Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform
The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform...
Gespeichert in:
| Veröffentlicht in: | Electronics letters Jg. 56; H. 25; S. 1370 - 1372 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
10.12.2020
|
| Schlagworte: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS-EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS-EWT coefficients, the cross-information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k-nearest neighbour (k-NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure-free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is $96.67\%$96.67%. The second classification problem is the classification of S and Z EEG signals in which $100\%$100% Acc is achieved by the proposed method. |
|---|---|
| AbstractList | The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS‐EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS‐EWT coefficients, the cross‐information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k ‐nearest neighbour (k ‐NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure‐free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is 96.67%. The second classification problem is the classification of S and Z EEG signals in which 100% Acc is achieved by the proposed method. The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS-EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS-EWT coefficients, the cross-information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k-nearest neighbour (k-NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure-free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is $96.67\%$96.67%. The second classification problem is the classification of S and Z EEG signals in which $100\%$100% Acc is achieved by the proposed method. The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS‐EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS‐EWT coefficients, the cross‐information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k ‐nearest neighbour ( k ‐NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure‐free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is . The second classification problem is the classification of S and Z EEG signals in which Acc is achieved by the proposed method. |
| Author | Upadhyay, A Nishad, A Ravi Shankar Reddy, G Bajaj, V |
| Author_xml | – sequence: 1 givenname: A surname: Nishad fullname: Nishad, A organization: BITS Pilani, KK Birla Goa Campus, Sancoale 403726, Goa, India – sequence: 2 givenname: A surname: Upadhyay fullname: Upadhyay, A email: abhyragav24@gmail.com organization: Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India – sequence: 3 givenname: G surname: Ravi Shankar Reddy fullname: Ravi Shankar Reddy, G organization: CVR College of Engineering, Hyderabad 501510, Telangana, India – sequence: 4 givenname: V orcidid: 0000-0002-6832-0495 surname: Bajaj fullname: Bajaj, V organization: PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India |
| BookMark | eNp9kEFLwzAUgINMcE5v_oAcPHiw870k7dqjjjmFgRcFbyFrX0aka0vSOfbvzZwHEfX0IHzf4-U7ZYOmbYixC4QxgipuqB4LEDAWqciO2BBlCkmB-DpgQwCUSYqFOmHnIbgloEKVgcIh09PaxCfrStO7tuGt5dS5mrrelXw2m_PgVo2pA98E16x46IwPFAeVvd-s-dIEqjitO-fjhppvzTvV1PPemybY1q_P2LGNOp1_zRF7uZ89Tx-SxdP8cXq7SEqZo0iyCkrM0U5krgCgIJOramJVLoS1WZEhCpuikVBUUqpMTQwVS2sgF0tSFgo5YuKwt_RtCJ6sLl3_-aV4iqs1gt5X0lTrfSW9rxSl6x9S593a-N1feHrAtzHQ7l9WzxYLcXcPE5mJ6F0ePEe9fms3fh80Et_wrrIRu_oF-_WSD5fzk94 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106241 crossref_primary_10_1016_j_bspc_2025_108246 crossref_primary_10_3390_rs15194681 crossref_primary_10_1016_j_bspc_2025_107991 crossref_primary_10_1002_aisy_202500281 crossref_primary_10_1016_j_bspc_2024_106074 crossref_primary_10_1016_j_bspc_2024_106447 crossref_primary_10_1016_j_bspc_2024_106446 crossref_primary_10_3390_brainsci11010043 crossref_primary_10_1016_j_bspc_2024_106624 crossref_primary_10_1016_j_bspc_2024_106344 crossref_primary_10_1016_j_bspc_2024_106641 crossref_primary_10_1016_j_bspc_2024_107369 crossref_primary_10_1016_j_bspc_2021_103322 crossref_primary_10_1002_aisy_202300346 crossref_primary_10_1016_j_bspc_2024_106929 crossref_primary_10_1016_j_bspc_2025_107906 crossref_primary_10_3389_fnhum_2024_1336157 |
| Cites_doi | 10.1007/s00170‐018‐2553‐1 10.1109/TSP.2007.901656 10.1109/TSP.2013.2265222 10.1179/016164104773026534 10.1023/A:1008280620621 10.1109/TBME.2003.810708 10.1145/1543834.1543860 10.1088/2057‐1976/aa5199 10.1016/j.eswa.2009.10.036 10.1016/j.eswa.2005.04.011 10.1145/1656274.1656278 10.1016/j.eswa.2006.02.005 10.1088/978-0-7503-3279-8ch9 10.1109/FUZZY.2006.1681772 10.1016/j.bspc.2014.03.007 10.1016/j.amc.2006.09.022 10.1186/1475‐925X‐10‐10 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2020.2526 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 1372 |
| ExternalDocumentID | 10_1049_el_2020_2526 ELL2BF07362 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3812-6d0c181f73840009ea84d7f4822ff696112f51a309d334647ae9bfa082be4f093 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Wed Oct 29 21:21:58 EDT 2025 Tue Nov 18 22:35:12 EST 2025 Wed Jan 22 16:31:52 EST 2025 Wed Jan 06 06:33:42 EST 2021 Wed Jan 06 04:41:12 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | seizure-free EEG signals electroencephalography Z EEG signals wavelet transforms electroencephalogram signals seizure events cross-information potential classification accuracy k-nearest neighbour classifier nearest neighbour methods signal classification normalised energy medical disorders classification problem medical signal processing epileptic EEG signals feature extraction seizure EEG signals unnatural activities sparse spectrum based empirical wavelet transform RELIEFF method brain activity SS-EWT coefficients |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3812-6d0c181f73840009ea84d7f4822ff696112f51a309d334647ae9bfa082be4f093 |
| ORCID | 0000-0002-6832-0495 |
| OpenAccessLink | https://doi.org/10.1049/el.2020.2526 |
| PageCount | 3 |
| ParticipantIDs | iet_journals_10_1049_el_2020_2526 crossref_primary_10_1049_el_2020_2526 crossref_citationtrail_10_1049_el_2020_2526 wiley_primary_10_1049_el_2020_2526_ELL2BF07362 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Wang, D.; Miao, D.; Xie, C. (C7) 2011; 38 Witte, H.; Iasemidis, L.D.; Litt, B. (C1) 2003; 50 Guler, N. F.; Ubeylib, E. D.; Guler, I. (C11) 2005; 29 Subasi, A. (C5) 2007; 32 Kai, F.; Jianfeng, Q.; Yi, C. (C9) 2014; 13 Polat, K.; Gunes, S. (C4) 2007; 187 Xu, J. W.; Paiva, A. R. C.; Principe, J. C. (C17) 2008; 56 Kononenko, I.; Simec, E.; Robnik-Sikonja, M. (C18) 1997; 7 Oweis, R. J.; Abdulhay, E. W. (C8) 2011; 10 Nigam, V. P.; Graupe, D. (C3) 2004; 26 Gandhi, T.; Panigrahi, B. K.; Bhatia, M. (C2) 2010; 37 Gilles, J. (C14) 2013; 61 Bajaj, V.; Rai, K.; Kumar, A. (C10) 2017; 3 Lu, Y.; Xie, R.; Liang, S.Y. (C13) 2018; 99 Hall, M.; Frank, E.; Holmes, G. (C20) 2009; 11 Andrzejak, R. G.; Lehnertz, K.; Mormann, F. (C16) 2001; 64 2009; 11 2010; 37 2017; 3 2012 2020 2007; 187 2004; 26 2013; 61 2009 2008; 56 2011; 10 2014; 13 2006 2003; 50 2007; 32 2011; 38 2018; 99 2005; 29 2001; 64 1997; 7 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_12_2 e_1_2_10_20_2 e_1_2_10_10_2 e_1_2_10_21_2 Andrzejak R. G. (e_1_2_10_17_2) 2001; 64 e_1_2_10_19_2 e_1_2_10_3_2 Wang D. (e_1_2_10_8_2) 2011; 38 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 |
| References_xml | – volume: 56 start-page: 5891 year: 2008 end-page: 5902 ident: C17 article-title: A reproducing kernel hilbert space framework for information-theoretic learning publication-title: IEEE Trans. Signal Process. – volume: 38 start-page: 14314 year: 2011 end-page: 14320 ident: C7 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – volume: 37 start-page: 3513 year: 2010 end-page: 3520 ident: C2 article-title: Expert model for detection of epileptic activity in EEG signature publication-title: Expert Syst. Appl. – volume: 13 start-page: 15 year: 2014 end-page: 22 ident: C9 article-title: Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM publication-title: Biomed. Signal Process. Control – volume: 50 start-page: 537 year: 2003 end-page: 539 ident: C1 article-title: Special issue on epileptic seizure prediction publication-title: IEEE Trans. Biomed. Eng. – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: C5 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. – volume: 7 start-page: 39 year: 1997 end-page: 55 ident: C18 article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF publication-title: Appl. Intell. – volume: 10 start-page: 10 year: 2011 end-page: 38 ident: C8 article-title: Seizure classification in EEG signals utilizing Hilbert-Huang transform publication-title: Bio Med. Eng. Online – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: C4 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Applied. Math. Comput. – volume: 61 start-page: 3999 year: 2013 end-page: 4010 ident: C14 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. – volume: 99 start-page: 1195 year: 2018 end-page: 1201 ident: C13 article-title: Detection of weak fault using sparse empirical wavelet transform for cyclic fault publication-title: Int. J. Adv. Manuf. Technol. – volume: 3 start-page: 015012 year: 2017 ident: C10 article-title: Time-frequency image based features for classification of epileptic seizures from EEG signals publication-title: Biomed. Phys. Eng. Express – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: C20 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explorations – volume: 26 start-page: 55 year: 2004 end-page: 60 ident: C3 article-title: A neural-network-based detection of epilepsy publication-title: Neurological Res. – volume: 64 start-page: 061907 year: 2001 ident: C16 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. – volume: 29 start-page: 506 year: 2005 end-page: 514 ident: C11 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. – volume: 61 start-page: 3999 year: 2013 end-page: 4010 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. – volume: 11 start-page: 10 year: 2009 end-page: 18 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explorations – volume: 29 start-page: 506 year: 2005 end-page: 514 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. – volume: 37 start-page: 3513 year: 2010 end-page: 3520 article-title: Expert model for detection of epileptic activity in EEG signature publication-title: Expert Syst. Appl. – volume: 26 start-page: 55 year: 2004 end-page: 60 article-title: A neural‐network‐based detection of epilepsy publication-title: Neurological Res. – volume: 10 start-page: 10 year: 2011 end-page: 38 article-title: Seizure classification in EEG signals utilizing Hilbert‐Huang transform publication-title: Bio Med. Eng. Online – volume: 3 start-page: 015012 year: 2017 article-title: Time‐frequency image based features for classification of epileptic seizures from EEG signals publication-title: Biomed. Phys. Eng. Express – volume: 64 start-page: 061907 year: 2001 article-title: Indications of nonlinear deterministic and finite‐dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. – volume: 56 start-page: 5891 year: 2008 end-page: 5902 article-title: A reproducing kernel hilbert space framework for information‐theoretic learning publication-title: IEEE Trans. Signal Process. – volume: 99 start-page: 1195 year: 2018 end-page: 1201 article-title: Detection of weak fault using sparse empirical wavelet transform for cyclic fault publication-title: Int. J. Adv. Manuf. Technol. – volume: 187 start-page: 1017 year: 2007 end-page: 1026 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Applied. Math. Comput. – volume: 50 start-page: 537 year: 2003 end-page: 539 article-title: Special issue on epileptic seizure prediction publication-title: IEEE Trans. Biomed. Eng. – start-page: 177 year: 2009 end-page: 184 article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks – volume: 13 start-page: 15 year: 2014 end-page: 22 article-title: Classification of seizure based on the time‐frequency image of EEG signals using HHT and SVM publication-title: Biomed. Signal Process. Control – start-page: 596 year: 2006 end-page: 600 article-title: Epileptic seizure detection using neural fuzzy networks – start-page: 9.1 year: 2020 end-page: 9.31 – volume: 38 start-page: 14314 year: 2011 end-page: 14320 article-title: Best basis‐based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – volume: 7 start-page: 39 year: 1997 end-page: 55 article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF publication-title: Appl. Intell. – volume: 32 start-page: 1084 year: 2007 end-page: 1093 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. – year: 2012 – volume: 38 start-page: 14314 year: 2011 ident: e_1_2_10_8_2 article-title: Best basis‐based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – ident: e_1_2_10_14_2 doi: 10.1007/s00170‐018‐2553‐1 – ident: e_1_2_10_18_2 doi: 10.1109/TSP.2007.901656 – ident: e_1_2_10_15_2 doi: 10.1109/TSP.2013.2265222 – ident: e_1_2_10_4_2 doi: 10.1179/016164104773026534 – ident: e_1_2_10_19_2 doi: 10.1023/A:1008280620621 – ident: e_1_2_10_2_2 doi: 10.1109/TBME.2003.810708 – ident: e_1_2_10_7_2 doi: 10.1145/1543834.1543860 – ident: e_1_2_10_11_2 doi: 10.1088/2057‐1976/aa5199 – ident: e_1_2_10_3_2 doi: 10.1016/j.eswa.2009.10.036 – volume: 64 start-page: 061907 year: 2001 ident: e_1_2_10_17_2 article-title: Indications of nonlinear deterministic and finite‐dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. – ident: e_1_2_10_12_2 doi: 10.1016/j.eswa.2005.04.011 – ident: e_1_2_10_21_2 doi: 10.1145/1656274.1656278 – ident: e_1_2_10_6_2 doi: 10.1016/j.eswa.2006.02.005 – ident: e_1_2_10_20_2 doi: 10.1088/978-0-7503-3279-8ch9 – ident: e_1_2_10_13_2 doi: 10.1109/FUZZY.2006.1681772 – ident: e_1_2_10_10_2 doi: 10.1016/j.bspc.2014.03.007 – ident: e_1_2_10_5_2 doi: 10.1016/j.amc.2006.09.022 – ident: e_1_2_10_9_2 doi: 10.1186/1475‐925X‐10‐10 – ident: e_1_2_10_16_2 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.4466903 |
| Snippet | The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1370 |
| SubjectTerms | brain activity classification accuracy classification problem cross‐information potential electroencephalogram signals electroencephalography epileptic EEG signals feature extraction k‐nearest neighbour classifier medical disorders medical signal processing nearest neighbour methods normalised energy RELIEFF method seizure EEG signals seizure events seizure‐free EEG signals signal classification sparse spectrum based empirical wavelet transform Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications SS‐EWT coefficients unnatural activities wavelet transforms Z EEG signals |
| Title | Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.2526 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2526 |
| Volume | 56 |
| WOSCitedRecordID | wos000604957700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoYYCBN6K8ZCSYUCAPJ3FGQC0gVVUHHt0i27FRpT6itsDf585JSzsUCbFkSO7kyPf6bJ_vCLkwLDRMZqHjZVw6LOTaSQTosg6FMVLFMbfFnl-bcavFO52kXW644V2Yoj7EbMMNLcP6azRwIYsuJABqUYh4cOC7137oRxWy6nkBx9YNPmvPThHA1drmKkHoolF3ysR34L-Z514ISZWuniwCVRtpGlv__cdtslliTHpbKMUOWdGDXbIxV3lwj6S2GSamCVnJ0KGhOochwIEoWq8_UMzrAM2kmBf_TsHtjMaa2muZo48-xdiXUd3Pu7bCCP0S2L9iQidTGLxPXhr15_tHp-y14CiI2b4TZa6CYG_iAFZ8gLu04CyLDQP8YEyURADLTOiJwE2yIGARi4VOpBEAIKRmxk2CA1IdDAf6kFAGa6RQMelzTzHlKalgSca5FDqIoiyWNXI1ne5UlYXIsR9GL7UH4ixJdS_FaUtx2mrkckadFwU4ltCdg-TS0gLHS2hOF2jqzZ9vaZ6ZGimk-etAwNX07xrgGiP_6K8Mx2Qd32M-jOeekCrITJ-SNfU56Y5HZ1Z74fn21PoG4CnuMw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLa4JOCBGzHOIMETKvRIr0dAGyDKxAPH3qImTdCkMaZtwN_HTstgDyAhnmsrVXx9Thwb4MDw0HBZhI5XJNLhYaKdNEdd1mFujFRxnNhmzw9Z3GwmrVZ6W805pbcwZX-I0YEbWYb112TgdCBdJpycmmRqujnw3WM_9KNJmOaINWh2w-NVc3SNgL7WTlcJQpesulVVviP_yXfusZg02dbDcaRqQ01j8d8_uQQLFcpkp6VaLMOE7q7A_Lfeg6sg7DhMKhSysmEvhukeroEuRLF6_YJRZQfqJqPK-CeGjqc_0Mw-zOy_PjOKfgXTz7227THC3nOaYDFkw08gvAb3jfrd-aVTTVtwFEZt34kKV2G4N3GAOR8iL50nvIgNRwRhTJRGCMxM6OWBmxZBwCMe5zqVJkcIITU3bhqsw1T3pas3gHHMkkLFpZ94iitPSYVJWZLIXAdRVMSyBkef-y1U1YqcJmJ0hL0S56nQHUHbJmjbanA4ou6VLTh-oNtH0YnKBgc_0OyM0dSzr2-iV5galOL8dSHkyvyzBjrHyN_8K8MezF7e3WQiu2peb8Ec0VB1jOduwxTKT-_AjHobtgf9XavKHx_o8Xw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6RgKpy4NFSNUCokcoJbbsPex9HHglFRFEOFOVmrb02igRhlaTw95nxbgI5UAlx3hnZ8rzX428AflouLFeF8IIiVR4XqfGyHHXZiNxapZMkdWDPN72k30-Hw2xQzzmltzAVPsTihxtZhvPXZOCmLGxVcHICyTR0cxD6v0IRxg1Y5SIJSK1DPlhcI6CvddNVIuGTVQ_rznfk__2aeykmNUZmtpypulDT3fzwJrdgo84y2UmlFtuwYsZfYP0V9uBXkG4cJjUKOdmwB8tMiWugC9Gs07lg1NmBusmoM_6WoeOZTA1zDzMn_-4ZRb-Cmfty5DBG2FNOEyxmbDZPhHfgb7dzffbHq6cteBqjdujFha8x3NskwpoPMy-Tp7xILMcMwto4izExsyLIIz8roojHPMlNpmyOKYQy3PpZ9A2a44ex-Q6MY5UkNFdhGmiuA600FmVpqnITxXGRqBYcz89b6hqKnCZi3El3Jc4zae4kHZukY2vB0YK6rCA43qA7RNHJ2ganb9C0l2g6vZdvEiXXgkqc_10IuXrhaRedYxzuvpfhB3wanHdl77J_tQefiYSaYwJ_H5ooPtOGNf04G00nB06TnwFB9fCT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+epileptic+EEG+signals+using+sparse+spectrum+based+empirical+wavelet+transform&rft.jtitle=Electronics+letters&rft.au=Nishad%2C+A&rft.au=Upadhyay%2C+A&rft.au=Ravi+Shankar+Reddy%2C+G&rft.au=Bajaj%2C+V&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1370&rft.epage=1372&rft_id=info:doi/10.1049%2Fel.2020.2526&rft.externalDocID=10_1049_el_2020_2526 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |