A robust learning algorithm based on support vector regression and robust fuzzy cerebellar model articulation controller

For real-world applications, the obtained data are always subject to noise or outliers. The learning mechanism of cerebellar model articulation controller (CMAC), a neurological model, is to imitate the cerebellum of human being. CMAC has an attractive property of learning speed in which a small sub...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 29; no. 1; pp. 47 - 55
Main Author: Lee, Zne-Jung
Format: Journal Article
Language:English
Published: Boston Springer US 01.08.2008
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For real-world applications, the obtained data are always subject to noise or outliers. The learning mechanism of cerebellar model articulation controller (CMAC), a neurological model, is to imitate the cerebellum of human being. CMAC has an attractive property of learning speed in which a small subset addressed by the input space determines output instantaneously. For fuzzy cerebellar model articulation controller (FCMAC), the concept of fuzzy is incorporated into CMAC to improve the accuracy problem. However, the distributions of errors into the addressed hypercubes may cause unacceptable learning performance for input data with noise or outliers. For robust fuzzy cerebellar model articulation controller (RFCMAC), the robust learning of M-estimator can be embedded into FCMAC to degrade noise or outliers. Meanwhile, support vector machine (SVR) is a machine learning theory based algorithm which has been applied successfully to a number of regression problems when noise or outliers exist. Unfortunately, the practical application of SVR is limited to defining a set of parameters for obtaining admirable performance by the user. In this paper, a robust learning algorithm based on support SVR and RFCMAC is proposed. The proposed algorithm has both the advantage of SVR, the ability to avoid corruption effects, and the advantage of RFCMAC, the ability to obtain attractive properties of learning performance and to increase accurate approximation. Additionally, particle swarm optimization (PSO) is applied to obtain the best parameters setting for SVR. From simulation results, it shows that the proposed algorithm outperforms other algorithms.
AbstractList For real-world applications, the obtained data are always subject to noise or outliers. The learning mechanism of cerebellar model articulation controller (CMAC), a neurological model, is to imitate the cerebellum of human being. CMAC has an attractive property of learning speed in which a small subset addressed by the input space determines output instantaneously. For fuzzy cerebellar model articulation controller (FCMAC), the concept of fuzzy is incorporated into CMAC to improve the accuracy problem. However, the distributions of errors into the addressed hypercubes may cause unacceptable learning performance for input data with noise or outliers. For robust fuzzy cerebellar model articulation controller (RFCMAC), the robust learning of M-estimator can be embedded into FCMAC to degrade noise or outliers. Meanwhile, support vector machine (SVR) is a machine learning theory based algorithm which has been applied successfully to a number of regression problems when noise or outliers exist. Unfortunately, the practical application of SVR is limited to defining a set of parameters for obtaining admirable performance by the user. In this paper, a robust learning algorithm based on support SVR and RFCMAC is proposed. The proposed algorithm has both the advantage of SVR, the ability to avoid corruption effects, and the advantage of RFCMAC, the ability to obtain attractive properties of learning performance and to increase accurate approximation. Additionally, particle swarm optimization (PSO) is applied to obtain the best parameters setting for SVR. From simulation results, it shows that the proposed algorithm outperforms other algorithms.
For real-world applications, the obtained data are always subject to noise or outliers. The learning mechanism of cerebellar model articulation controller (CMAC), a neurological model, is to imitate the cerebellum of human being. CMAC has an attractive property of learning speed in which a small subset addressed by the input space determines output instantaneously. For fuzzy cerebellar model articulation controller (FCMAC), the concept of fuzzy is incorporated into CMAC to improve the accuracy problem. However, the distributions of errors into the addressed hypercubes may cause unacceptable learning performance for input data with noise or outliers. For robust fuzzy cerebellar model articulation controller (RFCMAC), the robust learning of M-estimator can be embedded into FCMAC to degrade noise or outliers. Meanwhile, support vector machine (SVR) is a machine learning theory based algorithm which has been applied successfully to a number of regression problems when noise or outliers exist. Unfortunately, the practical application of SVR is limited to defining a set of parameters for obtaining admirable performance by the user. In this paper, a robust learning algorithm based on support SVR and RFCMAC is proposed. The proposed algorithm has both the advantage of SVR, the ability to avoid corruption effects, and the advantage of RFCMAC, the ability to obtain attractive properties of learning performance and to increase accurate approximation. Additionally, particle swarm optimization (PSO) is applied to obtain the best parameters setting for SVR. From simulation results, it shows that the proposed algorithm outperforms other algorithms. [PUBLICATION ABSTRACT]
Author Lee, Zne-Jung
Author_xml – sequence: 1
  givenname: Zne-Jung
  surname: Lee
  fullname: Lee, Zne-Jung
  email: johnlee@hfu.edu.tw
  organization: Dept. of Information Management
BookMark eNp9kU1r3DAQhkVJoZu0P6A30Ut7cTuytJZ8DKFfEOglgdyMJI-3DlppO5JLk19fOdtSCDQHoQE9zzCj95SdxBSRsdcC3gsA_SELUKZvalmPgQaesY3Yatlo1esTtoG-VU3X9Tcv2GnOtwAgJYgN-3XOKbklFx7QUpzjjtuwSzSX73vubMaRp8jzcjgkKvwn-pKIE-4Ic57ri43j3wbTcn9_xz0SOgzBEt-nEQO3VGa_BFtW3KdYKIWA9JI9n2zI-OrPfcauP328uvjSXH77_PXi_LLx0kBppmlElNrqyVmFPQinvRAglHGoNYIUzpjRGZDOCKUm7zSM3rd-6jtrWiXP2Ntj3wOlHwvmMuzn7NcBI6YlDz3oXgvVbSv57klSdFpIpbdCVPTNI_Q2LRTrHoPRvZLQgq6QPkKeUs6E0-Dn8vANhewcBgHDGt1wjG5YyzW6AaopHpkHmveW7p502qOTKxt3SP9G-r_0G2u-sAY
CitedBy_id crossref_primary_10_1007_s10489_009_0163_1
crossref_primary_10_1007_s10489_009_0203_x
crossref_primary_10_1007_s10462_023_10485_5
crossref_primary_10_1007_s10489_009_0185_8
crossref_primary_10_1016_j_ijar_2021_02_006
crossref_primary_10_3390_app11219827
crossref_primary_10_1016_j_asoc_2010_05_028
Cites_doi 10.1016/j.aca.2004.12.024
10.1109/72.279188
10.1109/91.971730
10.1177/003754979205800504
10.1109/TSMCB.2003.810447
10.1016/j.asoc.2004.01.007
10.1016/j.ins.2006.03.010
10.1016/j.ejor.2005.07.024
10.1109/83.536888
10.1109/72.641451
10.1109/72.105424
10.1016/S0893-6080(05)80021-8
10.1109/TPWRS.2005.846106
10.1109/TEVC.2004.826067
10.1109/TEVC.2005.857610
10.1109/72.105415
10.1016/S0893-6080(03)00169-2
10.1016/j.cie.2005.01.018
10.1109/TSMCC.2005.860570
10.1109/TSMCB.2005.861067
10.1109/3477.718518
10.1007/978-1-4757-2440-0
10.1115/1.3426922
10.1115/1.3426923
10.1109/IMTC.2003.1207926
10.1109/ICNN.1995.488968
10.1023/A:1008385515068
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2007
Springer Science+Business Media, LLC 2008
Copyright_xml – notice: Springer Science+Business Media, LLC 2007
– notice: Springer Science+Business Media, LLC 2008
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-007-0080-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts

ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 55
ExternalDocumentID 2408622421
10_1007_s10489_007_0080_0
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c380t-ffdee37a7fba4e901b7c110148be77e031b88db803b8144fcb70dcc2cf96a8243
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256820900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Thu Oct 02 11:05:17 EDT 2025
Sun Nov 09 13:26:13 EST 2025
Wed Nov 05 12:55:45 EST 2025
Tue Nov 18 22:23:58 EST 2025
Sat Nov 29 05:33:12 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fuzzy CMAC
CMAC
Robust learning
Particle swarm optimization
SVR
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-ffdee37a7fba4e901b7c110148be77e031b88db803b8144fcb70dcc2cf96a8243
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 879430207
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_907971465
proquest_miscellaneous_1671347511
proquest_journals_879430207
crossref_citationtrail_10_1007_s10489_007_0080_0
crossref_primary_10_1007_s10489_007_0080_0
springer_journals_10_1007_s10489_007_0080_0
PublicationCentury 2000
PublicationDate 20080800
2008-8-00
20080801
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 8
  year: 2008
  text: 20080800
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2008
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Huang, Huang, Wang (CR23) 2005; 20
Jeng (CR19) 2006; 36
Chuang, Su, Chen (CR29) 2001; 9
CR16
Cichocki, Unbehauen (CR27) 1993
Cotter, Guillerm (CR5) 1991; 5
Iiguni (CR12) 1996; 5
CR10
Lee, Lin, Chen (CR6) 2007; 177
Holmstrom, Koistinen (CR26) 1992; 3
Lin, Chiang (CR28) 1997; 8
Liang, Qin, Suganthan, Baskar (CR25) 2006; 10
Albus (CR2) 1975; 97
Su, Tao, Hung (CR13) 2003; 33
Wong, Sideris (CR3) 1992; 3
Cherkassky, Yunqian (CR18) 2004; 17
Trafalis, Gilbert (CR17) 2006; 173
CR7
CR9
Coello, Pulido, Lechuga (CR22) 2004; 8
Albus (CR1) 1975; 97
CR21
Lane, Militzer (CR4) 1992; 28
Hwang, Lin (CR11) 1998; 28
Lee, Wang, Su (CR14) 2006; 4
Üstün, Melssen, Oudenhuijzen, Buydens (CR20) 2005; 544
Connor, Martin, Atlas (CR30) 1994; 5
Shelton, Peterson (CR8) 1992; 58
Xia, Wu (CR24) 2005; 48
Su, Lee, Wang (CR15) 2006; 36
CAC Coello (80_CR22) 2004; 8
NE Cotter (80_CR5) 1991; 5
S-F Su (80_CR15) 2006; 36
JS Albus (80_CR1) 1975; 97
80_CR21
SH Lane (80_CR4) 1992; 28
V Cherkassky (80_CR18) 2004; 17
J-T Jeng (80_CR19) 2006; 36
C-Y Lee (80_CR6) 2007; 177
Y Iiguni (80_CR12) 1996; 5
C-M Huang (80_CR23) 2005; 20
Z-J Lee (80_CR14) 2006; 4
80_CR16
JS Albus (80_CR2) 1975; 97
80_CR10
K-S Hwang (80_CR11) 1998; 28
J-J Liang (80_CR25) 2006; 10
C-S Lin (80_CR28) 1997; 8
L Holmstrom (80_CR26) 1992; 3
A Cichocki (80_CR27) 1993
JT Connor (80_CR30) 1994; 5
B Üstün (80_CR20) 2005; 544
W Xia (80_CR24) 2005; 48
TB Trafalis (80_CR17) 2006; 173
80_CR9
Y-F Wong (80_CR3) 1992; 3
RO Shelton (80_CR8) 1992; 58
C-C Chuang (80_CR29) 2001; 9
80_CR7
S-F Su (80_CR13) 2003; 33
References_xml – volume: 97
  start-page: 220
  issue: 3
  year: 1975
  end-page: 227
  ident: CR1
  article-title: A new approach to manipulator control: the cerebellar model articulation controller (CMAC)
  publication-title: ASME J Dyn Syst Meas Control
– volume: 544
  start-page: 292
  year: 2005
  end-page: 305
  ident: CR20
  article-title: Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2004.12.024
– volume: 5
  start-page: 240
  issue: 2
  year: 1994
  end-page: 254
  ident: CR30
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279188
– volume: 97
  start-page: 228
  issue: 3
  year: 1975
  end-page: 233
  ident: CR2
  article-title: Data storage in the cerebellar model articulation controller (CMAC)
  publication-title: ASME J Dyn Syst Meas Control
– volume: 9
  start-page: 810
  issue: 6
  year: 2001
  end-page: 821
  ident: CR29
  article-title: Robust TSK fuzzy modeling for function approximation with outliers
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.971730
– volume: 58
  start-page: 319
  issue: 5
  year: 1992
  end-page: 326
  ident: CR8
  article-title: Controlling a truck with an adaptive critic CMAC design
  publication-title: Simulation
  doi: 10.1177/003754979205800504
– volume: 28
  start-page: 1027
  issue: 5
  year: 1992
  end-page: 1035
  ident: CR4
  article-title: A comparison of five algorithm for the training of CMAC memories for learning control systems
  publication-title: Int Fed Autom Control
– ident: CR16
– volume: 33
  start-page: 202
  issue: 2
  year: 2003
  end-page: 213
  ident: CR13
  article-title: Credit assigned CMAC and its application to online learning robust controllers
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2003.810447
– year: 1993
  ident: CR27
  publication-title: Neural networks for optimization and signal processing
– ident: CR10
– volume: 4
  start-page: 357
  issue: 4
  year: 2006
  end-page: 367
  ident: CR14
  article-title: A genetic algorithm based robust learning credit assignment cerebellar model articulation controller
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2004.01.007
– volume: 177
  start-page: 264
  issue: 1
  year: 2007
  end-page: 280
  ident: CR6
  article-title: A self-constructing fuzzy CMAC model and its applications
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2006.03.010
– volume: 173
  start-page: 893
  year: 2006
  end-page: 909
  ident: CR17
  article-title: Robust classification and regression using support vector machines
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.07.024
– volume: 5
  start-page: 1393
  issue: 10
  year: 1996
  end-page: 1401
  ident: CR12
  article-title: Hierarchical image coding via cerebellar model arithmetic computers
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.536888
– volume: 8
  start-page: 1281
  issue: 6
  year: 1997
  end-page: 1292
  ident: CR28
  article-title: Learning convergence of CMAC Technique
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.641451
– ident: CR21
– volume: 3
  start-page: 115
  issue: 1
  year: 1992
  end-page: 121
  ident: CR3
  article-title: Learning convergence in the cerebellar model articulation controller
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.105424
– volume: 5
  start-page: 221
  year: 1991
  end-page: 228
  ident: CR5
  article-title: The CMAC and a theorem of Kolmogorov
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80021-8
– volume: 20
  start-page: 1126
  year: 2005
  end-page: 1133
  ident: CR23
  article-title: A particle swarm optimization to identifying the ARMAX model for short-term load forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.846106
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  end-page: 279
  ident: CR22
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– ident: CR9
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  end-page: 295
  ident: CR25
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.857610
– volume: 3
  start-page: 24
  year: 1992
  end-page: 38
  ident: CR26
  article-title: Using additive noise in back-propagation training
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.105415
– ident: CR7
– volume: 17
  start-page: 113
  issue: 1
  year: 2004
  end-page: 126
  ident: CR18
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 48
  start-page: 409
  issue: 2
  year: 2005
  end-page: 425
  ident: CR24
  article-title: An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2005.01.018
– volume: 36
  start-page: 1
  issue: 1
  year: 2006
  end-page: 6
  ident: CR15
  article-title: Robust and fast learning for fuzzy cerebellar model articulation controllers
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCC.2005.860570
– volume: 36
  start-page: 699
  issue: 3
  year: 2006
  end-page: 709
  ident: CR19
  article-title: Hybrid approach of selecting hybperparameters of support vector machine for regression
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2005.861067
– volume: 28
  start-page: 680
  issue: 5
  year: 1998
  end-page: 692
  ident: CR11
  article-title: Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/3477.718518
– ident: 80_CR16
  doi: 10.1007/978-1-4757-2440-0
– volume: 36
  start-page: 1
  issue: 1
  year: 2006
  ident: 80_CR15
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCC.2005.860570
– volume: 8
  start-page: 1281
  issue: 6
  year: 1997
  ident: 80_CR28
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.641451
– volume: 5
  start-page: 221
  year: 1991
  ident: 80_CR5
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80021-8
– volume: 177
  start-page: 264
  issue: 1
  year: 2007
  ident: 80_CR6
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2006.03.010
– volume: 33
  start-page: 202
  issue: 2
  year: 2003
  ident: 80_CR13
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2003.810447
– volume: 5
  start-page: 240
  issue: 2
  year: 1994
  ident: 80_CR30
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279188
– volume: 97
  start-page: 220
  issue: 3
  year: 1975
  ident: 80_CR1
  publication-title: ASME J Dyn Syst Meas Control
  doi: 10.1115/1.3426922
– volume: 173
  start-page: 893
  year: 2006
  ident: 80_CR17
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.07.024
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 80_CR25
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.857610
– volume: 97
  start-page: 228
  issue: 3
  year: 1975
  ident: 80_CR2
  publication-title: ASME J Dyn Syst Meas Control
  doi: 10.1115/1.3426923
– volume-title: Neural networks for optimization and signal processing
  year: 1993
  ident: 80_CR27
– volume: 4
  start-page: 357
  issue: 4
  year: 2006
  ident: 80_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2004.01.007
– volume: 28
  start-page: 680
  issue: 5
  year: 1998
  ident: 80_CR11
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/3477.718518
– ident: 80_CR7
– ident: 80_CR9
  doi: 10.1109/IMTC.2003.1207926
– volume: 28
  start-page: 1027
  issue: 5
  year: 1992
  ident: 80_CR4
  publication-title: Int Fed Autom Control
– volume: 48
  start-page: 409
  issue: 2
  year: 2005
  ident: 80_CR24
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2005.01.018
– ident: 80_CR21
  doi: 10.1109/ICNN.1995.488968
– volume: 3
  start-page: 24
  year: 1992
  ident: 80_CR26
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.105415
– volume: 20
  start-page: 1126
  year: 2005
  ident: 80_CR23
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.846106
– volume: 58
  start-page: 319
  issue: 5
  year: 1992
  ident: 80_CR8
  publication-title: Simulation
  doi: 10.1177/003754979205800504
– volume: 544
  start-page: 292
  year: 2005
  ident: 80_CR20
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2004.12.024
– volume: 17
  start-page: 113
  issue: 1
  year: 2004
  ident: 80_CR18
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00169-2
– ident: 80_CR10
  doi: 10.1023/A:1008385515068
– volume: 36
  start-page: 699
  issue: 3
  year: 2006
  ident: 80_CR19
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2005.861067
– volume: 5
  start-page: 1393
  issue: 10
  year: 1996
  ident: 80_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.536888
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 80_CR22
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– volume: 9
  start-page: 810
  issue: 6
  year: 2001
  ident: 80_CR29
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.971730
– volume: 3
  start-page: 115
  issue: 1
  year: 1992
  ident: 80_CR3
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.105424
SSID ssj0003301
Score 1.8057358
Snippet For real-world applications, the obtained data are always subject to noise or outliers. The learning mechanism of cerebellar model articulation controller...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Algorithms
Artificial Intelligence
Cerebellar model articulation controller
CMAC
Computer Science
Fuzzy
Fuzzy logic
Fuzzy set theory
Learning
Machines
Manufacturing
Mechanical Engineering
Noise
Processes
Studies
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCl5SmWAjISJ5CFu0lt51RVFRUHqDgA2ltkO_aCtCTbPKrSX98Zx9kVSO2FWyQ7jqMZz3z2jOcDeOsLq-Y6CF6gXcQNSsi5yVzGETuEUJHMI1vDj8_q7EwvFsXXlJvTpbTKySZGQ101js7IP2iqZIbYRh2tzzmRRlFwNTFo3IV7BGyodP4XcbIxxLhVj4R5uMXgUhaLKag53pzLKVeIzukQM3Hxt1vaYs1_wqPR65zu_ed8H8JugpvseNSPR3DH149hb6JyYGllP4HLY9Y2duh6lmgklsysljhg__M3I09XsaZm3bAmuM4u4lE_a_1yzKKtmamraYAwXF39Yc63nmIapmWRbIdFFU1cYSwlyK98-xS-n378dvKJJ1IG7jIteo4S9D5TRgVrco9owip3QIS_2nqlPNoIq3Vltcisxs1acFaJyrm5C4U0ep5nz2Cnbmr_HJj0ClukUKgduZbYM1M4qJQhy42dH85ATDIpXapYTsQZq3Jba5nEWNKjiIVOZ_Bu88p6LNdxW-f9SXRlWrlduZHbDN5sWnHJURzF1L4ZuvJAxgu4CFVnwG7oUwhVKPRC-BPvJxXafuTGKb24dUr78GBMV6H8w5ew07eDfwX33UX_q2tfR-W_Bl9oDNo
  priority: 102
  providerName: ProQuest
Title A robust learning algorithm based on support vector regression and robust fuzzy cerebellar model articulation controller
URI https://link.springer.com/article/10.1007/s10489-007-0080-0
https://www.proquest.com/docview/879430207
https://www.proquest.com/docview/1671347511
https://www.proquest.com/docview/907971465
Volume 29
WOSCitedRecordID wos000256820900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BxgMv2_gS3aAyEk8gS16T2c7jmDZNAqpqg1F4iWzH7iaVZMrHtO2v5-w6LSCGBC9WIjuOE9_57nzn-wG8tpkWI-kYzXBdRAPFpVQlJqGoOzhX-DkPaA1nH8R4LKfTbBLPcTd9tHvvkgwr9U-H3VIf3uO31lDNoWinr_vcJR624OT0bLn8ooEeYPLQsKCcZ9PelfmnLn4VRisN8zenaJA1R5v_Ncot2IiqJdlf0MIjuGfLx7DZwzaQyMVP4Hqf1JXumpZEyIgZUfNZVV-059-Jl2oFqUrSdJdeNSdXYVuf1Ha2iJgtiSqLvgPX3d7eEGNr6_0XqiYBWIcEcoy4YCQGw89t_RQ-Hx1-OjimEYCBmkSyluJsWZsIJZxWqUXNQQuz68F9pbZCWFwPtJSFlizREg0zZ7RghTEj4zKu5ChNnsFaWZX2ORBuBdZwJpASUsmxZSKwU85dkio92hsA62ciNzE7uQfJmOervMr-z-b-koWkpgN4s3zkcpGa42-Nd_rpzSOXNrn02fFQXxYDeLWsRfbyPhNV2qpr8l0eDtuiWjoAckebjIlMoMTBj3jbE8XqJXcOafufWu_Aw0Woio89fAFrbd3Zl_DAXLUXTT2E--LL1yGsvzscT07w7r2gWH5kB74Up1hO9r4NA6P8AHK3CTk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMs5WEkuICiunFqOweEKqBq1WXVQ0ErLsF27AVpSZY8Cu1_4j8ydpJdgdTeeuAWKY5jx5_nkRnPB_DcplrE0tEoRbmIDopLIsUMi9B2cC73ax7YGj6NxWQip9P0aA1-D2dhfFrlIBODoM5L4_-Rb0lfyQxtG_Fm8SPypFE-uDowaHSoOLSnP9Fjq18fvMPlfRHHe--P3-5HPalAZJikTYQjsJYJJZxWiUVtqIXZ9oS1UlshLGJcS5lrSZmW6Gw4owXNjYmNS7mSccKw3ytwFa2I1MuBo53PS8HPWGBbpujSRJyn0yGI2p3US3xukv8viDZaRP9Wgyvb9p9wbNByexv_2fe5BTd7c5rsdvi_DWu2uAMbA1UF6SXXXfi1S6pSt3VDepqMGVHzGU6g-fqdeE2ek7Igdbvw7gg5CaEMUtlZlyVcEFXkQweuPTs7JcZW1sdsVEUCmRAJW7DnQiP9AYC5re7Bx0uZ_31YL8rCPgDCrcA7nApEfyI5tmQCO-XcsUTpeGcEdMBAZvqK7J4YZJ6takl72GT-koZCriN4uXxk0ZUjuajx5gCVrJdMdbbEyQieLe-iSPFxIlXYsq2zbR4OGKMpPgJyTpuUilSglsVJvBogu3rJuUN6eOGQnsL1_eMP42x8MDnchBtdao7PtXwE603V2sdwzZw03-rqSdh4BL5cNpL_ADJ_a9s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlKdYysNIcAFZdeMQOweEqpYVVcuqB0B7C7FjL0jbZMmj0P4z_h1jx9kVSO2tB26R4jh28nkenvF8AC9MqkQkLaMpykV0UGxMc645RdvB2sL9c8_W8OVITCZyOk2P1-D3cBbGpVUOMtEL6qLSbo98W7pKZmjbiG0bsiKO98fvFj-oI5BygdaBTaNHyKE5-4neW_P2YB9_9csoGr__tPeBBoIBqrlkLcXRGMNFLqzKY4OaUQm948hrpTJCGMS7krJQknEl0fGwWglWaB1pmya5jGKO_V6D6yKOU1e2_yPbWyoBzj3zMkP3hiZJOh0Cqv2pvdjlKbk9QrTXKPtbJa7s3H9Cs17jjTf_4291G24FM5vs9uviDqyZ8i5sDhQWJEi0e_Brl9SV6pqWBPqMGcnnM5xA--2EOA1fkKokTbdwbgo59SEOUptZnz1ckrwshg5sd35-RrSpjYvl5DXxJEPEL83AkUbCwYC5qe_D5yuZ_wNYL6vSPASSGIF3EiZwVcQywZZcYKdJYnmcq-jNCNiAh0yHSu2OMGSerWpMOwhl7pL5Aq8jeLV8ZNGXKbms8dYAmyxIrCZbYmYEz5d3UdS4-FFemqprsp3EHzxGE30E5II2KROpQO2Lk3g9wHf1kguH9OjSIT2Dmwjg7OhgcrgFG33GjkvBfAzrbd2ZJ3BDn7bfm_qpX4MEvl41kP8AJzh0ZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+learning+algorithm+based+on+support+vector+regression+and+robust+fuzzy+cerebellar+model+articulation+controller&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Lee%2C+Zne-Jung&rft.date=2008-08-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=29&rft.issue=1&rft.spage=47&rft.epage=55&rft_id=info:doi/10.1007%2Fs10489-007-0080-0&rft.externalDocID=10_1007_s10489_007_0080_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon