Smart Artificial Firefly Colony Algorithm-Based Support Vector Regression for Enhanced Forecasting in Civil Engineering

Advanced data mining techniques are potential tools for solving civil engineering (CE) problems. This study proposes a novel smart artificial firefly colony algorithm‐based support vector regression (SAFCA‐SVR) system that integrates firefly algorithm (FA), chaotic maps, adaptive inertia weight, Lév...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer-aided civil and infrastructure engineering Ročník 30; číslo 9; s. 715 - 732
Hlavní autoři: Chou, Jui-Sheng, Pham, Anh-Duc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Blackwell Publishing Ltd 01.09.2015
ISSN:1093-9687, 1467-8667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Advanced data mining techniques are potential tools for solving civil engineering (CE) problems. This study proposes a novel smart artificial firefly colony algorithm‐based support vector regression (SAFCA‐SVR) system that integrates firefly algorithm (FA), chaotic maps, adaptive inertia weight, Lévy flight, and least squares support vector regression (LS‐SVR). First, adaptive approach and randomization methods are incorporated in FA to construct a novel and highly effective metaheuristic algorithm for global optimization. The enhanced FA is then used to optimize parameters in LS‐SVR model. The proposed system is validated by comparing its performance with those of empirical methods and previous works via cross‐validation algorithm and hypothesis test through the real‐world engineering cases. Specifically, high‐performance concrete, resilient modulus of subgrade soils, and building cooling load are used as case studies. The SAFCA‐SVR achieved 8.8%–91.3% better error rates than those of previous works. Analytical results confirm that using the proposed hybrid system significantly improves the accuracy in solving CE problems.
AbstractList Advanced data mining techniques are potential tools for solving civil engineering (CE) problems. This study proposes a novel smart artificial firefly colony algorithm‐based support vector regression (SAFCA‐SVR) system that integrates firefly algorithm (FA), chaotic maps, adaptive inertia weight, Lévy flight, and least squares support vector regression (LS‐SVR). First, adaptive approach and randomization methods are incorporated in FA to construct a novel and highly effective metaheuristic algorithm for global optimization. The enhanced FA is then used to optimize parameters in LS‐SVR model. The proposed system is validated by comparing its performance with those of empirical methods and previous works via cross‐validation algorithm and hypothesis test through the real‐world engineering cases. Specifically, high‐performance concrete, resilient modulus of subgrade soils, and building cooling load are used as case studies. The SAFCA‐SVR achieved 8.8%–91.3% better error rates than those of previous works. Analytical results confirm that using the proposed hybrid system significantly improves the accuracy in solving CE problems.
Author Pham, Anh-Duc
Chou, Jui-Sheng
Author_xml – sequence: 1
  givenname: Jui-Sheng
  surname: Chou
  fullname: Chou, Jui-Sheng
  email: jschou@mail.ntust.edu.tw
  organization: Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 2
  givenname: Anh-Duc
  surname: Pham
  fullname: Pham, Anh-Duc
  organization: Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
BookMark eNp9kE9PGzEQxS0UJBLopZ_AZ6QNdrzxZo9hlQQk2gpC26NleyfJwMaObPMn376maXuoEDMH2-P3G-m9Aek574CQz5wNea6LLVoY8lHuI9LnpayKiZRVL99ZLYpaTqoTMojxgeUqS9EnL8utDolOQ8IVWtQdnWOAVbenje-829Npt_YB02ZbXOoILV0-7XY-Ez_AJh_oHawDxIje0VV-ztxGO5tlcx_A6pjQrSk62uAzdvl3jQ4g5OEZOV7pLsKnP-cp-T6f3TdXxc23xXUzvSmsmHBegK2Y5poJrTWUMBrXY1MzW7bMsFbymktu2kqOjJGGM2GEAWGZNFa2ANYYcUrOD3tt8DFmZ2oXMFveK87UW2TqLTL1O7IsZv-JLSadsrkUNHbvI_yAvGAH-w-Wqy_XzewvUxwYjAle_zE6PCpZiWqsfn5dqMVicifKW6Fq8QtpdpJn
CitedBy_id crossref_primary_10_3390_s18051635
crossref_primary_10_1111_exsy_12205
crossref_primary_10_1002_suco_70211
crossref_primary_10_1038_s41529_022_00218_4
crossref_primary_10_1016_j_autcon_2022_104579
crossref_primary_10_1016_j_apenergy_2019_03_078
crossref_primary_10_1016_j_engstruct_2022_114148
crossref_primary_10_3390_e23040477
crossref_primary_10_1016_j_engstruct_2022_114421
crossref_primary_10_1111_mice_12191
crossref_primary_10_1007_s41939_023_00187_4
crossref_primary_10_1016_j_energy_2019_116370
crossref_primary_10_1016_j_istruc_2021_04_048
crossref_primary_10_1016_j_aej_2024_11_084
crossref_primary_10_1061__ASCE_CP_1943_5487_0000595
crossref_primary_10_1111_mice_12361
crossref_primary_10_1007_s43538_024_00347_1
crossref_primary_10_14359_51689560
crossref_primary_10_1007_s00034_019_01088_z
crossref_primary_10_1016_j_autcon_2016_03_015
crossref_primary_10_1016_j_engappai_2024_109904
crossref_primary_10_1007_s41939_023_00213_5
crossref_primary_10_3390_app9224978
crossref_primary_10_1016_j_aei_2024_102642
crossref_primary_10_1016_j_aei_2020_101154
crossref_primary_10_1016_j_conbuildmat_2019_07_315
crossref_primary_10_1007_s00521_020_05048_6
crossref_primary_10_1016_j_eswa_2015_10_020
crossref_primary_10_1007_s00500_019_04103_2
crossref_primary_10_1007_s00521_016_2731_8
crossref_primary_10_3390_s18082713
crossref_primary_10_1007_s41870_024_01998_5
crossref_primary_10_1061__ASCE_MT_1943_5533_0002902
crossref_primary_10_1515_revneuro_2016_0029
crossref_primary_10_1155_2016_5089683
crossref_primary_10_1155_2022_5802217
crossref_primary_10_1007_s00521_019_04661_4
crossref_primary_10_1016_j_soildyn_2017_05_013
crossref_primary_10_1093_ijlct_ctad081
crossref_primary_10_1111_mice_12456
crossref_primary_10_1080_15732479_2020_1734632
crossref_primary_10_1111_exsy_12185
crossref_primary_10_1155_2020_8892106
crossref_primary_10_1007_s41939_023_00181_w
crossref_primary_10_1061__ASCE_CP_1943_5487_0000814
crossref_primary_10_1002_spy2_221
crossref_primary_10_1016_j_conbuildmat_2021_125437
crossref_primary_10_1007_s41062_021_00506_z
crossref_primary_10_3390_asi4030052
crossref_primary_10_1111_exsy_12357
crossref_primary_10_1016_j_compbiomed_2017_06_022
crossref_primary_10_1111_mice_12617
crossref_primary_10_1109_TNNLS_2017_2682102
crossref_primary_10_3390_ma16031244
crossref_primary_10_1016_j_engappai_2016_09_008
crossref_primary_10_1007_s10706_020_01536_7
crossref_primary_10_1016_j_cscm_2025_e04475
crossref_primary_10_1080_10298436_2025_2487935
crossref_primary_10_3233_JIFS_221342
crossref_primary_10_1016_j_jweia_2020_104138
crossref_primary_10_3390_su10010014
crossref_primary_10_1007_s00366_022_01781_9
crossref_primary_10_1108_ECAM_08_2023_0801
crossref_primary_10_1007_s00366_020_01249_8
crossref_primary_10_3233_ICA_160510
crossref_primary_10_1016_j_bbr_2015_10_036
crossref_primary_10_14359_51689360
crossref_primary_10_1016_j_conbuildmat_2022_129534
crossref_primary_10_14359_51689485
crossref_primary_10_1111_exsy_12255
crossref_primary_10_1111_mice_12288
crossref_primary_10_1016_j_conbuildmat_2020_120950
crossref_primary_10_1109_TII_2018_2794389
crossref_primary_10_1111_mice_13408
crossref_primary_10_1016_j_eswa_2021_115728
crossref_primary_10_1016_j_jobe_2022_105046
crossref_primary_10_1007_s00500_019_03863_1
crossref_primary_10_1016_j_engstruct_2017_10_070
crossref_primary_10_1088_1757_899X_1004_1_012010
crossref_primary_10_1111_mice_12257
crossref_primary_10_1111_mice_12654
crossref_primary_10_1002_suco_202100199
crossref_primary_10_1111_mice_12256
crossref_primary_10_1007_s42107_023_00984_9
crossref_primary_10_1111_mice_12408
crossref_primary_10_1016_j_ecoinf_2018_01_005
crossref_primary_10_3390_math9060686
crossref_primary_10_1016_j_compbiomed_2017_07_009
crossref_primary_10_1016_j_engappai_2023_106155
crossref_primary_10_1061__ASCE_CP_1943_5487_0000561
crossref_primary_10_3390_su16177591
crossref_primary_10_1016_j_conbuildmat_2024_138808
crossref_primary_10_1111_mice_12422
crossref_primary_10_3233_ICA_170546
crossref_primary_10_1016_j_conbuildmat_2020_121424
crossref_primary_10_1016_j_conbuildmat_2024_135782
crossref_primary_10_1142_S0218001416390018
crossref_primary_10_3233_JIFS_211088
crossref_primary_10_1007_s00521_019_04146_4
crossref_primary_10_1088_1755_1315_552_1_012020
Cites_doi 10.1016/j.enbuild.2004.09.009
10.1061/(ASCE)0733-9445(2000)126:5(596)
10.1111/mice.12062
10.1111/mice.12017
10.1061/(ASCE)0733-947X(2005)131:10(771)
10.3233/ICA-130428
10.1002/9780470640425
10.1007/978-1-4757-2440-0
10.3846/13923730.2011.574343
10.12989/cac.2008.5.6.559
10.1162/089976603321891855
10.1016/j.swevo.2011.06.003
10.1109/TSMCA.2012.2224338
10.1023/A:1012427100071
10.1002/nme.2274
10.1016/j.enbuild.2012.03.010
10.1023/B:MACH.0000008082.80494.e0
10.1111/j.1467-8667.2009.00595.x
10.1111/mice.12020
10.1016/j.advengsoft.2008.05.003
10.1023/A:1018628609742
10.1111/0885-9507.00229
10.1016/j.enbuild.2012.11.030
10.1109/IWISA.2009.5072707
10.1016/S0360-1323(00)00026-3
10.5815/ijisa.2012.10.06
10.1680/macr.2010.62.8.585
10.1111/j.1467-8667.2012.00786.x
10.1111/mice.12001
10.1111/j.1467-8667.2009.00615.x
10.1016/S0893-6080(00)00077-0
10.1080/10298436.2012.671944
10.1109/EPDC.2013.6565962
10.1109/NABIC.2009.5393690
10.1016/j.engappai.2003.09.011
10.1016/j.eswa.2012.10.036
10.1016/j.eswa.2012.02.063
10.1016/j.engappai.2012.08.015
10.1007/s00521-010-0432-2
10.1061/(ASCE)0733-9364(1998)124:1(18)
10.1016/j.rser.2012.03.045
10.1016/j.conbuildmat.2012.02.038
10.3233/ICA-130421
10.1007/s00521-011-0734-z
10.1016/S0008-8846(98)00165-3
10.1007/s00366-011-0251-9
10.1016/j.apenergy.2008.11.035
10.1016/j.enbuild.2012.03.003
10.1016/S0008-8846(02)00787-1
10.1016/j.eswa.2008.07.004
10.1016/j.chaos.2006.04.057
10.1080/10298430500140891
10.2172/1018100
10.1016/j.ress.2011.05.005
10.1111/j.1467-8667.2012.00769.x
10.1103/PhysRevLett.54.616
10.1080/14680629.2009.9690218
10.1142/5089
10.1016/j.conbuildmat.2013.08.078
10.1109/81.933333
10.1016/j.cnsns.2012.06.009
10.1007/978-3-642-04586-8_10
10.1016/j.neunet.2009.05.003
10.1111/0885-9507.00219
10.1016/j.asoc.2010.06.003
10.1111/j.1467-8667.2012.00767.x
10.1016/j.ijepes.2009.03.020
10.1007/978-3-642-22185-9_6
10.1016/j.advengsoft.2011.09.014
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/mice.12121
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 732
ExternalDocumentID 10_1111_mice_12121
MICE12121
ark_67375_WNG_GG8R34Q3_9
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c3811-ec70a1a03aaae4e2595b90c4d0b0d619161bd762bb6b103b3be3c06bc6deecbb3
IEDL.DBID DRFUL
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358692800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sat Nov 29 05:42:04 EST 2025
Tue Nov 18 21:43:07 EST 2025
Wed Jan 22 16:55:09 EST 2025
Sun Sep 21 06:19:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3811-ec70a1a03aaae4e2595b90c4d0b0d619161bd762bb6b103b3be3c06bc6deecbb3
Notes istex:9EE18008EB33C39D295E35311228EB5982FAD0FD
ark:/67375/WNG-GG8R34Q3-9
ArticleID:MICE12121
PageCount 18
ParticipantIDs crossref_primary_10_1111_mice_12121
crossref_citationtrail_10_1111_mice_12121
wiley_primary_10_1111_mice_12121_MICE12121
istex_primary_ark_67375_WNG_GG8R34Q3_9
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationTitleAlternate Computer-Aided Civil and Infrastructure Engineering
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Tsanas, A. & Xifara, A. (2012), Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools, Energy and Buildings, 49, 560-67.
Coelho, L. d. S. & Mariani, V. C. (2013), Improved firefly algorithm approach applied to chiller loading for energy conservation, Energy and Buildings, 59, 273-78.
Ekici, B. B. & Aksoy, U. T. (2009), Prediction of building energy consumption by using artificial neural networks, Advances in Engineering Software, 40(5), 356-62.
He, D., He, C., Jiang, L. G., Zhu, H. W. & Hu, G. R. (2001), Chaotic characteristics of a one-dimensional iterative map with infinite collapses, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 900-06.
Amini, F., Hazaveh, N. K. & Rad, A. A. (2013), Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers, Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-57.
Yeh, I. C. & Lien, L.-C. (2009), Knowledge discovery of concrete material using genetic operation trees, Expert Systems with Applications, 36(3, Part 2), 5807-12.
Hsu, C.-W. & Lin, C.-J. (2002), A simple decomposition method for support vector machines, Machine Learning, 46(1-3), 291-314.
Hong, W.-C. (2009), Hybrid evolutionary algorithms in a SVR-based electric load forecasting model, International Journal of Electrical Power & Energy Systems, 31(7-8), 409-17.
Dharia, A. & Adeli, H. (2003), Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence, 16(7-8), 607-13.
Gandomi, A. H., Yang, X. S., Talatahari, S. & Alavi, A. H. (2013), Firefly algorithm with chaos, Communications in Nonlinear Science and Numerical Simulation, 18(1), 89-98.
Edwards, R. E., New, J. & Parker, L. E. (2012), Predicting future hourly residential electrical consumption: a machine learning case study, Energy and Buildings, 49, 591-603.
Van-Gestel, T., Suykens, J. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., De-Moor, B. & Vandewalle, J. (2004), Benchmarking least squares support vector machine classifiers, Machine Learning, 54(1), 5-32.
Kris, D. B. (2011), Least Squares Support Vector Regression with Applications to Large-Scale Data: A Statistical Approach, Faculty of Engineering, KU Leuven, Katholieke Universiteit Leuven, Leuven, Belgium.
Gandomi, A. & Alavi, A. (2012), A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems, Neural Computing and Applications, 21(1), 171-87.
Li, D., Xu, L., Goodman, E. D., Xu, Y. & Wu, Y. (2013), Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking, Integrated Computer-Aided Engineering, 20(3), 201-16.
ASSHTO (2008), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Washington DC.
Yang, I. T. & Hsieh, Y.-H. (2013), Reliability-based design optimization with cooperation between support vector machine and particle swarm optimization, Engineering with Computers, 29(2), 151-63.
Rahim, A. M. (2005), Subgrade soil index properties to estimate resilient modulus for pavement design, International Journal of Pavement Engineering, 6(3), 163-69.
Adeli, H. & Wu, M. (1998), Regularization neural network for construction cost estimation, Journal of Construction Engineering and Management, 124(1), 18-24.
Li, Y., Deng, S. & Xiao, D. (2011), A novel hash algorithm construction based on chaotic neural network, Neural Computing and Applications, 20(1), 133-41.
Liao, S.-H., Chu, P.-H. & Hsiao, P.-Y. (2012), Data mining techniques and applications - a decade review from 2000 to 2011, Expert Systems with Applications, 39(12), 11303-11.
Huang, Y. H. (1993), Pavement Analysis and Design, Prentice Hall, Englewood Cliffs, NJ.
Lin, D.-Y. & Ku, Y.-H. (2014), Using genetic algorithms to optimize stopping patterns for passenger rail transportation, Computer-Aided Civil and Infrastructure Engineering, 29(4), 264-78.
Yang, D., Li, G. & Cheng, G. (2007), On the efficiency of chaos optimization algorithms for global optimization, Chaos, Solitons & Fractals, 34(4), 1366-75.
Panakkat, A. & Adeli, H. (2009), Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators, Computer-Aided Civil and Infrastructure Engineering, 24(4), 280-92.
Senthilnath, J., Omkar, S. N. & Mani, V. (2011), Clustering using firefly algorithm: performance study, Swarm and Evolutionary Computation, 1(3), 164-71.
Jie, S., Hui, L. & Adeli, H. (2013), Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(4), 801-13.
Chou, J.-S. & Pham, A.-D. (2013), Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength, Construction and Building Materials, 49, 554-63.
Li, Q., Meng, Q., Cai, J., Yoshino, H. & Mochida, A. (2009), Applying support vector machine to predict hourly cooling load in the building, Applied Energy, 86(10), 2249-56.
Dai, H., Zhang, H., Wang, W. & Xue, G. (2012), Structural reliability assessment by local approximation of limit state functions using adaptive Markov chain simulation and support vector regression, Computer-Aided Civil and Infrastructure Engineering, 27(9), 676-86.
Al-Homoud, M. S. (2001), Computer-aided building energy analysis techniques, Building and Environment, 36(4), 421-33.
Chou, J. S., Cheng, M. Y. & Wu, Y. W. (2013), Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models, Expert Systems with Applications, 40(6), 2263-74.
Yeh, I. C. (1998), Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete Research, 28(12), 1797-808.
Burdick, A. (2011), Strategy Guideline: Accurate Heating and Cooling Load Calculations, IBACOS, Inc., US Department of Energy, Washington DC.
Yang, X.-S. (2008), Firefly Algorithm, Luniver Press, Bristol, UK.
Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P. & Yu, W.-D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81.
Montalvo, I., Izquierdo, J., Pérez-García, R. & Herrera, M. (2014), Water distribution system computer-aided design by agent swarm optimization, Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-48.
Boukhatem, B., Kenai, S., Tagnit-Hamou, A. & Ghrici, M. (2011), Application of new information technology on concrete: an overview, Journal of Civil Engineering and Management, 17(2), 248-58.
Suykens, J. A. K., Vandewalle, J. & De-Moor, B. (2001), Optimal control by least squares support vector machines, Neural Networks, 14(1), 23-35.
Asuncion, A. & Newman, D. (2007), Uci Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA.
Hong, W.-C., Dong, Y., Chen, L.-Y. & Wei, S.-Y. (2011), SVR with hybrid chaotic genetic algorithms for tourism demand forecasting, Applied Soft Computing, 11(2), 1881-90.
Adeli, H. & Panakkat, A. (2009), A probabilistic neural network for earthquake magnitude prediction, Neural Networks, 22(7), 1018-24.
Keerthi, S. S. & Lin, C.-J. (2003), Asymptotic behaviors of support vector machines with Gaussian kernel, Neural Computation, 15(7), 1667-89.
Bianchini, A. & Bandini, P. (2010), Prediction of pavement performance through neuro-fuzzy reasoning, Computer-Aided Civil and Infrastructure Engineering, 25(1), 39-54.
Jiang, X. & Adeli, H. (2005), Dynamic wavelet neural network model for traffic flow forecasting, Journal of Transportation Engineering, 131(10), 771-79.
Pacheco, R., Ordóñez, J. & Martínez, G. (2012), Energy efficient design of building: a review, Renewable and Sustainable Energy Reviews, 16(6), 3559-73.
Verma, A., Wei, X. & Kusiak, A. (2013), Predicting the total suspended solids in wastewater: a data-mining approach, Engineering Applications of Artificial Intelligence, 26(4), 1366-72.
Adeli, H. (2001), Neural networks in civil engineering: 1989-2000, Computer-Aided Civil and Infrastructure Engineering, 16(2), 126-42.
Park, H. I., Kweon, G. C. & Lee, S. R. (2009), Prediction of resilient modulus of granular subgrade soils and subbase materials using artificial neural network, Road Materials and Pavement Design, 10(3), 647-65.
Atici, U. (2010), Prediction of the strength of mineral-addition concrete using regression analysis, Magazine of Concrete Research, 62(8), 585-92.
George, K. P. (2004), Prediction of Resilient Modulus from Soil Index Properties, Mississippi Department of Transportation, Jackson, Mississippi.
Pal, S. K., Rai, C. S. & Singh, A. P. (2012), Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems, International Journal of Intelligent Systems and Applications, 4, 50-57.
Shafahi, Y. & Bagherian, M. (2013), A customized particle swarm method to solve highway alignment optimization problem, Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67.
Suykens, J. A. K. & Vandewalle, J. (1999), Least squares support vector machine classifiers, Neural Processing Letters, 9(3), 293-300.
Nazzal, M. D. & Tatari, O. (2013), Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus, International Journal of Pavement Engineering, 14(4), 364-73.
Yang, X.-S. (2010), Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley & Sons, Hoboken, NJ.
Rigatos, G. G. (2013), Adaptive fuzzy control for differentially flat MIMO nonlinear dynamical systems, Integrated Computer-Aided Engineering, 20(2), 111-26.
Mousavi, S. M., Aminian, P., Gandomi, A. H., Alavi, A. H. & Bolandi, H. (2012), A new predictive model for compressive strength o
2013; 29
2013; 26
2009; 40
2013; 28
2005; 131
2009; 86
2013; 20
2011; 96
2011; 11
2003; 15
2003; 16
2001; 48
2008; 5
2014; 29
2012; 16
2008; 75
2011; 17
2007; 34
2010; 62
2013; 18
2013; 59
2013; 14
2010; 25
2009; 10
2000; 126
2002; 46
2011; 20
1985
2001; 16
2012; 27
2005; 37
1998; 124
1985; 54
2001; 14
2012; 21
2009; 22
2009; 24
1998; 28
2013; 49
2011; 1
2011
2013; 43
2010
2013; 40
2002; 32
2009
2008
2007
1995
2005
2004
1993
2012; 39
2002
2012; 34
1999; 9
2004; 54
2009; 36
2009; 31
2005; 6
2012; 49
2013
2012; 45
2012; 4
2001; 36
e_1_2_7_5_1
Yang X.‐S. (e_1_2_7_75_1) 2008
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
Pham D. (e_1_2_7_55_1) 2005
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_13_1
Kris D. B. (e_1_2_7_40_1) 2011
e_1_2_7_43_1
e_1_2_7_66_1
ASSHTO (e_1_2_7_7_1) 2008
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Huang Y. H. (e_1_2_7_34_1) 1993
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
George K. P. (e_1_2_7_27_1) 2004
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_18_1
Asuncion A. (e_1_2_7_8_1) 2007
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
Carmichael R. F. (e_1_2_7_14_1) 1985
Rigatos G. G. (e_1_2_7_57_1) 2013; 20
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_29_1
Li D. (e_1_2_7_41_1) 2013; 20
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – reference: Hsu, C.-W. & Lin, C.-J. (2002), A simple decomposition method for support vector machines, Machine Learning, 46(1-3), 291-314.
– reference: Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P. & Yu, W.-D. (2012), Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction, Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-81.
– reference: Senthilnath, J., Omkar, S. N. & Mani, V. (2011), Clustering using firefly algorithm: performance study, Swarm and Evolutionary Computation, 1(3), 164-71.
– reference: Asuncion, A. & Newman, D. (2007), Uci Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA.
– reference: Coelho, L. d. S. & Mariani, V. C. (2013), Improved firefly algorithm approach applied to chiller loading for energy conservation, Energy and Buildings, 59, 273-78.
– reference: Jiang, X. & Adeli, H. (2008), Neuro-genetic algorithm for non-linear active control of structures, International Journal for Numerical Methods in Engineering, 75(7), 770-86.
– reference: Li, Q., Meng, Q., Cai, J., Yoshino, H. & Mochida, A. (2009), Applying support vector machine to predict hourly cooling load in the building, Applied Energy, 86(10), 2249-56.
– reference: Rigatos, G. G. (2013), Adaptive fuzzy control for differentially flat MIMO nonlinear dynamical systems, Integrated Computer-Aided Engineering, 20(2), 111-26.
– reference: Suykens, J. A. K., Vandewalle, J. & De-Moor, B. (2001), Optimal control by least squares support vector machines, Neural Networks, 14(1), 23-35.
– reference: Huang, Y. H. (1993), Pavement Analysis and Design, Prentice Hall, Englewood Cliffs, NJ.
– reference: Adeli, H. (2001), Neural networks in civil engineering: 1989-2000, Computer-Aided Civil and Infrastructure Engineering, 16(2), 126-42.
– reference: ASSHTO (2008), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Washington DC.
– reference: Edwards, R. E., New, J. & Parker, L. E. (2012), Predicting future hourly residential electrical consumption: a machine learning case study, Energy and Buildings, 49, 591-603.
– reference: Rahim, A. M. (2005), Subgrade soil index properties to estimate resilient modulus for pavement design, International Journal of Pavement Engineering, 6(3), 163-69.
– reference: Chou, J.-S. & Pham, A.-D. (2013), Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength, Construction and Building Materials, 49, 554-63.
– reference: Boukhatem, B., Kenai, S., Tagnit-Hamou, A. & Ghrici, M. (2011), Application of new information technology on concrete: an overview, Journal of Civil Engineering and Management, 17(2), 248-58.
– reference: Pacheco, R., Ordóñez, J. & Martínez, G. (2012), Energy efficient design of building: a review, Renewable and Sustainable Energy Reviews, 16(6), 3559-73.
– reference: Gandomi, A. H., Yang, X. S., Talatahari, S. & Alavi, A. H. (2013), Firefly algorithm with chaos, Communications in Nonlinear Science and Numerical Simulation, 18(1), 89-98.
– reference: Li, D., Xu, L., Goodman, E. D., Xu, Y. & Wu, Y. (2013), Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking, Integrated Computer-Aided Engineering, 20(3), 201-16.
– reference: Mosa, A. M., Rahmat, R. A. O. K., Ismail, A. & Taha, M. R. (2013), Expert system to control construction problems in flexible pavements, Computer-Aided Civil and Infrastructure Engineering, 28(4), 307-23.
– reference: Lin, D.-Y. & Ku, Y.-H. (2014), Using genetic algorithms to optimize stopping patterns for passenger rail transportation, Computer-Aided Civil and Infrastructure Engineering, 29(4), 264-78.
– reference: Nazzal, M. D. & Tatari, O. (2013), Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus, International Journal of Pavement Engineering, 14(4), 364-73.
– reference: George, K. P. (2004), Prediction of Resilient Modulus from Soil Index Properties, Mississippi Department of Transportation, Jackson, Mississippi.
– reference: Siamak, S. G., Hamed, B. J. & Ramezanianpour, A. A. (2012), Hybrid support vector regression - particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin, Construction and Building Materials, 34, 321-29.
– reference: Montalvo, I., Izquierdo, J., Pérez-García, R. & Herrera, M. (2014), Water distribution system computer-aided design by agent swarm optimization, Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-48.
– reference: Chou, J.-S. & Le, T.-S. (2011), Reliability-based performance simulation for optimized pavement maintenance, Reliability Engineering & System Safety, 96(10), 1402-10.
– reference: Hong, W.-C. (2009), Hybrid evolutionary algorithms in a SVR-based electric load forecasting model, International Journal of Electrical Power & Energy Systems, 31(7-8), 409-17.
– reference: Suykens, J. A. K. & Vandewalle, J. (1999), Least squares support vector machine classifiers, Neural Processing Letters, 9(3), 293-300.
– reference: Yang, X.-S. (2010), Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley & Sons, Hoboken, NJ.
– reference: Bianchini, A. & Bandini, P. (2010), Prediction of pavement performance through neuro-fuzzy reasoning, Computer-Aided Civil and Infrastructure Engineering, 25(1), 39-54.
– reference: Amini, F., Hazaveh, N. K. & Rad, A. A. (2013), Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers, Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-57.
– reference: Yeh, I. C. (1998), Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete Research, 28(12), 1797-808.
– reference: Bhanja, S. & Sengupta, B. (2002), Investigations on the compressive strength of silica fume concrete using statistical methods, Cement and Concrete Research, 32(9), 1391-94.
– reference: Mousavi, S. M., Aminian, P., Gandomi, A. H., Alavi, A. H. & Bolandi, H. (2012), A new predictive model for compressive strength of HPC using gene expression programming, Advances in Engineering Software, 45(1), 105-14.
– reference: Yeh, I. C. & Lien, L.-C. (2009), Knowledge discovery of concrete material using genetic operation trees, Expert Systems with Applications, 36(3, Part 2), 5807-12.
– reference: Keerthi, S. S. & Lin, C.-J. (2003), Asymptotic behaviors of support vector machines with Gaussian kernel, Neural Computation, 15(7), 1667-89.
– reference: Li, Y., Deng, S. & Xiao, D. (2011), A novel hash algorithm construction based on chaotic neural network, Neural Computing and Applications, 20(1), 133-41.
– reference: Burdick, A. (2011), Strategy Guideline: Accurate Heating and Cooling Load Calculations, IBACOS, Inc., US Department of Energy, Washington DC.
– reference: Shafahi, Y. & Bagherian, M. (2013), A customized particle swarm method to solve highway alignment optimization problem, Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67.
– reference: Gandomi, A. & Alavi, A. (2012), A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems, Neural Computing and Applications, 21(1), 171-87.
– reference: Geisel, T., Nierwetberg, J. & Zacherl, A. (1985), Accelerated diffusion in Josephson junctions and related chaotic systems, Physical Review Letters, 54(7), 616-19.
– reference: Hong, W.-C., Dong, Y., Chen, L.-Y. & Wei, S.-Y. (2011), SVR with hybrid chaotic genetic algorithms for tourism demand forecasting, Applied Soft Computing, 11(2), 1881-90.
– reference: Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer-Verlag, New York.
– reference: Tsanas, A. & Xifara, A. (2012), Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools, Energy and Buildings, 49, 560-67.
– reference: Van-Gestel, T., Suykens, J. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., De-Moor, B. & Vandewalle, J. (2004), Benchmarking least squares support vector machine classifiers, Machine Learning, 54(1), 5-32.
– reference: Panakkat, A. & Adeli, H. (2009), Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators, Computer-Aided Civil and Infrastructure Engineering, 24(4), 280-92.
– reference: Yang, D., Li, G. & Cheng, G. (2007), On the efficiency of chaos optimization algorithms for global optimization, Chaos, Solitons & Fractals, 34(4), 1366-75.
– reference: He, D., He, C., Jiang, L. G., Zhu, H. W. & Hu, G. R. (2001), Chaotic characteristics of a one-dimensional iterative map with infinite collapses, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 900-06.
– reference: Samant, A. & Adeli, H. (2001), Enhancing neural network traffic incident-detection algorithms using wavelets, Computer-Aided Civil and Infrastructure Engineering, 16(4), 239-45.
– reference: Yang, X.-S. (2008), Firefly Algorithm, Luniver Press, Bristol, UK.
– reference: Park, H. I., Kweon, G. C. & Lee, S. R. (2009), Prediction of resilient modulus of granular subgrade soils and subbase materials using artificial neural network, Road Materials and Pavement Design, 10(3), 647-65.
– reference: Yeh, I. C. (2008), Modeling slump of concrete with fly ash and superplasticizer, Computers and Concrete, 5(6), 559-72.
– reference: Jiang, X. & Adeli, H. (2005), Dynamic wavelet neural network model for traffic flow forecasting, Journal of Transportation Engineering, 131(10), 771-79.
– reference: Yang, I. T. & Hsieh, Y.-H. (2013), Reliability-based design optimization with cooperation between support vector machine and particle swarm optimization, Engineering with Computers, 29(2), 151-63.
– reference: Chou, J. S., Cheng, M. Y. & Wu, Y. W. (2013), Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models, Expert Systems with Applications, 40(6), 2263-74.
– reference: Dong, B., Cao, C. & Lee, S. E. (2005), Applying support vector machines to predict building energy consumption in tropical region, Energy and Buildings, 37(5), 545-53.
– reference: Dharia, A. & Adeli, H. (2003), Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence, 16(7-8), 607-13.
– reference: Adeli, H. & Panakkat, A. (2009), A probabilistic neural network for earthquake magnitude prediction, Neural Networks, 22(7), 1018-24.
– reference: Jie, S., Hui, L. & Adeli, H. (2013), Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(4), 801-13.
– reference: Ekici, B. B. & Aksoy, U. T. (2009), Prediction of building energy consumption by using artificial neural networks, Advances in Engineering Software, 40(5), 356-62.
– reference: Liao, S.-H., Chu, P.-H. & Hsiao, P.-Y. (2012), Data mining techniques and applications - a decade review from 2000 to 2011, Expert Systems with Applications, 39(12), 11303-11.
– reference: Pal, S. K., Rai, C. S. & Singh, A. P. (2012), Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems, International Journal of Intelligent Systems and Applications, 4, 50-57.
– reference: Dai, H., Zhang, H., Wang, W. & Xue, G. (2012), Structural reliability assessment by local approximation of limit state functions using adaptive Markov chain simulation and support vector regression, Computer-Aided Civil and Infrastructure Engineering, 27(9), 676-86.
– reference: Suykens, J. A. K., Van-Gestel, T., De-Brabanter, J., De-Moor, B. & Vandewalle, J. (2002), Least Squares Support Vector Machines, World Scientific, Singapore City, Singapore.
– reference: Al-Homoud, M. S. (2001), Computer-aided building energy analysis techniques, Building and Environment, 36(4), 421-33.
– reference: Kris, D. B. (2011), Least Squares Support Vector Regression with Applications to Large-Scale Data: A Statistical Approach, Faculty of Engineering, KU Leuven, Katholieke Universiteit Leuven, Leuven, Belgium.
– reference: Verma, A., Wei, X. & Kusiak, A. (2013), Predicting the total suspended solids in wastewater: a data-mining approach, Engineering Applications of Artificial Intelligence, 26(4), 1366-72.
– reference: Adeli, H. & Wu, M. (1998), Regularization neural network for construction cost estimation, Journal of Construction Engineering and Management, 124(1), 18-24.
– reference: Sarma, K. & Adeli, H. (2000), Fuzzy genetic algorithm for optimization of steel structures, Journal of Structural Engineering, 126(5), 596-604.
– reference: Atici, U. (2010), Prediction of the strength of mineral-addition concrete using regression analysis, Magazine of Concrete Research, 62(8), 585-92.
– year: 2011
– year: 1985
– volume: 28
  start-page: 307
  issue: 4
  year: 2013
  end-page: 23
  article-title: Expert system to control construction problems in flexible pavements
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 321
  year: 2012
  end-page: 29
  article-title: Hybrid support vector regression – particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin
  publication-title: Construction and Building Materials
– volume: 4
  start-page: 50
  year: 2012
  end-page: 57
  article-title: Comparative study of firefly algorithm and particle swarm optimization for noisy non‐linear optimization problems
  publication-title: International Journal of Intelligent Systems and Applications
– volume: 1
  start-page: 164
  issue: 3
  year: 2011
  end-page: 71
  article-title: Clustering using firefly algorithm: performance study
  publication-title: Swarm and Evolutionary Computation
– volume: 20
  start-page: 133
  issue: 1
  year: 2011
  end-page: 41
  article-title: A novel hash algorithm construction based on chaotic neural network
  publication-title: Neural Computing and Applications
– start-page: 279
  year: 2005
  end-page: 83
– year: 2005
– volume: 17
  start-page: 248
  issue: 2
  year: 2011
  end-page: 58
  article-title: Application of new information technology on concrete: an overview
  publication-title: Journal of Civil Engineering and Management
– volume: 96
  start-page: 1402
  issue: 10
  year: 2011
  end-page: 10
  article-title: Reliability‐based performance simulation for optimized pavement maintenance
  publication-title: Reliability Engineering & System Safety
– volume: 28
  start-page: 52
  issue: 1
  year: 2013
  end-page: 67
  article-title: A customized particle swarm method to solve highway alignment optimization problem
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 39
  start-page: 11303
  issue: 12
  year: 2012
  end-page: 11
  article-title: Data mining techniques and applications – a decade review from 2000 to 2011
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 560
  year: 2012
  end-page: 67
  article-title: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
  publication-title: Energy and Buildings
– start-page: 1
  year: 2013
  end-page: 6
– volume: 28
  start-page: 542
  issue: 7
  year: 2013
  end-page: 57
  article-title: Wavelet PSO‐based LQR algorithm for optimal structural control using active tuned mass dampers
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  end-page: 98
  article-title: Firefly algorithm with chaos
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 54
  start-page: 5
  issue: 1
  year: 2004
  end-page: 32
  article-title: Benchmarking least squares support vector machine classifiers
  publication-title: Machine Learning
– volume: 54
  start-page: 616
  issue: 7
  year: 1985
  end-page: 19
  article-title: Accelerated diffusion in Josephson junctions and related chaotic systems
  publication-title: Physical Review Letters
– volume: 14
  start-page: 364
  issue: 4
  year: 2013
  end-page: 73
  article-title: Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus
  publication-title: International Journal of Pavement Engineering
– volume: 14
  start-page: 23
  issue: 1
  year: 2001
  end-page: 35
  article-title: Optimal control by least squares support vector machines
  publication-title: Neural Networks
– volume: 20
  start-page: 111
  issue: 2
  year: 2013
  end-page: 26
  article-title: Adaptive fuzzy control for differentially flat MIMO nonlinear dynamical systems
  publication-title: Integrated Computer‐Aided Engineering
– start-page: 53
  year: 2011
  end-page: 66
– volume: 29
  start-page: 151
  issue: 2
  year: 2013
  end-page: 63
  article-title: Reliability‐based design optimization with cooperation between support vector machine and particle swarm optimization
  publication-title: Engineering with Computers
– volume: 21
  start-page: 171
  issue: 1
  year: 2012
  end-page: 87
  article-title: A new multi‐gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems
  publication-title: Neural Computing and Applications
– volume: 46
  start-page: 291
  issue: 1–3
  year: 2002
  end-page: 314
  article-title: A simple decomposition method for support vector machines
  publication-title: Machine Learning
– year: 2008
– volume: 40
  start-page: 356
  issue: 5
  year: 2009
  end-page: 62
  article-title: Prediction of building energy consumption by using artificial neural networks
  publication-title: Advances in Engineering Software
– start-page: 1137
  year: 1995
  end-page: 43
– year: 2004
– volume: 20
  start-page: 201
  issue: 3
  year: 2013
  end-page: 16
  article-title: Integrating a statistical background‐foreground extraction algorithm and SVM classifier for pedestrian detection and tracking
  publication-title: Integrated Computer‐Aided Engineering
– volume: 49
  start-page: 591
  year: 2012
  end-page: 603
  article-title: Predicting future hourly residential electrical consumption: a machine learning case study
  publication-title: Energy and Buildings
– volume: 16
  start-page: 3559
  issue: 6
  year: 2012
  end-page: 73
  article-title: Energy efficient design of building: a review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 131
  start-page: 771
  issue: 10
  year: 2005
  end-page: 79
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: Journal of Transportation Engineering
– volume: 15
  start-page: 1667
  issue: 7
  year: 2003
  end-page: 89
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Computation
– volume: 29
  start-page: 433
  issue: 6
  year: 2014
  end-page: 48
  article-title: Water distribution system computer‐aided design by agent swarm optimization
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 48
  start-page: 900
  issue: 7
  year: 2001
  end-page: 06
  article-title: Chaotic characteristics of a one‐dimensional iterative map with infinite collapses
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
– year: 1993
– volume: 75
  start-page: 770
  issue: 7
  year: 2008
  end-page: 86
  article-title: Neuro‐genetic algorithm for non‐linear active control of structures
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 29
  start-page: 264
  issue: 4
  year: 2014
  end-page: 78
  article-title: Using genetic algorithms to optimize stopping patterns for passenger rail transportation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 1391
  issue: 9
  year: 2002
  end-page: 94
  article-title: Investigations on the compressive strength of silica fume concrete using statistical methods
  publication-title: Cement and Concrete Research
– volume: 40
  start-page: 2263
  issue: 6
  year: 2013
  end-page: 74
  article-title: Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models
  publication-title: Expert Systems with Applications
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  end-page: 56
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Applied Energy
– volume: 5
  start-page: 559
  issue: 6
  year: 2008
  end-page: 72
  article-title: Modeling slump of concrete with fly ash and superplasticizer
  publication-title: Computers and Concrete
– volume: 45
  start-page: 105
  issue: 1
  year: 2012
  end-page: 14
  article-title: A new predictive model for compressive strength of HPC using gene expression programming
  publication-title: Advances in Engineering Software
– volume: 36
  start-page: 5807
  issue: 3
  year: 2009
  end-page: 12
  article-title: Knowledge discovery of concrete material using genetic operation trees
  publication-title: Expert Systems with Applications
– volume: 126
  start-page: 596
  issue: 5
  year: 2000
  end-page: 604
  article-title: Fuzzy genetic algorithm for optimization of steel structures
  publication-title: Journal of Structural Engineering
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  end-page: 808
  article-title: Modeling of strength of high‐performance concrete using artificial neural networks
  publication-title: Cement and Concrete Research
– year: 2007
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  end-page: 53
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy and Buildings
– start-page: 269
  year: 2009
  end-page: 304
– volume: 31
  start-page: 409
  issue: 7–8
  year: 2009
  end-page: 17
  article-title: Hybrid evolutionary algorithms in a SVR‐based electric load forecasting model
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 36
  start-page: 421
  issue: 4
  year: 2001
  end-page: 33
  article-title: Computer‐aided building energy analysis techniques
  publication-title: Building and Environment
– volume: 6
  start-page: 163
  issue: 3
  year: 2005
  end-page: 69
  article-title: Subgrade soil index properties to estimate resilient modulus for pavement design
  publication-title: International Journal of Pavement Engineering
– volume: 11
  start-page: 1881
  issue: 2
  year: 2011
  end-page: 90
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Applied Soft Computing
– volume: 124
  start-page: 18
  issue: 1
  year: 1998
  end-page: 24
  article-title: Regularization neural network for construction cost estimation
  publication-title: Journal of Construction Engineering and Management
– volume: 25
  start-page: 39
  issue: 1
  year: 2010
  end-page: 54
  article-title: Prediction of pavement performance through neuro‐fuzzy reasoning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 49
  start-page: 554
  year: 2013
  end-page: 63
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Construction and Building Materials
– volume: 62
  start-page: 585
  issue: 8
  year: 2010
  end-page: 92
  article-title: Prediction of the strength of mineral‐addition concrete using regression analysis
  publication-title: Magazine of Concrete Research
– volume: 59
  start-page: 273
  year: 2013
  end-page: 78
  article-title: Improved firefly algorithm approach applied to chiller loading for energy conservation
  publication-title: Energy and Buildings
– volume: 22
  start-page: 1018
  issue: 7
  year: 2009
  end-page: 24
  article-title: A probabilistic neural network for earthquake magnitude prediction
  publication-title: Neural Networks
– year: 2010
– start-page: 1
  year: 2009
  end-page: 4
– start-page: 210
  year: 2009
  end-page: 14
– year: 2002
– volume: 16
  start-page: 607
  issue: 7–8
  year: 2003
  end-page: 13
  article-title: Neural network model for rapid forecasting of freeway link travel time
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 43
  start-page: 801
  issue: 4
  year: 2013
  end-page: 13
  article-title: Concept drift‐oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  end-page: 75
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos, Solitons & Fractals
– volume: 10
  start-page: 647
  issue: 3
  year: 2009
  end-page: 65
  article-title: Prediction of resilient modulus of granular subgrade soils and subbase materials using artificial neural network
  publication-title: Road Materials and Pavement Design
– volume: 27
  start-page: 676
  issue: 9
  year: 2012
  end-page: 86
  article-title: Structural reliability assessment by local approximation of limit state functions using adaptive Markov chain simulation and support vector regression
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 1995
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  end-page: 42
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 16
  start-page: 239
  issue: 4
  year: 2001
  end-page: 45
  article-title: Enhancing neural network traffic incident‐detection algorithms using wavelets
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 26
  start-page: 1366
  issue: 4
  year: 2013
  end-page: 72
  article-title: Predicting the total suspended solids in wastewater: a data‐mining approach
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 27
  start-page: 764
  issue: 10
  year: 2012
  end-page: 81
  article-title: Neuro‐fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 24
  start-page: 280
  issue: 4
  year: 2009
  end-page: 92
  article-title: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2013
– ident: e_1_2_7_21_1
  doi: 10.1016/j.enbuild.2004.09.009
– ident: e_1_2_7_59_1
  doi: 10.1061/(ASCE)0733-9445(2000)126:5(596)
– ident: e_1_2_7_46_1
  doi: 10.1111/mice.12062
– ident: e_1_2_7_6_1
  doi: 10.1111/mice.12017
– ident: e_1_2_7_35_1
  doi: 10.1061/(ASCE)0733-947X(2005)131:10(771)
– volume: 20
  start-page: 201
  issue: 3
  year: 2013
  ident: e_1_2_7_41_1
  article-title: Integrating a statistical background‐foreground extraction algorithm and SVM classifier for pedestrian detection and tracking
  publication-title: Integrated Computer‐Aided Engineering
  doi: 10.3233/ICA-130428
– ident: e_1_2_7_76_1
  doi: 10.1002/9780470640425
– ident: e_1_2_7_70_1
  doi: 10.1007/978-1-4757-2440-0
– ident: e_1_2_7_12_1
  doi: 10.3846/13923730.2011.574343
– volume-title: Pavement Analysis and Design
  year: 1993
  ident: e_1_2_7_34_1
– ident: e_1_2_7_80_1
  doi: 10.12989/cac.2008.5.6.559
– ident: e_1_2_7_38_1
  doi: 10.1162/089976603321891855
– ident: e_1_2_7_39_1
– ident: e_1_2_7_60_1
  doi: 10.1016/j.swevo.2011.06.003
– ident: e_1_2_7_37_1
  doi: 10.1109/TSMCA.2012.2224338
– ident: e_1_2_7_33_1
  doi: 10.1023/A:1012427100071
– ident: e_1_2_7_36_1
  doi: 10.1002/nme.2274
– volume-title: Technical Note, Manufacturing Engineering Centre
  year: 2005
  ident: e_1_2_7_55_1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.enbuild.2012.03.010
– ident: e_1_2_7_69_1
  doi: 10.1023/B:MACH.0000008082.80494.e0
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1467-8667.2009.00595.x
– ident: e_1_2_7_45_1
  doi: 10.1111/mice.12020
– ident: e_1_2_7_23_1
  doi: 10.1016/j.advengsoft.2008.05.003
– ident: e_1_2_7_65_1
  doi: 10.1023/A:1018628609742
– ident: e_1_2_7_58_1
  doi: 10.1111/0885-9507.00229
– ident: e_1_2_7_18_1
  doi: 10.1016/j.enbuild.2012.11.030
– ident: e_1_2_7_31_1
  doi: 10.1109/IWISA.2009.5072707
– ident: e_1_2_7_5_1
  doi: 10.1016/S0360-1323(00)00026-3
– volume-title: Prediction of Resilient Modulus from Soil Index Properties
  year: 2004
  ident: e_1_2_7_27_1
– ident: e_1_2_7_52_1
  doi: 10.5815/ijisa.2012.10.06
– ident: e_1_2_7_9_1
  doi: 10.1680/macr.2010.62.8.585
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1467-8667.2012.00786.x
– ident: e_1_2_7_47_1
  doi: 10.1111/mice.12001
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1467-8667.2009.00615.x
– ident: e_1_2_7_66_1
  doi: 10.1016/S0893-6080(00)00077-0
– ident: e_1_2_7_49_1
  doi: 10.1080/10298436.2012.671944
– ident: e_1_2_7_50_1
  doi: 10.1109/EPDC.2013.6565962
– ident: e_1_2_7_77_1
  doi: 10.1109/NABIC.2009.5393690
– ident: e_1_2_7_20_1
  doi: 10.1016/j.engappai.2003.09.011
– ident: e_1_2_7_15_1
  doi: 10.1016/j.eswa.2012.10.036
– ident: e_1_2_7_44_1
  doi: 10.1016/j.eswa.2012.02.063
– ident: e_1_2_7_71_1
  doi: 10.1016/j.engappai.2012.08.015
– ident: e_1_2_7_43_1
  doi: 10.1007/s00521-010-0432-2
– ident: e_1_2_7_4_1
  doi: 10.1061/(ASCE)0733-9364(1998)124:1(18)
– volume-title: Uci Machine Learning Repository
  year: 2007
  ident: e_1_2_7_8_1
– ident: e_1_2_7_51_1
  doi: 10.1016/j.rser.2012.03.045
– ident: e_1_2_7_62_1
  doi: 10.1016/j.conbuildmat.2012.02.038
– volume-title: Transportation Research Record
  year: 1985
  ident: e_1_2_7_14_1
– volume: 20
  start-page: 111
  issue: 2
  year: 2013
  ident: e_1_2_7_57_1
  article-title: Adaptive fuzzy control for differentially flat MIMO nonlinear dynamical systems
  publication-title: Integrated Computer‐Aided Engineering
  doi: 10.3233/ICA-130421
– ident: e_1_2_7_24_1
  doi: 10.1007/s00521-011-0734-z
– volume-title: Mechanistic‐Empirical Pavement Design Guide: A Manual of Practice
  year: 2008
  ident: e_1_2_7_7_1
– ident: e_1_2_7_79_1
  doi: 10.1016/S0008-8846(98)00165-3
– ident: e_1_2_7_74_1
  doi: 10.1007/s00366-011-0251-9
– ident: e_1_2_7_42_1
  doi: 10.1016/j.apenergy.2008.11.035
– ident: e_1_2_7_68_1
  doi: 10.1016/j.enbuild.2012.03.003
– ident: e_1_2_7_10_1
  doi: 10.1016/S0008-8846(02)00787-1
– ident: e_1_2_7_81_1
  doi: 10.1016/j.eswa.2008.07.004
– ident: e_1_2_7_73_1
  doi: 10.1016/j.chaos.2006.04.057
– volume-title: Firefly Algorithm
  year: 2008
  ident: e_1_2_7_75_1
– ident: e_1_2_7_56_1
  doi: 10.1080/10298430500140891
– ident: e_1_2_7_13_1
  doi: 10.2172/1018100
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ress.2011.05.005
– ident: e_1_2_7_61_1
  doi: 10.1111/j.1467-8667.2012.00769.x
– ident: e_1_2_7_26_1
  doi: 10.1103/PhysRevLett.54.616
– ident: e_1_2_7_54_1
  doi: 10.1080/14680629.2009.9690218
– ident: e_1_2_7_67_1
  doi: 10.1142/5089
– ident: e_1_2_7_17_1
  doi: 10.1016/j.conbuildmat.2013.08.078
– ident: e_1_2_7_28_1
  doi: 10.1109/81.933333
– volume-title: Least Squares Support Vector Regression with Applications to Large‐Scale Data: A Statistical Approach
  year: 2011
  ident: e_1_2_7_40_1
– ident: e_1_2_7_64_1
– ident: e_1_2_7_72_1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cnsns.2012.06.009
– ident: e_1_2_7_63_1
  doi: 10.1007/978-3-642-04586-8_10
– ident: e_1_2_7_3_1
  doi: 10.1016/j.neunet.2009.05.003
– ident: e_1_2_7_2_1
  doi: 10.1111/0885-9507.00219
– ident: e_1_2_7_30_1
  doi: 10.1016/j.asoc.2010.06.003
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1467-8667.2012.00767.x
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ijepes.2009.03.020
– ident: e_1_2_7_78_1
  doi: 10.1007/978-3-642-22185-9_6
– ident: e_1_2_7_48_1
  doi: 10.1016/j.advengsoft.2011.09.014
SSID ssj0000443
Score 2.4353633
Snippet Advanced data mining techniques are potential tools for solving civil engineering (CE) problems. This study proposes a novel smart artificial firefly colony...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 715
Title Smart Artificial Firefly Colony Algorithm-Based Support Vector Regression for Enhanced Forecasting in Civil Engineering
URI https://api.istex.fr/ark:/67375/WNG-GG8R34Q3-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12121
Volume 30
WOSCitedRecordID wos000358692800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5I60EP7mLdGFAEhUDSydKAF61tPUjRut7CbNVgjaWL2Js_wd_oL_HNJKkVRBBvYXiZhJm3fDPz5nsAuxhFGMU4YvF22bNcxMwWC8vCklxvECoM-IZK6eYsaDYrd3fh-RQc5ndhUn6I8Yabtgzjr7WBM96fMHJdrV1zI-hb5MUyKq5XgOJJq3599uWJ3SzBPqRW6FeCjJ5UZ_J8vf0tIBX12L5-B6om0tTn__ePCzCXIUxylKrEIkypZAnmM7RJMlvuY1Ne0CFvW4LZCXbCZRhdPqFemY5SmglSR__Y7oxIFT1mMiJHnfvnXjx4ePp4ez_GaIi9D7saz5MbcxZAWuo-TbNNCGJjUkseTL4B0fVABevrjGsSJ6Qav8QdMvHtFbiu166qp1ZWqcESGPEdS4nAZg6zKWNMuQqXVB4PbeFKm9sSl2gIK7lEt8u5zx2bcsoVFbbPhS-VEpzTVSgkz4laA-I4whGerHhStV3mBxrASikUQpcy84VXgv18uiKR0ZjrahqdKF_O6EGPzKCXYGcs203JO36U2jOzPhZhvUed7hZ40W2zETUalRZ1L2gUluDATPYvfUVoOzXztP4X4Q2YQSDmpblrm1AY9IZqC6bFyyDu97Yztf4EG579bg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxtBFD4UU6g-aL2UxtZ2oEVoYWE3s5fso41JLKahjZf6tswtuhhXSaI0b_0J_Y3-Es-ZncQIRRDflmF2dpk5l29mv_0OwGfMIoJjHvFkvxZ5IWJmT6Q15WlJB4QGE76VUjruJN1u_eQk_em4OfQvTKkPMTtwI8-w8ZocnA6k57ycyrWTOAL9Rl4J0Y7QwCu7vdZR5z4Uh45hn3IvjeuJ0yclKs_93Q8yUoUm989DpGpTTWvlmS_5GpYdxmQ7pVGswgtTrMGKw5vMefMIm6YlHaZta7A0p0-4DpODC7QsO1ApNMFaGCH7gwlrYMwsJmxncHo5zMdnF7d__33DfIijX18RomfH9msA65nTkmhbMETHrFmcWcYBo4qgSoyIc83ygjXym3zA5p69AUet5mFjz3O1GjyFOT_wjEp8EQifCyFMaHBTFcnUV6H2pa9xk4bAUmoMvFLGMvC55NJw5cdSxdoYJSV_AwvFZWHeAgsCFahI1yNt-qGIE4KwWiuD4KUmYhVV4ct0vTLlhMypnsYgm25oaNIzO-lV-DTre1XKd_y317Zd9lkXMTwnwlsSZb-77azdrvd4-ItnaRW-2tV-ZKwMvadprzaf0vkjvNo7_NHJOt-7--9gEWFZVDLZ3sPCeHhttuCluhnno-EHZ-N3Pu4BbQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1daxNBFL1IIqIPra0W01odUASFhd3MfmQfa5qN0hBqtLVvy3ylXZpuQ5KW5q0_wd_oL-m9s5M0BRHEt2W4O7vMzL33zOzZcwHeYxYRHPOIJ4fNyAsRM3sibSpPSzogNJjwrZTScS_p91snJ-mh4-bQvzCVPsTywI08w8ZrcnAz1sMVL6dy7SSOQL-R10OqIlOD-v4gO-rdh-LQMexT7qVxK3H6pETlub_7QUaq0-DePESqNtVk6__5ks9hzWFMtlctig14ZMpNWHd4kzlvnmLToqTDom0Tnq3oE76A-fcLXFm2o0pogmUYIYejOWtjzCznbG90ejkpZmcXv29_fcZ8iL1fjQnRs2P7NYANzGlFtC0ZomPWKc8s44BRRVAlpsS5ZkXJ2sV1MWIrz34JR1nnR_uL52o1eApzfuAZlfgiED4XQpjQ4KYqkqmvQu1LX-MmDYGl1Bh4pYxl4HPJpeHKj6WKtTFKSr4FtfKyNK-ABYEKVKRbkTbDUMQJQVitlUHw0hSxihrwcTFfuXJC5lRPY5QvNjQ06Lkd9Aa8W9qOK_mOP1p9sNO-NBGTcyK8JVH-s9_Nu93WgIffeJ424JOd7b_0laP3dOzV9r8Yv4Unh_tZ3vvaP9iBp4jKoorI9hpqs8mV2YXH6npWTCdv3BK_A8iQAOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Artificial+Firefly+Colony+Algorithm%E2%80%90Based+Support+Vector+Regression+for+Enhanced+Forecasting+in+Civil+Engineering&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chou%2C+Jui%E2%80%90Sheng&rft.au=Pham%2C+Anh%E2%80%90Duc&rft.date=2015-09-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=30&rft.issue=9&rft.spage=715&rft.epage=732&rft_id=info:doi/10.1111%2Fmice.12121&rft.externalDBID=10.1111%252Fmice.12121&rft.externalDocID=MICE12121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon