Brain MRI-based Wilson disease tissue classification: an optimised deep transfer learning approach

Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visual...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters Vol. 56; no. 25; pp. 1395 - 1398
Main Authors: Saba, L, Agarwal, M, Sanagala, S.S, Gupta, S.K, Sinha, G.R, Johri, A.M, Khanna, N.N, Mavrogeni, S, Laird, J.R, Pareek, G, Miner, M, Sfikakis, P.P, Protogerou, A, Viswanathan, V, Kitas, G.D, Suri, J.S
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 10.12.2020
Subjects:
ISSN:0013-5194, 1350-911X, 1350-911X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visually, primarily due to subtle differences in WMH. This Letter presents a computer-aided design-based automated classification strategy that uses optimised transfer learning (TL) utilising two novel paradigms known as (i) MobileNet and (ii) the Visual Geometric Group-19 (VGG-19). Further, the authors benchmark TL systems against a machine learning (ML) paradigm. Using four-fold augmentation, VGG-19 is superior to MobileNet demonstrating accuracy and area under the curve (AUC) pairs as 95.46 ± 7.70%, 0.932 (p < 0.0001) and 86.87 ± 2.23%, 0.871 (p < 0.0001), respectively. Further, MobileNet and VGG-19 showed an improvement of 3.4 and 13.5%, respectively, when benchmarked against the ML-based soft classifier – Random Forest.
AbstractList Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visually, primarily due to subtle differences in WMH. This Letter presents a computer‐aided design‐based automated classification strategy that uses optimised transfer learning (TL) utilising two novel paradigms known as (i) MobileNet and (ii) the Visual Geometric Group‐19 (VGG‐19). Further, the authors benchmark TL systems against a machine learning (ML) paradigm. Using four‐fold augmentation, VGG‐19 is superior to MobileNet demonstrating accuracy and area under the curve (AUC) pairs as 95.46 ± 7.70 %, 0.932 (p < 0.0001 ) and 86.87 ± 2.23 %, 0.871 (p < 0.0001 ), respectively. Further, MobileNet and VGG‐19 showed an improvement of 3.4 and 13.5%, respectively, when benchmarked against the ML‐based soft classifier – Random Forest.
Author Sfikakis, P.P
Mavrogeni, S
Protogerou, A
Khanna, N.N
Laird, J.R
Sinha, G.R
Suri, J.S
Agarwal, M
Gupta, S.K
Kitas, G.D
Sanagala, S.S
Saba, L
Viswanathan, V
Miner, M
Pareek, G
Johri, A.M
Author_xml – sequence: 1
  givenname: L
  surname: Saba
  fullname: Saba, L
  organization: Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
– sequence: 2
  givenname: M
  surname: Agarwal
  fullname: Agarwal, M
  organization: CSE Department, Bennett University, Greater Noida, UP, India
– sequence: 3
  givenname: S.S
  surname: Sanagala
  fullname: Sanagala, S.S
  organization: Department CSE, CMR College of Engineering & Technology, Hyderabad, India
– sequence: 4
  givenname: S.K
  surname: Gupta
  fullname: Gupta, S.K
  organization: CSE Department, Bennett University, Greater Noida, UP, India
– sequence: 5
  givenname: G.R
  surname: Sinha
  fullname: Sinha, G.R
  organization: Myanmar Institute of Information Technology (MIIT), Mandalay, Myanmar
– sequence: 6
  givenname: A.M
  surname: Johri
  fullname: Johri, A.M
  organization: Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
– sequence: 7
  givenname: N.N
  surname: Khanna
  fullname: Khanna, N.N
  organization: Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
– sequence: 8
  givenname: S
  surname: Mavrogeni
  fullname: Mavrogeni, S
  organization: Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
– sequence: 9
  givenname: J.R
  surname: Laird
  fullname: Laird, J.R
  organization: Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
– sequence: 10
  givenname: G
  surname: Pareek
  fullname: Pareek, G
  organization: Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
– sequence: 11
  givenname: M
  surname: Miner
  fullname: Miner, M
  organization: Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
– sequence: 12
  givenname: P.P
  surname: Sfikakis
  fullname: Sfikakis, P.P
  organization: Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
– sequence: 13
  givenname: A
  surname: Protogerou
  fullname: Protogerou, A
  organization: Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
– sequence: 14
  givenname: V
  surname: Viswanathan
  fullname: Viswanathan, V
  organization: MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
– sequence: 15
  givenname: G.D
  surname: Kitas
  fullname: Kitas, G.D
  organization: R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom
– sequence: 16
  givenname: J.S
  surname: Suri
  fullname: Suri, J.S
  email: Jasjit.Suri@AtheroPoint.com
  organization: Stroke Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA, USA
BookMark eNp9kMFLwzAUxoNMcM7d_ANy8ODBzqRputSbG5sOKoIM9BbS9FUjXVqSDtl_b-o8iDhP7z34ft_7-E7RwDYWEDqnZEJJkl1DPYlJTCYxJfERGlLGSZRR-jJAQ0IoizjNkhM09t4UhCY0SUlCh6iYOWUsfnhaRYXyUOJnU_vG4tJ4CDfujPdbwLpWAayMVp1p7A1WFjdtZzamR0qAFndOWV-BwzUoZ419xaptXaP02xk6rlTtYfw9R2i9XKzn91H-eLea3-aRZiLkE1wJJpQATkSalomGsqwqnRTAMkp4WqiSq-mUiESFXVQxYVCIIgPKpwUFNkLx3la7xnsHldSm-4oboplaUiL7niTUsu9J9j0F6OoX1DqzUW53SM738g9Tw-5frVzkeTxbkinjLHCXe85AJ9-brbOhiEMvLv6QLvIfzm1ZsU94J5VQ
CitedBy_id crossref_primary_10_1111_exsy_12749
crossref_primary_10_3390_healthcare10122493
crossref_primary_10_3390_diagnostics11112109
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_3390_cancers14122860
crossref_primary_10_3390_diagnostics11122367
crossref_primary_10_1109_TIM_2021_3052577
crossref_primary_10_1016_j_eswa_2021_115630
crossref_primary_10_3390_diagnostics12051283
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1007_s11042_023_14979_w
crossref_primary_10_1016_j_eswa_2021_116114
crossref_primary_10_4018_IJBCE_301215
crossref_primary_10_1049_ipr2_12619
crossref_primary_10_3390_diagnostics12051249
crossref_primary_10_3390_diagnostics11112025
crossref_primary_10_1007_s11517_021_02322_0
crossref_primary_10_3390_rs15225358
Cites_doi 10.1016/j.cmpb.2012.09.008
10.1155/2014/468176
10.1016/j.bspc.2020.101903
10.7785/tcrt.2012.500346
10.1007/s10916‐010‐9645‐2
10.1016/j.ejrad.2019.02.038
10.1016/j.jneumeth.2020.108701
10.1016/j.media.2017.01.008
10.1016/j.neucom.2020.03.006
10.2484/rcr.v4i3.312
10.1177/0954411913483637
10.1016/j.ejrad.2017.01.031
10.1016/j.jstrokecerebrovasdis.2018.02.065
10.1016/j.cmpb.2017.12.016
10.1016/S1361-8415(02)00054-3
10.1007/s00500‐014‐1496‐1
10.1016/j.ultras.2011.11.003
10.1016/S0140-6736(07)60196-2
10.1007/s11682‐019‐00066‐y
10.1016/j.ncl.2014.09.006
10.1016/j.patcog.2018.12.001
10.7785/tcrt.2012.500381
10.1016/j.compbiomed.2018.05.014
10.1016/j.cmpb.2015.11.013
10.1053/jhep.2003.50252
10.1142/p547
10.1145/1455770.1455838
10.1007/s11517‐012‐1019‐0
10.1118/1.4725759
10.1016/j.cmpb.2016.03.016
10.7785/tcrtexpress.2013.600273
10.1016/j.dld.2006.12.095
10.1016/j.cmpb.2017.09.004
10.1016/j.cmpb.2013.07.012
10.1016/j.compbiomed.2020.103804
10.1016/j.neulet.2016.10.013
10.1109/TIM.2011.2174897
10.1016/j.cmpb.2019.04.008
10.1016/j.diabres.2013.03.032
10.4103/1817‐1745.97618
10.2741/4725
10.1093/omcr/omu005
10.7326/0003‐4819‐118‐6‐199303150‐00008
10.1166/jbn.2014.1990
10.1007/978-981-10-9035-6_33
10.1201/b19253
10.1016/j.bspc.2013.08.008
10.1016/j.cmpb.2016.02.004
10.1007/s10916‐017‐0745‐0
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2102
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1398
ExternalDocumentID 10_1049_el_2020_2102
ELL2BF07353
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3813-85a838a8e50866d4ceddffc4be391056bad5a77084a6ba8f203eb8b9e157b1e3
IEDL.DBID 24P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:32:46 EST 2025
Wed Oct 29 21:26:45 EDT 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 06:33:42 EST 2021
Wed Jan 06 04:41:12 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords MRI scans
biomedical MRI
brain MRI-based Wilson disease tissue classification
Visual Geometric Group-19
image classification
liver
biological tissues
diseases
random forest
brain
optimised deep transfer learning approach
machine learning paradigm
computer-aided design-based automated classification strategy
white matter hyperintensity
AUC pairs
MobileNet
VGG-19
learning (artificial intelligence)
four-fold augmentation
ML-based soft classifier
medical image processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3813-85a838a8e50866d4ceddffc4be391056bad5a77084a6ba8f203eb8b9e157b1e3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.2102
PageCount 4
ParticipantIDs iet_journals_10_1049_el_2020_2102
crossref_citationtrail_10_1049_el_2020_2102
wiley_primary_10_1049_el_2020_2102_ELL2BF07353
crossref_primary_10_1049_el_2020_2102
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References van Ravenswaaij-Arts, C.M.; Kollee, L.A.; Hopman, J.C. (C25) 1993; 118
Martis, R.J.; Acharya, U.R.; Prasad, H. (C24) 2013; 8
Acharya, U.R.; Faust, O.; Alvin, A. (C28) 2013; 110
Kaden, M.; Riedel, M.; Hermann, W. (C39) 2015; 19
Ala, A.; Walker, A.P.; Ashkan, K. (C3) 2007; 369
Zhang, Y.; Zhang, H.; Chen, X. (C42) 2019; 88
Shattuck, D.W.; Leahy, R.M. (C36) 2002; 6
Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R. (C22) 2013; 112
Suk, H.-I.; Lee, S.-W.; Shen, D. (C40) 2017; 37
Yousaf, M.; Kumar, M.; Ramakrishnaiah, R. (C7) 2009; 4
Liu, J.; Pan, Y.; Wu, F.-X. (C46) 2020; 400
Saba, L.; Ikeda, N.; Deidda, M. (C32) 2013; 100
Maniruzzaman, M.; Kumar, N.; Abedin, M.M. (C20) 2017; 152
Saba, L.; Jain, P.K.; Suri, H.S. (C27) 2017; 41
Acharya, U.; Vinitha Sree, S.; Mookiah, M. (C17) 2013; 227
Acharya, R.U.; Faust, O.; Alvin, A.P.C. (C29) 2012; 36
Dusek, P; Litwin, T.; Czlonkowska, A. (C1) 2015; 33
Acharya, U.R.; Swapna, G.; Sree, S.V. (C16) 2014; 13
Shrivastava, V.K.; Londhe, N.D.; Sonawane, R.S. (C19) 2016; 126
Saba, L.; Biswas, M.; Kuppili, V. (C33) 2019; 114
Singh, P.; Ahluwalia, A.; Saggar, K. (C5) 2011; 6
Abrol, A.; Bhattarai, M.; Fedorov, A. (C43) 2020; 339
Acharya, U.R.; Sree, S.V.; Ribeiro, R. (C14) 2012; 39
Maniruzzaman, M.; Rahman, M.J.; Ahammed, B. (C21) 2019; 176
Saba, L.; Sanfilippo, R.; Porcu, M. (C9) 2017; 89
Parekh, J.R.; Agrawal, P.R. (C6) 2014; 2014
McClure, P.; Elnakib, A.; El-Ghar, M.A. (C12) 2014; 10
Biswas, M.; Kuppili, V.; Saba, L. (C34) 2019; 24
Acharya, U.R.; Sree, S.V.; Kulshreshtha, S. (C13) 2014; 13
Medici, V; Rossaro, L.; Sturniolo, G. (C2) 2007; 39
Tandel, G.S.; Balestrieri, A.; Jujaray, T. (C35) 2020; 122
Rujirakul, K.; So-In, C.; Arnonkijpanich, B. (C37) 2014; 2014
Araki, T.; Ikeda, N.; Shukla, D. (C23) 2016; 128
Jing, R.; Han, Y.; Cheng, H. (C44) 2019; 14
Richhariya, B.; Tanveer, M.; Rashid, A.H. (C45) 2020; 59
Acharya, U.R.; Mookiah, M.R.K.; Sree, S.V. (C26) 2013; 51
Saba, L.; Lucatelli, P.; Anzidei, M. (C8) 2018; 27
Saba, L.; Dey, N.; Ashour, A.S. (C15) 2016; 130
Acharya, U.R.; Faust, O.; Sree, S.V. (C31) 2011; 61
Biswas, M.; Kuppili, V.; Edla, D.R. (C49) 2018; 155
Roberts, E.A. (C4) 2003; 37
Porcu, M.; Balestrieri, A.; Siotto, P. (C10) 2018; 669
Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R. (C18) 2012; 52
Pareek, G.; Acharya, U.R.; Sree, S.V. (C11) 2013; 12
Biswas, M.; Kuppili, V.; Araki, T. (C50) 2018; 98
2007; 39
2017; 41
2007; 369
2015; 19
2011
2018; 669
2002; 6
2015; 33
2017; 89
2013; 227
2011; 61
2019; 14
2013; 100
2008
2003; 37
2020; 59
2016; 128
2020; 122
2014; 2014
2012; 39
2017; 152
2016; 126
2020; 400
2012; 36
2013; 8
2011; 6
2018; 27
2012; 52
2018; 155
1993; 118
2017; 37
2019; 88
2013; 12
2013; 51
2019; 24
2013; 112
2019
2014; 13
2019; 114
2015
2013; 110
2009; 4
2018; 98
2016; 130
2020; 339
2014; 10
2019; 176
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_34_2
e_1_2_11_51_2
e_1_2_11_11_2
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_48_2
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
e_1_2_11_24_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_17_2
e_1_2_11_15_2
e_1_2_11_36_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_31_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_12_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_47_2
e_1_2_11_49_2
e_1_2_11_44_2
e_1_2_11_46_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_40_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
e_1_2_11_16_2
e_1_2_11_14_2
e_1_2_11_37_2
e_1_2_11_18_2
e_1_2_11_39_2
References_xml – volume: 10
  start-page: 2747
  issue: 10
  year: 2014
  end-page: 2777
  ident: C12
  article-title: In-vitro and in-vivo diagnostic techniques for prostate cancer: a review
  publication-title: J. Biomed. Nanotechnol.
– volume: 14
  start-page: 1445
  issue: 5
  year: 2019
  end-page: 1455
  ident: C44
  article-title: Altered large-scale functional brain networks in neurological wilson's disease
  publication-title: Brain Imaging Behav.
– volume: 27
  start-page: 2059
  issue: 8
  year: 2018
  end-page: 2066
  ident: C8
  article-title: Volumetric distribution of the white matter hyper-intensities in subject with mild to severe carotid artery stenosis: does the side play a role?
  publication-title: J. Stroke Cerebrovasc. Dis.
– volume: 4
  start-page: 312
  issue: 3
  year: 2009
  ident: C7
  article-title: Atypical MRI features involving the brain in Wilson's disease
  publication-title: Radiol. Case. Rep.
– volume: 19
  start-page: 2423
  issue: 9
  year: 2015
  end-page: 2434
  ident: C39
  article-title: Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines
  publication-title: Soft Comput
– volume: 36
  start-page: 1861
  issue: 3
  year: 2012
  end-page: 1871
  ident: C29
  article-title: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound
  publication-title: J. Med. Syst.
– volume: 122
  start-page: 103804
  year: 2020
  ident: C35
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
– volume: 88
  start-page: 421
  year: 2019
  end-page: 430
  ident: C42
  article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis
  publication-title: Pattern Recognit.
– volume: 52
  start-page: 508
  issue: 4
  year: 2012
  end-page: 520
  ident: C18
  article-title: Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems
  publication-title: Ultrasonics
– volume: 12
  start-page: 545
  issue: 6
  year: 2013
  end-page: 557
  ident: C11
  article-title: Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images
  publication-title: Technol. Cancer Res. Treat.
– volume: 114
  start-page: 14
  year: 2019
  end-page: 24
  ident: C33
  article-title: The present and future of deep learning in radiology
  publication-title: Eur. J. Radiol.
– volume: 8
  start-page: 888
  issue: 6
  year: 2013
  end-page: 900
  ident: C24
  article-title: Application of higher order statistics for atrial arrhythmia classification
  publication-title: Biomed. Signal Proc. Control
– volume: 6
  start-page: 27
  issue: 1
  year: 2011
  ident: C5
  article-title: Wilson's disease: MRI features
  publication-title: J. Pediatr. Neurosci.
– volume: 51
  start-page: 513
  issue: 5
  year: 2013
  end-page: 523
  ident: C26
  article-title: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment
  publication-title: Med. Biol. Eng. Comput.
– volume: 369
  start-page: 397
  issue: 9559
  year: 2007
  end-page: 408
  ident: C3
  article-title: Wilson's disease
  publication-title: Lancet
– volume: 13
  start-page: 529
  issue: 6
  year: 2014
  end-page: 539
  ident: C13
  article-title: Gynescan: an improved online paradigm for screening of ovarian cancer via tissue characterization
  publication-title: Technol. Cancer Res. Treat.
– volume: 339
  start-page: 108701
  year: 2020
  ident: C43
  article-title: Deep residual learning for neuroimaging: an application to predict progression to alzheimer's disease
  publication-title: J. Neurosci. Methods
– volume: 2014
  start-page: 16
  issue: 1
  year: 2014
  end-page: 17
  ident: C6
  article-title: Wilson's disease:’face of giant panda'and ‘trident'signs together
  publication-title: Oxf. Med. Case. Reports.
– volume: 112
  start-page: 624
  issue: 3
  year: 2013
  end-page: 632
  ident: C22
  article-title: Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images
  publication-title: Comput. Methods Programs Biomed.
– volume: 669
  start-page: 43
  year: 2018
  end-page: 54
  ident: C10
  article-title: Clinical neuroimaging markers of response to treatment in mood disorders
  publication-title: Neurosci. Lett.
– volume: 98
  start-page: 100
  year: 2018
  end-page: 117
  ident: C50
  article-title: Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort
  publication-title: Comput. Biol. Med.
– volume: 227
  start-page: 788
  issue: 7
  year: 2013
  end-page: 798
  ident: C17
  article-title: Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification
  publication-title: Proc. Inst. Mech. Eng., H: J. Eng. Med.
– volume: 89
  start-page: 111
  year: 2017
  end-page: 116
  ident: C9
  article-title: Relationship between white matter hyperintensities volume and the circle of Willis configurations in patients with carotid artery pathology
  publication-title: Eur. J. Radiol.
– volume: 2014
  year: 2014
  ident: C37
  article-title: PEM-PCA: a parallel expectation-maximization PCA face recognition architecture
  publication-title: Scientific World J.
– volume: 61
  start-page: 1045
  issue: 4
  year: 2011
  end-page: 1053
  ident: C31
  article-title: An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 118
  start-page: 436
  issue: 6
  year: 1993
  end-page: 447
  ident: C25
  article-title: Heart rate variability
  publication-title: Ann. Intern. Med.
– volume: 13
  start-page: 289
  issue: 4
  year: 2014
  end-page: 301
  ident: C16
  article-title: A review on ultrasound-based thyroid cancer tissue characterization and automated classification
  publication-title: Technol. Cancer Res. Treat.
– volume: 110
  start-page: 66
  issue: 1
  year: 2013
  end-page: 75
  ident: C28
  article-title: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization
  publication-title: Comput. Methods Programs Biomed.
– volume: 176
  start-page: 173
  year: 2019
  end-page: 193
  ident: C21
  article-title: Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms
  publication-title: Comput. Methods Programs Biomed.
– volume: 39
  start-page: 601
  issue: 7
  year: 2007
  end-page: 609
  ident: C2
  article-title: Wilson disease—a practical approach to diagnosis, treatment and follow-up
  publication-title: Dig. Liver Dis.
– volume: 59
  start-page: 101903
  year: 2020
  ident: C45
  article-title: Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Proc. Control
– volume: 37
  start-page: 1475
  year: 2003
  end-page: 1492
  ident: C4
  article-title: A practice guideline on Wilson disease
  publication-title: Hepatology
– volume: 39
  start-page: 4255
  issue: 7Part1
  year: 2012
  end-page: 4264
  ident: C14
  article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm
  publication-title: Med. Phys.
– volume: 24
  start-page: 392
  year: 2019
  end-page: 426
  ident: C34
  article-title: State-of-the-art review on deep learning in medical imaging
  publication-title: Front Biosci (Landmark Ed)
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: C40
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
– volume: 128
  start-page: 137
  year: 2016
  end-page: 158
  ident: C23
  article-title: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology
  publication-title: Comput. Methods Programs Biomed.
– volume: 152
  start-page: 23
  year: 2017
  end-page: 34
  ident: C20
  article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm
  publication-title: Comput. Methods Programs Biomed.
– volume: 33
  start-page: 175
  issue: 1
  year: 2015
  end-page: 204
  ident: C1
  article-title: Wilson disease and other neurodegenerations with metal accumulations
  publication-title: Neurol. Clin.
– volume: 41
  start-page: 98
  issue: 6
  year: 2017
  ident: C27
  article-title: Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm
  publication-title: J. Med. Syst.
– volume: 126
  start-page: 98
  year: 2016
  end-page: 109
  ident: C19
  article-title: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
  publication-title: Comput. Methods Programs Biomed.
– volume: 100
  start-page: 348
  issue: 3
  year: 2013
  end-page: 353
  ident: C32
  article-title: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease
  publication-title: Diabetes Res. Clin. Pract.
– volume: 155
  start-page: 165
  year: 2018
  end-page: 177
  ident: C49
  article-title: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm
  publication-title: Comput. Methods Programs Biomed.
– volume: 130
  start-page: 118
  year: 2016
  end-page: 134
  ident: C15
  article-title: Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm
  publication-title: Comput. Methods Programs Biomed.
– volume: 400
  start-page: 322
  year: 2020
  end-page: 332
  ident: C46
  article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification
  publication-title: Neurocomputing
– volume: 6
  start-page: 129
  issue: 2
  year: 2002
  end-page: 142
  ident: C36
  article-title: Brainsuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
– volume: 152
  start-page: 23
  year: 2017
  end-page: 34
  article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm
  publication-title: Comput. Methods Programs Biomed.
– year: 2011
– volume: 128
  start-page: 137
  year: 2016
  end-page: 158
  article-title: PCA‐based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology
  publication-title: Comput. Methods Programs Biomed.
– year: 2008
  article-title: Machine learning attacks against the Asirra CAPTCHA
– volume: 39
  start-page: 601
  issue: 7
  year: 2007
  end-page: 609
  article-title: Wilson disease—a practical approach to diagnosis, treatment and follow‐up
  publication-title: Dig. Liver Dis.
– volume: 89
  start-page: 111
  year: 2017
  end-page: 116
  article-title: Relationship between white matter hyperintensities volume and the circle of Willis configurations in patients with carotid artery pathology
  publication-title: Eur. J. Radiol.
– volume: 100
  start-page: 348
  issue: 3
  year: 2013
  end-page: 353
  article-title: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease
  publication-title: Diabetes Res. Clin. Pract.
– volume: 122
  start-page: 103804
  year: 2020
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
– start-page: 183
  year: 2019
  end-page: 189
  article-title: Brain tumor classification using convolutional neural network
– volume: 33
  start-page: 175
  issue: 1
  year: 2015
  end-page: 204
  article-title: Wilson disease and other neurodegenerations with metal accumulations
  publication-title: Neurol. Clin.
– volume: 369
  start-page: 397
  issue: 9559
  year: 2007
  end-page: 408
  article-title: Wilson's disease
  publication-title: Lancet
– volume: 118
  start-page: 436
  issue: 6
  year: 1993
  end-page: 447
  article-title: Heart rate variability
  publication-title: Ann. Intern. Med.
– volume: 39
  start-page: 4255
  issue: 7Part1
  year: 2012
  end-page: 4264
  article-title: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm
  publication-title: Med. Phys.
– volume: 176
  start-page: 173
  year: 2019
  end-page: 193
  article-title: Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms
  publication-title: Comput. Methods Programs Biomed.
– volume: 52
  start-page: 508
  issue: 4
  year: 2012
  end-page: 520
  article-title: Non‐invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems
  publication-title: Ultrasonics
– volume: 24
  start-page: 392
  year: 2019
  end-page: 426
  article-title: State‐of‐the‐art review on deep learning in medical imaging
  publication-title: Front Biosci (Landmark Ed)
– volume: 339
  start-page: 108701
  year: 2020
  article-title: Deep residual learning for neuroimaging: an application to predict progression to alzheimer's disease
  publication-title: J. Neurosci. Methods
– volume: 41
  start-page: 98
  issue: 6
  year: 2017
  article-title: Plaque tissue morphology‐based stroke risk stratification using carotid ultrasound: a polling‐based PCA learning paradigm
  publication-title: J. Med. Syst.
– year: 2008
– volume: 13
  start-page: 289
  issue: 4
  year: 2014
  end-page: 301
  article-title: A review on ultrasound‐based thyroid cancer tissue characterization and automated classification
  publication-title: Technol. Cancer Res. Treat.
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 101903
  year: 2020
  article-title: Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM‐RFE)
  publication-title: Biomed. Signal Proc. Control
– volume: 114
  start-page: 14
  year: 2019
  end-page: 24
  article-title: The present and future of deep learning in radiology
  publication-title: Eur. J. Radiol.
– volume: 13
  start-page: 529
  issue: 6
  year: 2014
  end-page: 539
  article-title: Gynescan: an improved online paradigm for screening of ovarian cancer via tissue characterization
  publication-title: Technol. Cancer Res. Treat.
– volume: 155
  start-page: 165
  year: 2018
  end-page: 177
  article-title: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm
  publication-title: Comput. Methods Programs Biomed.
– year: 2015
– volume: 4
  start-page: 312
  issue: 3
  year: 2009
  article-title: Atypical MRI features involving the brain in Wilson's disease
  publication-title: Radiol. Case. Rep.
– volume: 10
  start-page: 2747
  issue: 10
  year: 2014
  end-page: 2777
  article-title: In‐vitro and in‐vivo diagnostic techniques for prostate cancer: a review
  publication-title: J. Biomed. Nanotechnol.
– volume: 2014
  year: 2014
  article-title: PEM‐PCA: a parallel expectation‐maximization PCA face recognition architecture
  publication-title: Scientific World J.
– volume: 36
  start-page: 1861
  issue: 3
  year: 2012
  end-page: 1871
  article-title: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound
  publication-title: J. Med. Syst.
– volume: 61
  start-page: 1045
  issue: 4
  year: 2011
  end-page: 1053
  article-title: An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 12
  start-page: 545
  issue: 6
  year: 2013
  end-page: 557
  article-title: Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images
  publication-title: Technol. Cancer Res. Treat.
– volume: 8
  start-page: 888
  issue: 6
  year: 2013
  end-page: 900
  article-title: Application of higher order statistics for atrial arrhythmia classification
  publication-title: Biomed. Signal Proc. Control
– volume: 400
  start-page: 322
  year: 2020
  end-page: 332
  article-title: Enhancing the feature representation of multi‐modal MRI data by combining multi‐view information for MCI classification
  publication-title: Neurocomputing
– volume: 88
  start-page: 421
  year: 2019
  end-page: 430
  article-title: Strength and similarity guided group‐level brain functional network construction for MCI diagnosis
  publication-title: Pattern Recognit.
– volume: 27
  start-page: 2059
  issue: 8
  year: 2018
  end-page: 2066
  article-title: Volumetric distribution of the white matter hyper‐intensities in subject with mild to severe carotid artery stenosis: does the side play a role?
  publication-title: J. Stroke Cerebrovasc. Dis.
– volume: 2014
  start-page: 16
  issue: 1
  year: 2014
  end-page: 17
  article-title: Wilson's disease:’face of giant panda'and ‘trident'signs together
  publication-title: Oxf. Med. Case. Reports.
– volume: 19
  start-page: 2423
  issue: 9
  year: 2015
  end-page: 2434
  article-title: Border‐sensitive learning in generalized learning vector quantization: an alternative to support vector machines
  publication-title: Soft Comput
– volume: 14
  start-page: 1445
  issue: 5
  year: 2019
  end-page: 1455
  article-title: Altered large‐scale functional brain networks in neurological wilson's disease
  publication-title: Brain Imaging Behav.
– volume: 51
  start-page: 513
  issue: 5
  year: 2013
  end-page: 523
  article-title: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment
  publication-title: Med. Biol. Eng. Comput.
– volume: 6
  start-page: 27
  issue: 1
  year: 2011
  article-title: Wilson's disease: MRI features
  publication-title: J. Pediatr. Neurosci.
– volume: 227
  start-page: 788
  issue: 7
  year: 2013
  end-page: 798
  article-title: Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification
  publication-title: Proc. Inst. Mech. Eng., H: J. Eng. Med.
– volume: 126
  start-page: 98
  year: 2016
  end-page: 109
  article-title: Computer‐aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
  publication-title: Comput. Methods Programs Biomed.
– volume: 112
  start-page: 624
  issue: 3
  year: 2013
  end-page: 632
  article-title: Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images
  publication-title: Comput. Methods Programs Biomed.
– volume: 98
  start-page: 100
  year: 2018
  end-page: 117
  article-title: Deep learning strategy for accurate carotid intima‐media thickness measurement: an ultrasound study on Japanese diabetic cohort
  publication-title: Comput. Biol. Med.
– volume: 669
  start-page: 43
  year: 2018
  end-page: 54
  article-title: Clinical neuroimaging markers of response to treatment in mood disorders
  publication-title: Neurosci. Lett.
– volume: 110
  start-page: 66
  issue: 1
  year: 2013
  end-page: 75
  article-title: Understanding symptomatology of atherosclerotic plaque by image‐based tissue characterization
  publication-title: Comput. Methods Programs Biomed.
– volume: 37
  start-page: 1475
  year: 2003
  end-page: 1492
  article-title: A practice guideline on Wilson disease
  publication-title: Hepatology
– volume: 130
  start-page: 118
  year: 2016
  end-page: 134
  article-title: Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm
  publication-title: Comput. Methods Programs Biomed.
– volume: 6
  start-page: 129
  issue: 2
  year: 2002
  end-page: 142
  article-title: Brainsuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
– ident: e_1_2_11_31_2
– ident: e_1_2_11_29_2
  doi: 10.1016/j.cmpb.2012.09.008
– ident: e_1_2_11_38_2
  doi: 10.1155/2014/468176
– ident: e_1_2_11_46_2
  doi: 10.1016/j.bspc.2020.101903
– ident: e_1_2_11_12_2
  doi: 10.7785/tcrt.2012.500346
– ident: e_1_2_11_30_2
  doi: 10.1007/s10916‐010‐9645‐2
– ident: e_1_2_11_34_2
  doi: 10.1016/j.ejrad.2019.02.038
– ident: e_1_2_11_44_2
  doi: 10.1016/j.jneumeth.2020.108701
– ident: e_1_2_11_41_2
  doi: 10.1016/j.media.2017.01.008
– ident: e_1_2_11_47_2
  doi: 10.1016/j.neucom.2020.03.006
– ident: e_1_2_11_8_2
  doi: 10.2484/rcr.v4i3.312
– ident: e_1_2_11_18_2
  doi: 10.1177/0954411913483637
– ident: e_1_2_11_10_2
  doi: 10.1016/j.ejrad.2017.01.031
– ident: e_1_2_11_9_2
  doi: 10.1016/j.jstrokecerebrovasdis.2018.02.065
– ident: e_1_2_11_50_2
  doi: 10.1016/j.cmpb.2017.12.016
– ident: e_1_2_11_37_2
  doi: 10.1016/S1361-8415(02)00054-3
– ident: e_1_2_11_40_2
  doi: 10.1007/s00500‐014‐1496‐1
– ident: e_1_2_11_19_2
  doi: 10.1016/j.ultras.2011.11.003
– ident: e_1_2_11_4_2
  doi: 10.1016/S0140-6736(07)60196-2
– ident: e_1_2_11_45_2
  doi: 10.1007/s11682‐019‐00066‐y
– ident: e_1_2_11_2_2
  doi: 10.1016/j.ncl.2014.09.006
– ident: e_1_2_11_43_2
  doi: 10.1016/j.patcog.2018.12.001
– ident: e_1_2_11_17_2
  doi: 10.7785/tcrt.2012.500381
– ident: e_1_2_11_51_2
  doi: 10.1016/j.compbiomed.2018.05.014
– ident: e_1_2_11_20_2
  doi: 10.1016/j.cmpb.2015.11.013
– ident: e_1_2_11_5_2
  doi: 10.1053/jhep.2003.50252
– ident: e_1_2_11_48_2
  doi: 10.1142/p547
– ident: e_1_2_11_39_2
  doi: 10.1145/1455770.1455838
– ident: e_1_2_11_27_2
  doi: 10.1007/s11517‐012‐1019‐0
– ident: e_1_2_11_15_2
  doi: 10.1118/1.4725759
– ident: e_1_2_11_16_2
  doi: 10.1016/j.cmpb.2016.03.016
– ident: e_1_2_11_14_2
  doi: 10.7785/tcrtexpress.2013.600273
– ident: e_1_2_11_3_2
  doi: 10.1016/j.dld.2006.12.095
– ident: e_1_2_11_21_2
  doi: 10.1016/j.cmpb.2017.09.004
– ident: e_1_2_11_23_2
  doi: 10.1016/j.cmpb.2013.07.012
– ident: e_1_2_11_36_2
  doi: 10.1016/j.compbiomed.2020.103804
– ident: e_1_2_11_11_2
  doi: 10.1016/j.neulet.2016.10.013
– ident: e_1_2_11_32_2
  doi: 10.1109/TIM.2011.2174897
– ident: e_1_2_11_22_2
  doi: 10.1016/j.cmpb.2019.04.008
– ident: e_1_2_11_33_2
  doi: 10.1016/j.diabres.2013.03.032
– ident: e_1_2_11_6_2
  doi: 10.4103/1817‐1745.97618
– ident: e_1_2_11_35_2
  doi: 10.2741/4725
– ident: e_1_2_11_7_2
  doi: 10.1093/omcr/omu005
– ident: e_1_2_11_26_2
  doi: 10.7326/0003‐4819‐118‐6‐199303150‐00008
– ident: e_1_2_11_13_2
  doi: 10.1166/jbn.2014.1990
– ident: e_1_2_11_42_2
  doi: 10.1007/978-981-10-9035-6_33
– ident: e_1_2_11_49_2
  doi: 10.1201/b19253
– ident: e_1_2_11_25_2
  doi: 10.1016/j.bspc.2013.08.008
– ident: e_1_2_11_24_2
  doi: 10.1016/j.cmpb.2016.02.004
– ident: e_1_2_11_28_2
  doi: 10.1007/s10916‐017‐0745‐0
SSID ssib014146041
ssj0012997
Score 2.4837453
Snippet Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1395
SubjectTerms AUC pairs
biological tissues
biomedical MRI
brain
brain MRI‐based Wilson disease tissue classification
computer‐aided design‐based automated classification strategy
diseases
four‐fold augmentation
image classification
learning (artificial intelligence)
liver
machine learning paradigm
medical image processing
ML‐based soft classifier
MobileNet
MRI scans
optimised deep transfer learning approach
random forest
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
VGG‐19
Visual Geometric Group‐19
white matter hyperintensity
Title Brain MRI-based Wilson disease tissue classification: an optimised deep transfer learning approach
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2102
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2102
Volume 56
WOSCitedRecordID wos000604957700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley - Open access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF5s9aAH_8WqlRX0JNEkm0023qy0WKilSMHeQrI7EaG0pVbPPoLP6JM4k6S1PVQQLyEkM2TZ-d2dzTeMnZvABS_WtmVSHViecRwrsZ3EouVQIMMQdI6u3wrabdXrhZ1iw43-hcnxIWYbbmQZmb8mA4-TvAsJJrUkRCocuPYVrVlKbNVxhKLWDa7XmVUR0NVmzVWEtMmoe8XBd-S_nudeCEmlF5gsJqpZpGls_XeM22yzyDH5ba4UO2wFBrtsYw55cI-ZGrWG4A-Pza-PT4pkhufAjbyo2PBJJhGuKbum40SZBG94POBD9DKoHchiAEZ8kqW-MOZFA4pnPsUp32fdRr17d28VDRcsjYFbWErGSqhYAWZtvm88DcakqfYSEJhVSD-JjYyDwFZejPcqdW0BiUpCcGSQOCAOWHkwHMAh44KYlfYlwc8ZIULUCXStAhfjEoztVtjldMojXYCRU0-MfpQVxb0wgn5EUxfR1FXYxYx6lINwLKE7Q-lFhRW-LqGpLtDUWz_vopFJKyyX6K8fQq6WW2uge5Ti6K8Mx2ydntOZGMc-YeXJ-A2qbE2_o2DHp5kG4_Wp2f4GmBTwIw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gXrwLdbnCnqSaJLNNhtvKhaLsYgU7C0kuxMRpJZaPfsT_I3-EmeSWO1BQbwFMkPCzntn9xuAPRv6GKTGdWxuQiewnudkrpc5XA6FKorQlOj6cdhq6U4nuq7mnPJdmBIfYrjhxpZR-Gs2cN6QLgvOgEEykTsHvnvIRcs4TAaUa_Dshttma9hGIF9bTFeRymWr7lQn34n_6Dv3SEwav8fBaKZahJrG_L9_cgHmqixTnJRqsQhj2F2C2W_Yg8tgT3k4hLi6ab6_vnEss6KEbhRVz0YMCpkIw_k1HygqZHgs0q54JD9D-kEsFrEnBkXyi31RjaC4E59I5SvQbpy3zy6cauSCYyh0S0erVEudaqS8rV63gUFr89wEGUrKK1Q9S61Kw9DVQUrPOvddiZnOIvRUmHkoV2Gi-9jFNRCSmbWpKwags1JGpBXkXCWV4wqt69fg4HPNE1PBkfNUjIekaIsHUYIPCS9dwktXg_0hda-E4fiBbpfEl1R2-PQDzdYIzXn89S7p2bwGpUh__RBxxf5pgxykkut_ZdiB6Yv2VZzEzdblBswwDZ-Q8dxNmBj0n3ELpswLCbm_XajzB-cm82w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB41KarogQIFEWjaRaKnysX27sZrbvTHakSIoiqH3Cx7d4yQKicKgXMfoc_YJ2HGdkJyKFLVmyXPyNbOv2f8DcAnF4WoMut7rrCRp1wQeLkf5B6XQ5GOY7Q1uv4gGg7NZBKPmj2n_C9MjQ-x-uDGllH5azZwnLmiLjgVg2Qidw5C_5SLlhZsKx0FrNahGq3aCORrq-0qUvts1ZNm8p34P69zb8Sk1k9cbGaqVahJ9p78ki_hRZNliq-1WryCLSxfw-4a9uA-uDNeDiG-X_fvb-84ljlRQzeKpmcjFpVMhOX8mgeKKhl-EVkppuRnSD-IxSHOxKJKfnEumhUUP8QSqfwNjJPL8fmV16xc8CyFbukZnRlpMoOUt_V6Tll0riisylFSXqF7eeZ0FkW-URldmyL0JeYmjzHQUR6gfAvtclriOxCSmY3taQagc1LGpBXkXCWV4xqdH3bgZHnmqW3gyHkrxk1atcVVnOJNykeX8tF14HhFPathOB6g-0jiSxs7_PUATXeD5nLw715K0utALdL_Poi4BuFZQg5Sy_ePZTiCndFFkg76w28f4DmT8IBM4B9AezH_jV14Zv-QjOeHlTb_BQX-8oM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+MRI%E2%80%90based+Wilson+disease+tissue+classification%3A+an+optimised+deep+transfer+learning+approach&rft.jtitle=Electronics+letters&rft.au=Saba%2C+L.&rft.au=Agarwal%2C+M.&rft.au=Sanagala%2C+S.S.&rft.au=Gupta%2C+S.K.&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1395&rft.epage=1398&rft_id=info:doi/10.1049%2Fel.2020.2102&rft.externalDBID=10.1049%252Fel.2020.2102&rft.externalDocID=ELL2BF07353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon