1_2_11_29_2 e_1_2_11_20_2 e_1_2_11_43_2 e_1_2_11_45_2 e_1_2_11_24_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_41_2 e_1_2_11_17_2 e_1_2_11_15_2 e_1_2_11_36_2 e_1_2_11_19_2 e_1_2_11_38_2 e_1_2_11_31_2 e_1_2_11_35_2 e_1_2_11_50_2 e_1_2_11_12_2 e_1_2_11_33_2 e_1_2_11_10_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_47_2 e_1_2_11_49_2 e_1_2_11_44_2 e_1_2_11_46_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_40_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_42_2 e_1_2_11_16_2 e_1_2_11_14_2 e_1_2_11_37_2 e_1_2_11_18_2 e_1_2_11_39_2 |
| References_xml | – volume: 10 start-page: 2747 issue: 10 year: 2014 end-page: 2777 ident: C12 article-title: In-vitro and in-vivo diagnostic techniques for prostate cancer: a review publication-title: J. Biomed. Nanotechnol. – volume: 14 start-page: 1445 issue: 5 year: 2019 end-page: 1455 ident: C44 article-title: Altered large-scale functional brain networks in neurological wilson's disease publication-title: Brain Imaging Behav. – volume: 27 start-page: 2059 issue: 8 year: 2018 end-page: 2066 ident: C8 article-title: Volumetric distribution of the white matter hyper-intensities in subject with mild to severe carotid artery stenosis: does the side play a role? publication-title: J. Stroke Cerebrovasc. Dis. – volume: 4 start-page: 312 issue: 3 year: 2009 ident: C7 article-title: Atypical MRI features involving the brain in Wilson's disease publication-title: Radiol. Case. Rep. – volume: 19 start-page: 2423 issue: 9 year: 2015 end-page: 2434 ident: C39 article-title: Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines publication-title: Soft Comput – volume: 36 start-page: 1861 issue: 3 year: 2012 end-page: 1871 ident: C29 article-title: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound publication-title: J. Med. Syst. – volume: 122 start-page: 103804 year: 2020 ident: C35 article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm publication-title: Comput. Biol. Med. – volume: 88 start-page: 421 year: 2019 end-page: 430 ident: C42 article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis publication-title: Pattern Recognit. – volume: 52 start-page: 508 issue: 4 year: 2012 end-page: 520 ident: C18 article-title: Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems publication-title: Ultrasonics – volume: 12 start-page: 545 issue: 6 year: 2013 end-page: 557 ident: C11 article-title: Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images publication-title: Technol. Cancer Res. Treat. – volume: 114 start-page: 14 year: 2019 end-page: 24 ident: C33 article-title: The present and future of deep learning in radiology publication-title: Eur. J. Radiol. – volume: 8 start-page: 888 issue: 6 year: 2013 end-page: 900 ident: C24 article-title: Application of higher order statistics for atrial arrhythmia classification publication-title: Biomed. Signal Proc. Control – volume: 6 start-page: 27 issue: 1 year: 2011 ident: C5 article-title: Wilson's disease: MRI features publication-title: J. Pediatr. Neurosci. – volume: 51 start-page: 513 issue: 5 year: 2013 end-page: 523 ident: C26 article-title: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment publication-title: Med. Biol. Eng. Comput. – volume: 369 start-page: 397 issue: 9559 year: 2007 end-page: 408 ident: C3 article-title: Wilson's disease publication-title: Lancet – volume: 13 start-page: 529 issue: 6 year: 2014 end-page: 539 ident: C13 article-title: Gynescan: an improved online paradigm for screening of ovarian cancer via tissue characterization publication-title: Technol. Cancer Res. Treat. – volume: 339 start-page: 108701 year: 2020 ident: C43 article-title: Deep residual learning for neuroimaging: an application to predict progression to alzheimer's disease publication-title: J. Neurosci. Methods – volume: 2014 start-page: 16 issue: 1 year: 2014 end-page: 17 ident: C6 article-title: Wilson's disease:’face of giant panda'and ‘trident'signs together publication-title: Oxf. Med. Case. Reports. – volume: 112 start-page: 624 issue: 3 year: 2013 end-page: 632 ident: C22 article-title: Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images publication-title: Comput. Methods Programs Biomed. – volume: 669 start-page: 43 year: 2018 end-page: 54 ident: C10 article-title: Clinical neuroimaging markers of response to treatment in mood disorders publication-title: Neurosci. Lett. – volume: 98 start-page: 100 year: 2018 end-page: 117 ident: C50 article-title: Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort publication-title: Comput. Biol. Med. – volume: 227 start-page: 788 issue: 7 year: 2013 end-page: 798 ident: C17 article-title: Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification publication-title: Proc. Inst. Mech. Eng., H: J. Eng. Med. – volume: 89 start-page: 111 year: 2017 end-page: 116 ident: C9 article-title: Relationship between white matter hyperintensities volume and the circle of Willis configurations in patients with carotid artery pathology publication-title: Eur. J. Radiol. – volume: 2014 year: 2014 ident: C37 article-title: PEM-PCA: a parallel expectation-maximization PCA face recognition architecture publication-title: Scientific World J. – volume: 61 start-page: 1045 issue: 4 year: 2011 end-page: 1053 ident: C31 article-title: An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans publication-title: IEEE Trans. Instrum. Meas. – volume: 118 start-page: 436 issue: 6 year: 1993 end-page: 447 ident: C25 article-title: Heart rate variability publication-title: Ann. Intern. Med. – volume: 13 start-page: 289 issue: 4 year: 2014 end-page: 301 ident: C16 article-title: A review on ultrasound-based thyroid cancer tissue characterization and automated classification publication-title: Technol. Cancer Res. Treat. – volume: 110 start-page: 66 issue: 1 year: 2013 end-page: 75 ident: C28 article-title: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization publication-title: Comput. Methods Programs Biomed. – volume: 176 start-page: 173 year: 2019 end-page: 193 ident: C21 article-title: Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms publication-title: Comput. Methods Programs Biomed. – volume: 39 start-page: 601 issue: 7 year: 2007 end-page: 609 ident: C2 article-title: Wilson disease—a practical approach to diagnosis, treatment and follow-up publication-title: Dig. Liver Dis. – volume: 59 start-page: 101903 year: 2020 ident: C45 article-title: Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE) publication-title: Biomed. Signal Proc. Control – volume: 37 start-page: 1475 year: 2003 end-page: 1492 ident: C4 article-title: A practice guideline on Wilson disease publication-title: Hepatology – volume: 39 start-page: 4255 issue: 7Part1 year: 2012 end-page: 4264 ident: C14 article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm publication-title: Med. Phys. – volume: 24 start-page: 392 year: 2019 end-page: 426 ident: C34 article-title: State-of-the-art review on deep learning in medical imaging publication-title: Front Biosci (Landmark Ed) – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: C40 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. – volume: 128 start-page: 137 year: 2016 end-page: 158 ident: C23 article-title: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology publication-title: Comput. Methods Programs Biomed. – volume: 152 start-page: 23 year: 2017 end-page: 34 ident: C20 article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm publication-title: Comput. Methods Programs Biomed. – volume: 33 start-page: 175 issue: 1 year: 2015 end-page: 204 ident: C1 article-title: Wilson disease and other neurodegenerations with metal accumulations publication-title: Neurol. Clin. – volume: 41 start-page: 98 issue: 6 year: 2017 ident: C27 article-title: Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm publication-title: J. Med. Syst. – volume: 126 start-page: 98 year: 2016 end-page: 109 ident: C19 article-title: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind publication-title: Comput. Methods Programs Biomed. – volume: 100 start-page: 348 issue: 3 year: 2013 end-page: 353 ident: C32 article-title: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease publication-title: Diabetes Res. Clin. Pract. – volume: 155 start-page: 165 year: 2018 end-page: 177 ident: C49 article-title: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm publication-title: Comput. Methods Programs Biomed. – volume: 130 start-page: 118 year: 2016 end-page: 134 ident: C15 article-title: Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm publication-title: Comput. Methods Programs Biomed. – volume: 400 start-page: 322 year: 2020 end-page: 332 ident: C46 article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification publication-title: Neurocomputing – volume: 6 start-page: 129 issue: 2 year: 2002 end-page: 142 ident: C36 article-title: Brainsuite: an automated cortical surface identification tool publication-title: Med. Image Anal. – volume: 152 start-page: 23 year: 2017 end-page: 34 article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm publication-title: Comput. Methods Programs Biomed. – year: 2011 – volume: 128 start-page: 137 year: 2016 end-page: 158 article-title: PCA‐based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology publication-title: Comput. Methods Programs Biomed. – year: 2008 article-title: Machine learning attacks against the Asirra CAPTCHA – volume: 39 start-page: 601 issue: 7 year: 2007 end-page: 609 article-title: Wilson disease—a practical approach to diagnosis, treatment and follow‐up publication-title: Dig. Liver Dis. – volume: 89 start-page: 111 year: 2017 end-page: 116 article-title: Relationship between white matter hyperintensities volume and the circle of Willis configurations in patients with carotid artery pathology publication-title: Eur. J. Radiol. – volume: 100 start-page: 348 issue: 3 year: 2013 end-page: 353 article-title: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease publication-title: Diabetes Res. Clin. Pract. – volume: 122 start-page: 103804 year: 2020 article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm publication-title: Comput. Biol. Med. – start-page: 183 year: 2019 end-page: 189 article-title: Brain tumor classification using convolutional neural network – volume: 33 start-page: 175 issue: 1 year: 2015 end-page: 204 article-title: Wilson disease and other neurodegenerations with metal accumulations publication-title: Neurol. Clin. – volume: 369 start-page: 397 issue: 9559 year: 2007 end-page: 408 article-title: Wilson's disease publication-title: Lancet – volume: 118 start-page: 436 issue: 6 year: 1993 end-page: 447 article-title: Heart rate variability publication-title: Ann. Intern. Med. – volume: 39 start-page: 4255 issue: 7Part1 year: 2012 end-page: 4264 article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm publication-title: Med. Phys. – volume: 176 start-page: 173 year: 2019 end-page: 193 article-title: Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms publication-title: Comput. Methods Programs Biomed. – volume: 52 start-page: 508 issue: 4 year: 2012 end-page: 520 article-title: Non‐invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems publication-title: Ultrasonics – volume: 24 start-page: 392 year: 2019 end-page: 426 article-title: State‐of‐the‐art review on deep learning in medical imaging publication-title: Front Biosci (Landmark Ed) – volume: 339 start-page: 108701 year: 2020 article-title: Deep residual learning for neuroimaging: an application to predict progression to alzheimer's disease publication-title: J. Neurosci. Methods – volume: 41 start-page: 98 issue: 6 year: 2017 article-title: Plaque tissue morphology‐based stroke risk stratification using carotid ultrasound: a polling‐based PCA learning paradigm publication-title: J. Med. Syst. – year: 2008 – volume: 13 start-page: 289 issue: 4 year: 2014 end-page: 301 article-title: A review on ultrasound‐based thyroid cancer tissue characterization and automated classification publication-title: Technol. Cancer Res. Treat. – volume: 37 start-page: 101 year: 2017 end-page: 113 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. – volume: 59 start-page: 101903 year: 2020 article-title: Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM‐RFE) publication-title: Biomed. Signal Proc. Control – volume: 114 start-page: 14 year: 2019 end-page: 24 article-title: The present and future of deep learning in radiology publication-title: Eur. J. Radiol. – volume: 13 start-page: 529 issue: 6 year: 2014 end-page: 539 article-title: Gynescan: an improved online paradigm for screening of ovarian cancer via tissue characterization publication-title: Technol. Cancer Res. Treat. – volume: 155 start-page: 165 year: 2018 end-page: 177 article-title: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm publication-title: Comput. Methods Programs Biomed. – year: 2015 – volume: 4 start-page: 312 issue: 3 year: 2009 article-title: Atypical MRI features involving the brain in Wilson's disease publication-title: Radiol. Case. Rep. – volume: 10 start-page: 2747 issue: 10 year: 2014 end-page: 2777 article-title: In‐vitro and in‐vivo diagnostic techniques for prostate cancer: a review publication-title: J. Biomed. Nanotechnol. – volume: 2014 year: 2014 article-title: PEM‐PCA: a parallel expectation‐maximization PCA face recognition architecture publication-title: Scientific World J. – volume: 36 start-page: 1861 issue: 3 year: 2012 end-page: 1871 article-title: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound publication-title: J. Med. Syst. – volume: 61 start-page: 1045 issue: 4 year: 2011 end-page: 1053 article-title: An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans publication-title: IEEE Trans. Instrum. Meas. – volume: 12 start-page: 545 issue: 6 year: 2013 end-page: 557 article-title: Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images publication-title: Technol. Cancer Res. Treat. – volume: 8 start-page: 888 issue: 6 year: 2013 end-page: 900 article-title: Application of higher order statistics for atrial arrhythmia classification publication-title: Biomed. Signal Proc. Control – volume: 400 start-page: 322 year: 2020 end-page: 332 article-title: Enhancing the feature representation of multi‐modal MRI data by combining multi‐view information for MCI classification publication-title: Neurocomputing – volume: 88 start-page: 421 year: 2019 end-page: 430 article-title: Strength and similarity guided group‐level brain functional network construction for MCI diagnosis publication-title: Pattern Recognit. – volume: 27 start-page: 2059 issue: 8 year: 2018 end-page: 2066 article-title: Volumetric distribution of the white matter hyper‐intensities in subject with mild to severe carotid artery stenosis: does the side play a role? publication-title: J. Stroke Cerebrovasc. Dis. – volume: 2014 start-page: 16 issue: 1 year: 2014 end-page: 17 article-title: Wilson's disease:’face of giant panda'and ‘trident'signs together publication-title: Oxf. Med. Case. Reports. – volume: 19 start-page: 2423 issue: 9 year: 2015 end-page: 2434 article-title: Border‐sensitive learning in generalized learning vector quantization: an alternative to support vector machines publication-title: Soft Comput – volume: 14 start-page: 1445 issue: 5 year: 2019 end-page: 1455 article-title: Altered large‐scale functional brain networks in neurological wilson's disease publication-title: Brain Imaging Behav. – volume: 51 start-page: 513 issue: 5 year: 2013 end-page: 523 article-title: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment publication-title: Med. Biol. Eng. Comput. – volume: 6 start-page: 27 issue: 1 year: 2011 article-title: Wilson's disease: MRI features publication-title: J. Pediatr. Neurosci. – volume: 227 start-page: 788 issue: 7 year: 2013 end-page: 798 article-title: Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification publication-title: Proc. Inst. Mech. Eng., H: J. Eng. Med. – volume: 126 start-page: 98 year: 2016 end-page: 109 article-title: Computer‐aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind publication-title: Comput. Methods Programs Biomed. – volume: 112 start-page: 624 issue: 3 year: 2013 end-page: 632 article-title: Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images publication-title: Comput. Methods Programs Biomed. – volume: 98 start-page: 100 year: 2018 end-page: 117 article-title: Deep learning strategy for accurate carotid intima‐media thickness measurement: an ultrasound study on Japanese diabetic cohort publication-title: Comput. Biol. Med. – volume: 669 start-page: 43 year: 2018 end-page: 54 article-title: Clinical neuroimaging markers of response to treatment in mood disorders publication-title: Neurosci. Lett. – volume: 110 start-page: 66 issue: 1 year: 2013 end-page: 75 article-title: Understanding symptomatology of atherosclerotic plaque by image‐based tissue characterization publication-title: Comput. Methods Programs Biomed. – volume: 37 start-page: 1475 year: 2003 end-page: 1492 article-title: A practice guideline on Wilson disease publication-title: Hepatology – volume: 130 start-page: 118 year: 2016 end-page: 134 article-title: Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm publication-title: Comput. Methods Programs Biomed. – volume: 6 start-page: 129 issue: 2 year: 2002 end-page: 142 article-title: Brainsuite: an automated cortical surface identification tool publication-title: Med. Image Anal. – ident: e_1_2_11_31_2 – ident: e_1_2_11_29_2 doi: 10.1016/j.cmpb.2012.09.008 – ident: e_1_2_11_38_2 doi: 10.1155/2014/468176 – ident: e_1_2_11_46_2 doi: 10.1016/j.bspc.2020.101903 – ident: e_1_2_11_12_2 doi: 10.7785/tcrt.2012.500346 – ident: e_1_2_11_30_2 doi: 10.1007/s10916‐010‐9645‐2 – ident: e_1_2_11_34_2 doi: 10.1016/j.ejrad.2019.02.038 – ident: e_1_2_11_44_2 doi: 10.1016/j.jneumeth.2020.108701 – ident: e_1_2_11_41_2 doi: 10.1016/j.media.2017.01.008 – ident: e_1_2_11_47_2 doi: 10.1016/j.neucom.2020.03.006 – ident: e_1_2_11_8_2 doi: 10.2484/rcr.v4i3.312 – ident: e_1_2_11_18_2 doi: 10.1177/0954411913483637 – ident: e_1_2_11_10_2 doi: 10.1016/j.ejrad.2017.01.031 – ident: e_1_2_11_9_2 doi: 10.1016/j.jstrokecerebrovasdis.2018.02.065 – ident: e_1_2_11_50_2 doi: 10.1016/j.cmpb.2017.12.016 – ident: e_1_2_11_37_2 doi: 10.1016/S1361-8415(02)00054-3 – ident: e_1_2_11_40_2 doi: 10.1007/s00500‐014‐1496‐1 – ident: e_1_2_11_19_2 doi: 10.1016/j.ultras.2011.11.003 – ident: e_1_2_11_4_2 doi: 10.1016/S0140-6736(07)60196-2 – ident: e_1_2_11_45_2 doi: 10.1007/s11682‐019‐00066‐y – ident: e_1_2_11_2_2 doi: 10.1016/j.ncl.2014.09.006 – ident: e_1_2_11_43_2 doi: 10.1016/j.patcog.2018.12.001 – ident: e_1_2_11_17_2 doi: 10.7785/tcrt.2012.500381 – ident: e_1_2_11_51_2 doi: 10.1016/j.compbiomed.2018.05.014 – ident: e_1_2_11_20_2 doi: 10.1016/j.cmpb.2015.11.013 – ident: e_1_2_11_5_2 doi: 10.1053/jhep.2003.50252 – ident: e_1_2_11_48_2 doi: 10.1142/p547 – ident: e_1_2_11_39_2 doi: 10.1145/1455770.1455838 – ident: e_1_2_11_27_2 doi: 10.1007/s11517‐012‐1019‐0 – ident: e_1_2_11_15_2 doi: 10.1118/1.4725759 – ident: e_1_2_11_16_2 doi: 10.1016/j.cmpb.2016.03.016 – ident: e_1_2_11_14_2 doi: 10.7785/tcrtexpress.2013.600273 – ident: e_1_2_11_3_2 doi: 10.1016/j.dld.2006.12.095 – ident: e_1_2_11_21_2 doi: 10.1016/j.cmpb.2017.09.004 – ident: e_1_2_11_23_2 doi: 10.1016/j.cmpb.2013.07.012 – ident: e_1_2_11_36_2 doi: 10.1016/j.compbiomed.2020.103804 – ident: e_1_2_11_11_2 doi: 10.1016/j.neulet.2016.10.013 – ident: e_1_2_11_32_2 doi: 10.1109/TIM.2011.2174897 – ident: e_1_2_11_22_2 doi: 10.1016/j.cmpb.2019.04.008 – ident: e_1_2_11_33_2 doi: 10.1016/j.diabres.2013.03.032 – ident: e_1_2_11_6_2 doi: 10.4103/1817‐1745.97618 – ident: e_1_2_11_35_2 doi: 10.2741/4725 – ident: e_1_2_11_7_2 doi: 10.1093/omcr/omu005 – ident: e_1_2_11_26_2 doi: 10.7326/0003‐4819‐118‐6‐199303150‐00008 – ident: e_1_2_11_13_2 doi: 10.1166/jbn.2014.1990 – ident: e_1_2_11_42_2 doi: 10.1007/978-981-10-9035-6_33 – ident: e_1_2_11_49_2 doi: 10.1201/b19253 – ident: e_1_2_11_25_2 doi: 10.1016/j.bspc.2013.08.008 – ident: e_1_2_11_24_2 doi: 10.1016/j.cmpb.2016.02.004 – ident: e_1_2_11_28_2 doi: 10.1007/s10916‐017‐0745‐0 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.4837453 |
| Snippet | Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1395 |
| SubjectTerms | AUC pairs biological tissues biomedical MRI brain brain MRI‐based Wilson disease tissue classification computer‐aided design‐based automated classification strategy diseases four‐fold augmentation image classification learning (artificial intelligence) liver machine learning paradigm medical image processing ML‐based soft classifier MobileNet MRI scans optimised deep transfer learning approach random forest Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications VGG‐19 Visual Geometric Group‐19 white matter hyperintensity |
| Title | Brain MRI-based Wilson disease tissue classification: an optimised deep transfer learning approach |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.2102 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2102 |
| Volume | 56 |
| WOSCitedRecordID | wos000604957700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (Activated by CARLI) customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA66etCD_-KqKxH0JNW2adrUmysuLqyLiOjeStJMRJC6rNWzj-Az-iRm0rq6BwXxUko7Q0smM_M1k35DyF5ueKz9RHuGC-VFOmGe1Mb3fBBKB3kkuKMUuukl_b4YDNLLesEN_4Wp-CHGC27oGS5eo4NLVXUhsaAWjYiFg9A_xG-WaTITBExg64YwuhxXEWyodc1VGPfRqQf1xnerf_RdeyIlTd9DOQlUXabpLP73HZfIQo0x6Uk1KZbJFBQrZP4b8-Aq0W1sDUEvrrrvr2-YyTStiBtpXbGhpbMIzRFd43YiZ8FjKgv6aKOMnR1WRQMMaemgL4xo3YDijn7ylK-R687Z9em5Vzdc8HKbuJknuBRMSAEWtcWxjnLQ2pg8UsAsquCxkprLJPFFJO25MKHPQAmVQsATFQBbJ43isYANQuNApkhzA2EKERdGKAXGIqFYCo5LTU1y8DnkWV6TkWNPjIfMFcWjNIOHDIcuw6Frkv2x9LAi4fhBbtdaL6u98OkHmdaEzFnv61421KZJKov--iCr1QvbHRseOdv8q8IWmcPruCcm8LdJoxw9Q4vM5i_WsKMdN4Pt8bbb_wA4cfDM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED_xT2I8MBhMK4xhJHhCgaSxE2dv60TVilAhVLG-RXZ8RkhVqbpuz3wEPiOfBJ8TCn1gEtpbpNwpkc9397PP_h3AYWlFYsLUBFZIHXCTxoEyNgxClNpEJZfCUwpd52mvJweD7LLuc0p3YSp-iNmGG3mGj9fk4LQhXS04OZFkIlUOmuEJLVoWYZk7rEG9G351e7Mygou1vrtKLELy6kF98t3pn77WnstJi7c4nUeqPtW0P_73T27Aeo0y2Y9qWmzCAo4-wdor7sEtMC1qDsEurrqP9w-UywyrqBtZXbNhU28TVhK-pgNF3obfmRqxOxdn3PxwKgZxzKYe_OKE1S0obtgzU_k29Ntn_Z-doG65EJQudceBFErGUkl0uC1JDC_RGGtLrjF2uEIkWhmh0jSUXLlnaZthjFrqDCOR6gjjz7A0uhvhF2BJpDIiusFmhlxIK7VG67BQoqSgzaYGHD-PeVHWdOTUFWNY-LI4zwocFjR0BQ1dA45m0uOKhuMNuQNnvqL2w99vyOzNyZzlL--KsbENqEz6zw85rbzZarsAKeKd9yrsw2qnf5EXebd3vgsfSIZOyEThV1iaTv7gHqyUf52RJ9_8dH4CjFP0FQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58LKIH3fWB42t7YT1JNI_upOPN16A4DsMiMrfQna4WQcZhHD37E_yN_hK7OnHWOSiIt0CqSOh6fZ3qfAXwt7QiNWFmAiukDrjJkkAZGwYhSm2ikkvhKYWuWlm7LbvdvFPPOaV_YSp-iNEHN4oMn68pwLFvbLXh5ESSidQ5iMNd2rRMwjQXWURuHfPOqI3gcq2frpKIkKK6W598d_p777XHatLkDQ7HkaovNc2Fb7_kT5ivUSY7qNziF0xgbxHm3nEPLoE5pOEQ7OLf2cvTM9UywyrqRlb3bNjQ24SVhK_pQJG34T5TPXbn8ozzD6diEPts6MEvDlg9guKavTGVL8Nl8-Ty6DSoRy4EpSvdSSCFkolUEh1uS1PDSzTG2pJrTByuEKlWRqgsCyVX7lraOExQS51jJDIdYbICU727Hq4CSyOVE9ENxjlyIa3UGq3DQqmSgj42NWDnbc2LsqYjp6kYt4Vvi_O8wNuClq6gpWvA9ki6X9FwfCD3x5mvqOPw_gOZzTGZk9b_e4WzXgMqk376IKfVig-bLkGKZO2rCr9hpnPcLFpn7fN1mCUROiAThRswNRw84Cb8KB-djQdb3ptfAapz8yw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+MRI%E2%80%90based+Wilson+disease+tissue+classification%3A+an+optimised+deep+transfer+learning+approach&rft.jtitle=Electronics+letters&rft.au=Saba%2C+L.&rft.au=Agarwal%2C+M.&rft.au=Sanagala%2C+S.S.&rft.au=Gupta%2C+S.K.&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1395&rft.epage=1398&rft_id=info:doi/10.1049%2Fel.2020.2102&rft.externalDBID=10.1049%252Fel.2020.2102&rft.externalDocID=ELL2BF07353 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |