Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform

The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 56; H. 25; S. 1370 - 1372
Hauptverfasser: Nishad, A, Upadhyay, A, Ravi Shankar Reddy, G, Bajaj, V
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 10.12.2020
Schlagworte:
ISSN:0013-5194, 1350-911X, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS-EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS-EWT coefficients, the cross-information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k-nearest neighbour (k-NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure-free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is $96.67\%$96.67%. The second classification problem is the classification of S and Z EEG signals in which $100\%$100% Acc is achieved by the proposed method.
AbstractList The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS‐EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS‐EWT coefficients, the cross‐information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k ‐nearest neighbour (k ‐NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure‐free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is 96.67%. The second classification problem is the classification of S and Z EEG signals in which 100% Acc is achieved by the proposed method.
The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS-EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS-EWT coefficients, the cross-information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k-nearest neighbour (k-NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure-free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is $96.67\%$96.67%. The second classification problem is the classification of S and Z EEG signals in which $100\%$100% Acc is achieved by the proposed method.
The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a methodology is proposed to classify the seizure EEG signals. In the proposed method, a novel sparse spectrum based empirical wavelet transform (SS‐EWT) is applied to decompose the EEG signal into coefficients. From the obtained SS‐EWT coefficients, the cross‐information potential and normalised energy are extracted as features. Then these features are ranked using the RELIEFF method to obtain significant features. After ranking, these features are fed into the k ‐nearest neighbour ( k ‐NN) classifier to classify EEG signals corresponding to different brain activities. In this work, the first classification problem is the classification of the seizure (S), seizure‐free (F), and normal (Z) EEG signals in which obtained classification accuracy (Acc) is . The second classification problem is the classification of S and Z EEG signals in which Acc is achieved by the proposed method.
Author Upadhyay, A
Nishad, A
Ravi Shankar Reddy, G
Bajaj, V
Author_xml – sequence: 1
  givenname: A
  surname: Nishad
  fullname: Nishad, A
  organization: BITS Pilani, KK Birla Goa Campus, Sancoale 403726, Goa, India
– sequence: 2
  givenname: A
  surname: Upadhyay
  fullname: Upadhyay, A
  email: abhyragav24@gmail.com
  organization: Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
– sequence: 3
  givenname: G
  surname: Ravi Shankar Reddy
  fullname: Ravi Shankar Reddy, G
  organization: CVR College of Engineering, Hyderabad 501510, Telangana, India
– sequence: 4
  givenname: V
  orcidid: 0000-0002-6832-0495
  surname: Bajaj
  fullname: Bajaj, V
  organization: PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
BookMark eNp9kEFLwzAUgINMcE5v_oAcPHiw870k7dqjjjmFgRcFbyFrX0aka0vSOfbvzZwHEfX0IHzf4-U7ZYOmbYixC4QxgipuqB4LEDAWqciO2BBlCkmB-DpgQwCUSYqFOmHnIbgloEKVgcIh09PaxCfrStO7tuGt5dS5mrrelXw2m_PgVo2pA98E16x46IwPFAeVvd-s-dIEqjitO-fjhppvzTvV1PPemybY1q_P2LGNOp1_zRF7uZ89Tx-SxdP8cXq7SEqZo0iyCkrM0U5krgCgIJOramJVLoS1WZEhCpuikVBUUqpMTQwVS2sgF0tSFgo5YuKwt_RtCJ6sLl3_-aV4iqs1gt5X0lTrfSW9rxSl6x9S593a-N1feHrAtzHQ7l9WzxYLcXcPE5mJ6F0ePEe9fms3fh80Et_wrrIRu_oF-_WSD5fzk94
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106241
crossref_primary_10_1016_j_bspc_2025_108246
crossref_primary_10_3390_rs15194681
crossref_primary_10_1016_j_bspc_2025_107991
crossref_primary_10_1002_aisy_202500281
crossref_primary_10_1016_j_bspc_2024_106074
crossref_primary_10_1016_j_bspc_2024_106447
crossref_primary_10_1016_j_bspc_2024_106446
crossref_primary_10_3390_brainsci11010043
crossref_primary_10_1016_j_bspc_2024_106624
crossref_primary_10_1016_j_bspc_2024_106344
crossref_primary_10_1016_j_bspc_2024_106641
crossref_primary_10_1016_j_bspc_2024_107369
crossref_primary_10_1016_j_bspc_2021_103322
crossref_primary_10_1002_aisy_202300346
crossref_primary_10_1016_j_bspc_2024_106929
crossref_primary_10_1016_j_bspc_2025_107906
crossref_primary_10_3389_fnhum_2024_1336157
Cites_doi 10.1007/s00170‐018‐2553‐1
10.1109/TSP.2007.901656
10.1109/TSP.2013.2265222
10.1179/016164104773026534
10.1023/A:1008280620621
10.1109/TBME.2003.810708
10.1145/1543834.1543860
10.1088/2057‐1976/aa5199
10.1016/j.eswa.2009.10.036
10.1016/j.eswa.2005.04.011
10.1145/1656274.1656278
10.1016/j.eswa.2006.02.005
10.1088/978-0-7503-3279-8ch9
10.1109/FUZZY.2006.1681772
10.1016/j.bspc.2014.03.007
10.1016/j.amc.2006.09.022
10.1186/1475‐925X‐10‐10
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2526
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1372
ExternalDocumentID 10_1049_el_2020_2526
ELL2BF07362
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3812-6d0c181f73840009ea84d7f4822ff696112f51a309d334647ae9bfa082be4f093
IEDL.DBID 24P
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Wed Oct 29 21:21:58 EDT 2025
Tue Nov 18 22:35:12 EST 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 06:33:42 EST 2021
Wed Jan 06 04:41:12 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords seizure-free EEG signals
electroencephalography
Z EEG signals
wavelet transforms
electroencephalogram signals
seizure events
cross-information potential
classification accuracy
k-nearest neighbour classifier
nearest neighbour methods
signal classification
normalised energy
medical disorders
classification problem
medical signal processing
epileptic EEG signals
feature extraction
seizure EEG signals
unnatural activities
sparse spectrum based empirical wavelet transform
RELIEFF method
brain activity
SS-EWT coefficients
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3812-6d0c181f73840009ea84d7f4822ff696112f51a309d334647ae9bfa082be4f093
ORCID 0000-0002-6832-0495
OpenAccessLink https://doi.org/10.1049/el.2020.2526
PageCount 3
ParticipantIDs iet_journals_10_1049_el_2020_2526
crossref_primary_10_1049_el_2020_2526
crossref_citationtrail_10_1049_el_2020_2526
wiley_primary_10_1049_el_2020_2526_ELL2BF07362
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Wang, D.; Miao, D.; Xie, C. (C7) 2011; 38
Witte, H.; Iasemidis, L.D.; Litt, B. (C1) 2003; 50
Guler, N. F.; Ubeylib, E. D.; Guler, I. (C11) 2005; 29
Subasi, A. (C5) 2007; 32
Kai, F.; Jianfeng, Q.; Yi, C. (C9) 2014; 13
Polat, K.; Gunes, S. (C4) 2007; 187
Xu, J. W.; Paiva, A. R. C.; Principe, J. C. (C17) 2008; 56
Kononenko, I.; Simec, E.; Robnik-Sikonja, M. (C18) 1997; 7
Oweis, R. J.; Abdulhay, E. W. (C8) 2011; 10
Nigam, V. P.; Graupe, D. (C3) 2004; 26
Gandhi, T.; Panigrahi, B. K.; Bhatia, M. (C2) 2010; 37
Gilles, J. (C14) 2013; 61
Bajaj, V.; Rai, K.; Kumar, A. (C10) 2017; 3
Lu, Y.; Xie, R.; Liang, S.Y. (C13) 2018; 99
Hall, M.; Frank, E.; Holmes, G. (C20) 2009; 11
Andrzejak, R. G.; Lehnertz, K.; Mormann, F. (C16) 2001; 64
2009; 11
2010; 37
2017; 3
2012
2020
2007; 187
2004; 26
2013; 61
2009
2008; 56
2011; 10
2014; 13
2006
2003; 50
2007; 32
2011; 38
2018; 99
2005; 29
2001; 64
1997; 7
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_12_2
e_1_2_10_20_2
e_1_2_10_10_2
e_1_2_10_21_2
Andrzejak R. G. (e_1_2_10_17_2) 2001; 64
e_1_2_10_19_2
e_1_2_10_3_2
Wang D. (e_1_2_10_8_2) 2011; 38
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
References_xml – volume: 56
  start-page: 5891
  year: 2008
  end-page: 5902
  ident: C17
  article-title: A reproducing kernel hilbert space framework for information-theoretic learning
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 14314
  year: 2011
  end-page: 14320
  ident: C7
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 3513
  year: 2010
  end-page: 3520
  ident: C2
  article-title: Expert model for detection of epileptic activity in EEG signature
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 15
  year: 2014
  end-page: 22
  ident: C9
  article-title: Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM
  publication-title: Biomed. Signal Process. Control
– volume: 50
  start-page: 537
  year: 2003
  end-page: 539
  ident: C1
  article-title: Special issue on epileptic seizure prediction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  ident: C5
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 39
  year: 1997
  end-page: 55
  ident: C18
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
– volume: 10
  start-page: 10
  year: 2011
  end-page: 38
  ident: C8
  article-title: Seizure classification in EEG signals utilizing Hilbert-Huang transform
  publication-title: Bio Med. Eng. Online
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: C4
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Applied. Math. Comput.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: C14
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 99
  start-page: 1195
  year: 2018
  end-page: 1201
  ident: C13
  article-title: Detection of weak fault using sparse empirical wavelet transform for cyclic fault
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 3
  start-page: 015012
  year: 2017
  ident: C10
  article-title: Time-frequency image based features for classification of epileptic seizures from EEG signals
  publication-title: Biomed. Phys. Eng. Express
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: C20
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explorations
– volume: 26
  start-page: 55
  year: 2004
  end-page: 60
  ident: C3
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurological Res.
– volume: 64
  start-page: 061907
  year: 2001
  ident: C16
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev.
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  ident: C11
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explorations
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 3513
  year: 2010
  end-page: 3520
  article-title: Expert model for detection of epileptic activity in EEG signature
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 55
  year: 2004
  end-page: 60
  article-title: A neural‐network‐based detection of epilepsy
  publication-title: Neurological Res.
– volume: 10
  start-page: 10
  year: 2011
  end-page: 38
  article-title: Seizure classification in EEG signals utilizing Hilbert‐Huang transform
  publication-title: Bio Med. Eng. Online
– volume: 3
  start-page: 015012
  year: 2017
  article-title: Time‐frequency image based features for classification of epileptic seizures from EEG signals
  publication-title: Biomed. Phys. Eng. Express
– volume: 64
  start-page: 061907
  year: 2001
  article-title: Indications of nonlinear deterministic and finite‐dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev.
– volume: 56
  start-page: 5891
  year: 2008
  end-page: 5902
  article-title: A reproducing kernel hilbert space framework for information‐theoretic learning
  publication-title: IEEE Trans. Signal Process.
– volume: 99
  start-page: 1195
  year: 2018
  end-page: 1201
  article-title: Detection of weak fault using sparse empirical wavelet transform for cyclic fault
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Applied. Math. Comput.
– volume: 50
  start-page: 537
  year: 2003
  end-page: 539
  article-title: Special issue on epileptic seizure prediction
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 177
  year: 2009
  end-page: 184
  article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks
– volume: 13
  start-page: 15
  year: 2014
  end-page: 22
  article-title: Classification of seizure based on the time‐frequency image of EEG signals using HHT and SVM
  publication-title: Biomed. Signal Process. Control
– start-page: 596
  year: 2006
  end-page: 600
  article-title: Epileptic seizure detection using neural fuzzy networks
– start-page: 9.1
  year: 2020
  end-page: 9.31
– volume: 38
  start-page: 14314
  year: 2011
  end-page: 14320
  article-title: Best basis‐based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 39
  year: 1997
  end-page: 55
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
– year: 2012
– volume: 38
  start-page: 14314
  year: 2011
  ident: e_1_2_10_8_2
  article-title: Best basis‐based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– ident: e_1_2_10_14_2
  doi: 10.1007/s00170‐018‐2553‐1
– ident: e_1_2_10_18_2
  doi: 10.1109/TSP.2007.901656
– ident: e_1_2_10_15_2
  doi: 10.1109/TSP.2013.2265222
– ident: e_1_2_10_4_2
  doi: 10.1179/016164104773026534
– ident: e_1_2_10_19_2
  doi: 10.1023/A:1008280620621
– ident: e_1_2_10_2_2
  doi: 10.1109/TBME.2003.810708
– ident: e_1_2_10_7_2
  doi: 10.1145/1543834.1543860
– ident: e_1_2_10_11_2
  doi: 10.1088/2057‐1976/aa5199
– ident: e_1_2_10_3_2
  doi: 10.1016/j.eswa.2009.10.036
– volume: 64
  start-page: 061907
  year: 2001
  ident: e_1_2_10_17_2
  article-title: Indications of nonlinear deterministic and finite‐dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev.
– ident: e_1_2_10_12_2
  doi: 10.1016/j.eswa.2005.04.011
– ident: e_1_2_10_21_2
  doi: 10.1145/1656274.1656278
– ident: e_1_2_10_6_2
  doi: 10.1016/j.eswa.2006.02.005
– ident: e_1_2_10_20_2
  doi: 10.1088/978-0-7503-3279-8ch9
– ident: e_1_2_10_13_2
  doi: 10.1109/FUZZY.2006.1681772
– ident: e_1_2_10_10_2
  doi: 10.1016/j.bspc.2014.03.007
– ident: e_1_2_10_5_2
  doi: 10.1016/j.amc.2006.09.022
– ident: e_1_2_10_9_2
  doi: 10.1186/1475‐925X‐10‐10
– ident: e_1_2_10_16_2
SSID ssib014146041
ssj0012997
Score 2.4466903
Snippet The unnatural activities of brain due to seizure events are analysed by electroencephalogram (EEG) signals which are captured from the brain. In this work, a...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1370
SubjectTerms brain activity
classification accuracy
classification problem
cross‐information potential
electroencephalogram signals
electroencephalography
epileptic EEG signals
feature extraction
k‐nearest neighbour classifier
medical disorders
medical signal processing
nearest neighbour methods
normalised energy
RELIEFF method
seizure EEG signals
seizure events
seizure‐free EEG signals
signal classification
sparse spectrum based empirical wavelet transform
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
SS‐EWT coefficients
unnatural activities
wavelet transforms
Z EEG signals
Title Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2526
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2526
Volume 56
WOSCitedRecordID wos000604957700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoYYCBN6K8ZCSYUCAPJ3FGQC0gVVUHHt0i27FRpT6itsDf585JSzsUCbFkSO7kyPf6bJ_vCLkwLDRMZqHjZVw6LOTaSQTosg6FMVLFMbfFnl-bcavFO52kXW644V2Yoj7EbMMNLcP6azRwIYsuJABqUYh4cOC7137oRxWy6nkBx9YNPmvPThHA1drmKkHoolF3ysR34L-Z514ISZWuniwCVRtpGlv__cdtslliTHpbKMUOWdGDXbIxV3lwj6S2GSamCVnJ0KGhOochwIEoWq8_UMzrAM2kmBf_TsHtjMaa2muZo48-xdiXUd3Pu7bCCP0S2L9iQidTGLxPXhr15_tHp-y14CiI2b4TZa6CYG_iAFZ8gLu04CyLDQP8YEyURADLTOiJwE2yIGARi4VOpBEAIKRmxk2CA1IdDAf6kFAGa6RQMelzTzHlKalgSca5FDqIoiyWNXI1ne5UlYXIsR9GL7UH4ixJdS_FaUtx2mrkckadFwU4ltCdg-TS0gLHS2hOF2jqzZ9vaZ6ZGimk-etAwNX07xrgGiP_6K8Mx2Qd32M-jOeekCrITJ-SNfU56Y5HZ1Z74fn21PoG4CnuMw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLa4JOCBGzHOIMETKvRIr0dAGyDKxAPH3qImTdCkMaZtwN_HTstgDyAhnmsrVXx9Thwb4MDw0HBZhI5XJNLhYaKdNEdd1mFujFRxnNhmzw9Z3GwmrVZ6W805pbcwZX-I0YEbWYb112TgdCBdJpycmmRqujnw3WM_9KNJmOaINWh2w-NVc3SNgL7WTlcJQpesulVVviP_yXfusZg02dbDcaRqQ01j8d8_uQQLFcpkp6VaLMOE7q7A_Lfeg6sg7DhMKhSysmEvhukeroEuRLF6_YJRZQfqJqPK-CeGjqc_0Mw-zOy_PjOKfgXTz7227THC3nOaYDFkw08gvAb3jfrd-aVTTVtwFEZt34kKV2G4N3GAOR8iL50nvIgNRwRhTJRGCMxM6OWBmxZBwCMe5zqVJkcIITU3bhqsw1T3pas3gHHMkkLFpZ94iitPSYVJWZLIXAdRVMSyBkef-y1U1YqcJmJ0hL0S56nQHUHbJmjbanA4ou6VLTh-oNtH0YnKBgc_0OyM0dSzr2-iV5galOL8dSHkyvyzBjrHyN_8K8MezF7e3WQiu2peb8Ec0VB1jOduwxTKT-_AjHobtgf9XavKHx_o8Xw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6RgKpy4NFSNUCokcoJbbsPex9HHglFRFEOFOVmrb02igRhlaTw95nxbgI5UAlx3hnZ8rzX428AflouLFeF8IIiVR4XqfGyHHXZiNxapZMkdWDPN72k30-Hw2xQzzmltzAVPsTihxtZhvPXZOCmLGxVcHICyTR0cxD6v0IRxg1Y5SIJSK1DPlhcI6CvddNVIuGTVQ_rznfk__2aeykmNUZmtpypulDT3fzwJrdgo84y2UmlFtuwYsZfYP0V9uBXkG4cJjUKOdmwB8tMiWugC9Gs07lg1NmBusmoM_6WoeOZTA1zDzMn_-4ZRb-Cmfty5DBG2FNOEyxmbDZPhHfgb7dzffbHq6cteBqjdujFha8x3NskwpoPMy-Tp7xILMcMwto4izExsyLIIz8roojHPMlNpmyOKYQy3PpZ9A2a44ex-Q6MY5UkNFdhGmiuA600FmVpqnITxXGRqBYcz89b6hqKnCZi3El3Jc4zae4kHZukY2vB0YK6rCA43qA7RNHJ2ganb9C0l2g6vZdvEiXXgkqc_10IuXrhaRedYxzuvpfhB3wanHdl77J_tQefiYSaYwJ_H5ooPtOGNf04G00nB06TnwFB9fCT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+epileptic+EEG+signals+using+sparse+spectrum+based+empirical+wavelet+transform&rft.jtitle=Electronics+letters&rft.au=Nishad%2C+A&rft.au=Upadhyay%2C+A&rft.au=Ravi+Shankar+Reddy%2C+G&rft.au=Bajaj%2C+V&rft.date=2020-12-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1370&rft.epage=1372&rft_id=info:doi/10.1049%2Fel.2020.2526&rft.externalDocID=10_1049_el_2020_2526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon