Swarm intelligence based clustering technique for automated lesion detection and diagnosis of psoriasis

[Display omitted] •Objective analysis of psoriasis disease over a larger dataset of 780 images.•Implementation of swarm intelligence algorithms to obtain optimum clusters.•Effective psoriasis lesion detection using four swarm intelligence techniques.•Quantitative analysis of the result using differe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational biology and chemistry Ročník 86; s. 107247
Hlavní autoři: Dash, Manoranjan, Londhe, Narendra D., Ghosh, Subhojit, Shrivastava, Vimal K., Sonawane, Rajendra S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.06.2020
Témata:
ISSN:1476-9271, 1476-928X, 1476-928X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Objective analysis of psoriasis disease over a larger dataset of 780 images.•Implementation of swarm intelligence algorithms to obtain optimum clusters.•Effective psoriasis lesion detection using four swarm intelligence techniques.•Quantitative analysis of the result using different metrics.•Calculation of computational complexity for each swarm intelligence algorithms. In psoriasis skin disease, psoriatic cells develop rapidly than the normal healthy cells. This speedy growth causes accumulation of dead skin cells on the skin’s surface, resulting in thick patches of red, dry, and itchy skin. This patches or psoriatic skin legions may exhibit similar characteristics as healthy skin, which makes lesion detection more challenging. However, for accurate disease diagnosis and severity detection, lesion segmentation has prime importance. In that context, our group had previously performed psoriasis lesion segmentation using the conventional clustering algorithm. However, it suffers from the constraint of falling into the local sub-optimal centroids of the clusters. The main objective of this paper is to implement an optimal lesion segmentation technique with aims at global convergence by reducing the probability of trapping into the local optima. This has been achieved by integrating swarm intelligence based algorithms with conventional K-means and Fuzzy C-means (FCMs) clustering algorithms. There are a total of eight different suitable combinations of conventional clustering (i.e., K-means and Fuzzy C-means (FCMs)) and four swarm intelligence (SI) techniques (i.e., seeker optimization (SO), artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO)) have been implemented in this study. The experiments are performed on the dataset of 780 psoriasis images from 74 patients collected at Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India. In this study, we are employing swarm intelligence optimization techniques in combination with the conventional clustering algorithms to increase the probability of convergence to the optimal global solution and hence improved clustering and detection. The performance has been quantified in terms of four indices, namely accuracy (A), sensitivity (SN), specificity (SP), and Jaccard index (JI). Among the eight different combinations of clustering and optimization techniques considered in this study, FCM + SO outperformed with mean JI = 0.83, mean A = 90.89, mean SN = 92.84, and mean SP = 88.27. FCM + SO found statistical significant than other approaches with 96.67 % of the reliability index. The results obtained reflect the superiority of the proposed techniques over conventional clustering techniques. Hence our research development will lead to an objective analysis for automatic, accurate, and quick diagnosis of psoriasis.
AbstractList In psoriasis skin disease, psoriatic cells develop rapidly than the normal healthy cells. This speedy growth causes accumulation of dead skin cells on the skin's surface, resulting in thick patches of red, dry, and itchy skin. This patches or psoriatic skin legions may exhibit similar characteristics as healthy skin, which makes lesion detection more challenging. However, for accurate disease diagnosis and severity detection, lesion segmentation has prime importance. In that context, our group had previously performed psoriasis lesion segmentation using the conventional clustering algorithm. However, it suffers from the constraint of falling into the local sub-optimal centroids of the clusters.BACKGROUNDIn psoriasis skin disease, psoriatic cells develop rapidly than the normal healthy cells. This speedy growth causes accumulation of dead skin cells on the skin's surface, resulting in thick patches of red, dry, and itchy skin. This patches or psoriatic skin legions may exhibit similar characteristics as healthy skin, which makes lesion detection more challenging. However, for accurate disease diagnosis and severity detection, lesion segmentation has prime importance. In that context, our group had previously performed psoriasis lesion segmentation using the conventional clustering algorithm. However, it suffers from the constraint of falling into the local sub-optimal centroids of the clusters.The main objective of this paper is to implement an optimal lesion segmentation technique with aims at global convergence by reducing the probability of trapping into the local optima. This has been achieved by integrating swarm intelligence based algorithms with conventional K-means and Fuzzy C-means (FCMs) clustering algorithms.OBJECTIVEThe main objective of this paper is to implement an optimal lesion segmentation technique with aims at global convergence by reducing the probability of trapping into the local optima. This has been achieved by integrating swarm intelligence based algorithms with conventional K-means and Fuzzy C-means (FCMs) clustering algorithms.There are a total of eight different suitable combinations of conventional clustering (i.e., K-means and Fuzzy C-means (FCMs)) and four swarm intelligence (SI) techniques (i.e., seeker optimization (SO), artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO)) have been implemented in this study. The experiments are performed on the dataset of 780 psoriasis images from 74 patients collected at Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India. In this study, we are employing swarm intelligence optimization techniques in combination with the conventional clustering algorithms to increase the probability of convergence to the optimal global solution and hence improved clustering and detection.METHODOLOGYThere are a total of eight different suitable combinations of conventional clustering (i.e., K-means and Fuzzy C-means (FCMs)) and four swarm intelligence (SI) techniques (i.e., seeker optimization (SO), artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO)) have been implemented in this study. The experiments are performed on the dataset of 780 psoriasis images from 74 patients collected at Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India. In this study, we are employing swarm intelligence optimization techniques in combination with the conventional clustering algorithms to increase the probability of convergence to the optimal global solution and hence improved clustering and detection.The performance has been quantified in terms of four indices, namely accuracy (A), sensitivity (SN), specificity (SP), and Jaccard index (JI). Among the eight different combinations of clustering and optimization techniques considered in this study, FCM + SO outperformed with mean JI = 0.83, mean A = 90.89, mean SN = 92.84, and mean SP = 88.27. FCM + SO found statistical significant than other approaches with 96.67 % of the reliability index.RESULTSThe performance has been quantified in terms of four indices, namely accuracy (A), sensitivity (SN), specificity (SP), and Jaccard index (JI). Among the eight different combinations of clustering and optimization techniques considered in this study, FCM + SO outperformed with mean JI = 0.83, mean A = 90.89, mean SN = 92.84, and mean SP = 88.27. FCM + SO found statistical significant than other approaches with 96.67 % of the reliability index.The results obtained reflect the superiority of the proposed techniques over conventional clustering techniques. Hence our research development will lead to an objective analysis for automatic, accurate, and quick diagnosis of psoriasis.CONCLUSIONThe results obtained reflect the superiority of the proposed techniques over conventional clustering techniques. Hence our research development will lead to an objective analysis for automatic, accurate, and quick diagnosis of psoriasis.
[Display omitted] •Objective analysis of psoriasis disease over a larger dataset of 780 images.•Implementation of swarm intelligence algorithms to obtain optimum clusters.•Effective psoriasis lesion detection using four swarm intelligence techniques.•Quantitative analysis of the result using different metrics.•Calculation of computational complexity for each swarm intelligence algorithms. In psoriasis skin disease, psoriatic cells develop rapidly than the normal healthy cells. This speedy growth causes accumulation of dead skin cells on the skin’s surface, resulting in thick patches of red, dry, and itchy skin. This patches or psoriatic skin legions may exhibit similar characteristics as healthy skin, which makes lesion detection more challenging. However, for accurate disease diagnosis and severity detection, lesion segmentation has prime importance. In that context, our group had previously performed psoriasis lesion segmentation using the conventional clustering algorithm. However, it suffers from the constraint of falling into the local sub-optimal centroids of the clusters. The main objective of this paper is to implement an optimal lesion segmentation technique with aims at global convergence by reducing the probability of trapping into the local optima. This has been achieved by integrating swarm intelligence based algorithms with conventional K-means and Fuzzy C-means (FCMs) clustering algorithms. There are a total of eight different suitable combinations of conventional clustering (i.e., K-means and Fuzzy C-means (FCMs)) and four swarm intelligence (SI) techniques (i.e., seeker optimization (SO), artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO)) have been implemented in this study. The experiments are performed on the dataset of 780 psoriasis images from 74 patients collected at Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India. In this study, we are employing swarm intelligence optimization techniques in combination with the conventional clustering algorithms to increase the probability of convergence to the optimal global solution and hence improved clustering and detection. The performance has been quantified in terms of four indices, namely accuracy (A), sensitivity (SN), specificity (SP), and Jaccard index (JI). Among the eight different combinations of clustering and optimization techniques considered in this study, FCM + SO outperformed with mean JI = 0.83, mean A = 90.89, mean SN = 92.84, and mean SP = 88.27. FCM + SO found statistical significant than other approaches with 96.67 % of the reliability index. The results obtained reflect the superiority of the proposed techniques over conventional clustering techniques. Hence our research development will lead to an objective analysis for automatic, accurate, and quick diagnosis of psoriasis.
In psoriasis skin disease, psoriatic cells develop rapidly than the normal healthy cells. This speedy growth causes accumulation of dead skin cells on the skin's surface, resulting in thick patches of red, dry, and itchy skin. This patches or psoriatic skin legions may exhibit similar characteristics as healthy skin, which makes lesion detection more challenging. However, for accurate disease diagnosis and severity detection, lesion segmentation has prime importance. In that context, our group had previously performed psoriasis lesion segmentation using the conventional clustering algorithm. However, it suffers from the constraint of falling into the local sub-optimal centroids of the clusters. The main objective of this paper is to implement an optimal lesion segmentation technique with aims at global convergence by reducing the probability of trapping into the local optima. This has been achieved by integrating swarm intelligence based algorithms with conventional K-means and Fuzzy C-means (FCMs) clustering algorithms. There are a total of eight different suitable combinations of conventional clustering (i.e., K-means and Fuzzy C-means (FCMs)) and four swarm intelligence (SI) techniques (i.e., seeker optimization (SO), artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO)) have been implemented in this study. The experiments are performed on the dataset of 780 psoriasis images from 74 patients collected at Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India. In this study, we are employing swarm intelligence optimization techniques in combination with the conventional clustering algorithms to increase the probability of convergence to the optimal global solution and hence improved clustering and detection. The performance has been quantified in terms of four indices, namely accuracy (A), sensitivity (SN), specificity (SP), and Jaccard index (JI). Among the eight different combinations of clustering and optimization techniques considered in this study, FCM + SO outperformed with mean JI = 0.83, mean A = 90.89, mean SN = 92.84, and mean SP = 88.27. FCM + SO found statistical significant than other approaches with 96.67 % of the reliability index. The results obtained reflect the superiority of the proposed techniques over conventional clustering techniques. Hence our research development will lead to an objective analysis for automatic, accurate, and quick diagnosis of psoriasis.
ArticleNumber 107247
Author Shrivastava, Vimal K.
Dash, Manoranjan
Sonawane, Rajendra S.
Londhe, Narendra D.
Ghosh, Subhojit
Author_xml – sequence: 1
  givenname: Manoranjan
  surname: Dash
  fullname: Dash, Manoranjan
  email: manoranjandash324@gmail.com
  organization: Electrical Engineering Department, National Institute of Technology, Raipur, India
– sequence: 2
  givenname: Narendra D.
  orcidid: 0000-0002-6320-5746
  surname: Londhe
  fullname: Londhe, Narendra D.
  email: nlondhe.ele@nitrr.ac.in
  organization: Electrical Engineering Department, National Institute of Technology, Raipur, India
– sequence: 3
  givenname: Subhojit
  surname: Ghosh
  fullname: Ghosh, Subhojit
  email: sghosh.ele@nitrr.ac.in
  organization: Electrical Engineering Department, National Institute of Technology, Raipur, India
– sequence: 4
  givenname: Vimal K.
  orcidid: 0000-0003-0647-4541
  surname: Shrivastava
  fullname: Shrivastava, Vimal K.
  email: vimal.shrivastavafet@kiit.ac.in
  organization: School of Electronics Engineering, KIIT University, Bhubaneswar, India
– sequence: 5
  givenname: Rajendra S.
  surname: Sonawane
  fullname: Sonawane, Rajendra S.
  email: drrajss@gmail.com
  organization: Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32413831$$D View this record in MEDLINE/PubMed
BookMark eNqNkUlrHDEQhUVwiJfkLxjhky8z0dKL7FOMnQ0MOSSB3IRaKo1r6JYmkjom_95qxjYhJ59Uhb56Ur13TA5CDEDIGWdrznj3fru2cdoNGEd7B9NaMLFc9KLpX5Ej3vTd6kKoXwfPdc8PyXHOW8aEZKx9Qw6laLhUkh-Rzfd7kyaKocA44gaCBTqYDI7acc4FEoYNLWDvAv6egfqYqJlLnEypyAgZY6AOKlCWygRHHZpNiBkzjZ7uckxoavOWvPZmzPDu8TwhPz99_HH9ZXX77fPX66vblZWKlZW34BRc2M5y6TvphPeq5Yop2ULvh2YAZwG861vRDtxyAYPyrGFdb03thTwh53vdXYr1w7noCbOtu5kAcc5aNJVuWtXKip4-ovMwgdO7hJNJf_WTORX4sAdsijkn8NpiMcuiJRkcNWd6yUNv9b956CUPvc-jSlz-J_H0youGb_bDUA37g5B0trgk5DBVw7WL-BKZB5ppsRU
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_1111_jocd_15122
crossref_primary_10_3389_fmed_2021_751649
crossref_primary_10_46632_jdaai_4_1_40
crossref_primary_10_1016_j_engappai_2024_108097
crossref_primary_10_3390_app131810076
crossref_primary_10_1007_s13671_024_00434_y
crossref_primary_10_1016_j_ad_2021_07_003
crossref_primary_10_1111_exd_14938
crossref_primary_10_1007_s11042_023_16871_z
crossref_primary_10_1080_21681163_2025_2485100
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_1016_j_compeleceng_2025_110693
crossref_primary_10_3389_fmed_2024_1414582
crossref_primary_10_3390_biom14111351
crossref_primary_10_1109_ACCESS_2023_3303961
crossref_primary_10_1155_2022_3604012
crossref_primary_10_1155_2022_8195243
crossref_primary_10_7717_peerj_17027
crossref_primary_10_1016_j_cmpb_2021_106123
crossref_primary_10_1155_2022_1709842
crossref_primary_10_1016_j_ad_2021_07_014
crossref_primary_10_1016_j_asoc_2023_110268
crossref_primary_10_1016_j_ogc_2023_09_003
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1016_j_adengl_2021_11_007
Cites_doi 10.1007/s10044-005-0015-5
10.1001/archderm.143.12.1559
10.1016/j.patcog.2012.08.012
10.1109/34.927466
10.1016/j.cmpb.2015.11.013
10.1016/j.datak.2016.09.001
10.1109/4235.752917
10.1016/j.asoc.2012.03.072
10.1016/j.eswa.2015.03.014
10.1136/ard.2004.031237
10.1016/j.compbiomed.2015.05.005
10.3844/jcssp.2010.648.652
10.1109/83.597279
10.1016/j.asoc.2011.05.039
10.12785/amis/070304
10.1023/A:1023379719594
10.1016/j.bspc.2016.04.001
10.1109/42.996338
10.1016/j.cmpb.2017.07.011
10.1007/978-3-540-72950-1_77
10.1109/TIP.2002.806256
10.1016/j.compbiomed.2015.07.021
10.1016/0190-9622(93)70062-X
10.1109/TSMCB.2005.859935
10.1109/TMI.2012.2236349
10.1007/s004030050338
10.1016/j.eswa.2011.02.086
10.1016/j.measurement.2011.02.006
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiolchem.2020.107247
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1476-928X
ExternalDocumentID 32413831
10_1016_j_compbiolchem_2020_107247
S1476927118302524
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
AAYFN
ABBOA
ABGSF
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADECG
ADEWK
ADEZE
ADJOM
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSU
SSV
SSZ
T5K
UHS
ZMT
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c380t-fced8e9c6c13f63d2ff85180835e7fb4bedceefd7525b1c12eb8f04067cab1c23
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537621900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-9271
1476-928X
IngestDate Sat Sep 27 17:16:19 EDT 2025
Wed Feb 19 02:29:40 EST 2025
Sat Nov 29 07:04:04 EST 2025
Tue Nov 18 22:37:51 EST 2025
Fri Feb 23 02:47:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MRF
NN
A
Swarm intelligence techniques
ABC
D
G
JPEG
K
SVM
L
ix,y
N
Optimization
SD
MSSC
SI
GA
SN
SO
SP
CIE
K-means
b
PASI
Psoriasis
Lesion segmentation
GMM
CAD
RGB
Clustering
ACO
PSO
FCM
Fuzzy C-means
JI
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-fced8e9c6c13f63d2ff85180835e7fb4bedceefd7525b1c12eb8f04067cab1c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0647-4541
0000-0002-6320-5746
PMID 32413831
PQID 2404045853
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2404045853
pubmed_primary_32413831
crossref_citationtrail_10_1016_j_compbiolchem_2020_107247
crossref_primary_10_1016_j_compbiolchem_2020_107247
elsevier_sciencedirect_doi_10_1016_j_compbiolchem_2020_107247
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-Jun
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computational biology and chemistry
PublicationTitleAlternate Comput Biol Chem
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kalyani, Swarup (bib0080) 2011; 38
Kumar, Ghosh, Das (bib0090) 2015
Rozita, Hadzli, Mohd, Saadiah (bib0130) 2004
Shrivastava, Londhe, Sonawane, Suri (bib0165) 2016; 126
Chuang, Tzeng, Chen, Wu, Chen (bib0040) 2006
Adam (bib0005) 1980
Su, Chou (bib0190) 2001; 23
Shrivastava, Londhe, Sonawane, Suri (bib0175) 2016; 106
Sag, Unkas (bib0135) 2012
Shrivastava, Londhe, Sonawane, Suri (bib0150) 2015; 63
Taur (bib0195) 2003; 35
Akay (bib0015) 2013; 13
Shrivastava, Londhe (bib0145) 2015; 5
Dorigo, Colorni, Maniezzo (bib0050) 1991
Ahmed, Yanlany, Mohamed (bib0010) 2002; 21
Nidhal, Nizar, Muhsin, Hind (bib0115) 2010; 6
Karaboga, Basturk (bib0085) 2007
Taur, Lee, Tao, Chen, Yang (bib0200) 2006; 36
Camisa (bib0035) 2004
Huerta, Rivero, Rodríguez (bib0075) 2007; 143
Xie, Bovik (bib0215) 2013; 46
Veenman, Reinders, Backer (bib0210) 2003; 12
Ghosh, Mitchell (bib0060) 2006
Shrivastava, Londhe, Sonawane, Suri (bib0170) 2016; 28
Henseler (bib0070) 1998; 290
Li-Hong, Ming-Ni (bib0095) 2011; 44
Guoli, Bei, Wenming, Chang (bib0065) 2013; 9045
Feldman, Krueger (bib0055) 2005; 64
McIntosh, Hamarneh (bib0110) 2006
Sander, Norris, Phillips, Menter (bib0140) 1993; 28
Shrivastava, Londhe, Sonawane, Suri (bib0155) 2015; 42
Shrivastava, Londhe, Sonawane, S.Suri (bib0160) 2015; 65
Roenigk, Maibach (bib0125) 1985
Tuba, Brajevic, Jovanovic (bib0205) 2013; 7
Ma, Liang, Guo, Fan, Yin (bib0105) 2011; 11
Omran, Salman, Engelbrecht (bib0120) 2006; 8
Lu, Kazmierczak, Manton, Sinclair (bib0100) 2013; 32
Bansal, Aggarwal (bib0020) 2011; 29
Bhandarkar, Zhang (bib0025) 1999; 3
Shrivastava, Londhe, Sonawane, Suri (bib0180) 2017; 150
Yee, Choon, Khaw, Baba, Hussein, Ratti (bib0220) 1999
Connolly, Fliess (bib0045) 1997; 6
Bogo, Samory, Fortina, Piaserico, Peserico (bib0030) 2012; 28
Sood, Shukla (bib0185) 2014; 5
Guoli (10.1016/j.compbiolchem.2020.107247_bib0065) 2013; 9045
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0170) 2016; 28
Camisa (10.1016/j.compbiolchem.2020.107247_bib0035) 2004
Ahmed (10.1016/j.compbiolchem.2020.107247_bib0010) 2002; 21
Yee (10.1016/j.compbiolchem.2020.107247_bib0220) 1999
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0155) 2015; 42
Veenman (10.1016/j.compbiolchem.2020.107247_bib0210) 2003; 12
Akay (10.1016/j.compbiolchem.2020.107247_bib0015) 2013; 13
Karaboga (10.1016/j.compbiolchem.2020.107247_bib0085) 2007
Henseler (10.1016/j.compbiolchem.2020.107247_bib0070) 1998; 290
Nidhal (10.1016/j.compbiolchem.2020.107247_bib0115) 2010; 6
Omran (10.1016/j.compbiolchem.2020.107247_bib0120) 2006; 8
Rozita (10.1016/j.compbiolchem.2020.107247_bib0130) 2004
Chuang (10.1016/j.compbiolchem.2020.107247_bib0040) 2006
Lu (10.1016/j.compbiolchem.2020.107247_bib0100) 2013; 32
Roenigk (10.1016/j.compbiolchem.2020.107247_bib0125) 1985
Bansal (10.1016/j.compbiolchem.2020.107247_bib0020) 2011; 29
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0165) 2016; 126
Connolly (10.1016/j.compbiolchem.2020.107247_bib0045) 1997; 6
Taur (10.1016/j.compbiolchem.2020.107247_bib0195) 2003; 35
Su (10.1016/j.compbiolchem.2020.107247_bib0190) 2001; 23
Ghosh (10.1016/j.compbiolchem.2020.107247_bib0060) 2006
Feldman (10.1016/j.compbiolchem.2020.107247_bib0055) 2005; 64
Sag (10.1016/j.compbiolchem.2020.107247_bib0135) 2012
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0145) 2015; 5
Kalyani (10.1016/j.compbiolchem.2020.107247_bib0080) 2011; 38
Bogo (10.1016/j.compbiolchem.2020.107247_bib0030) 2012; 28
Taur (10.1016/j.compbiolchem.2020.107247_bib0200) 2006; 36
Bhandarkar (10.1016/j.compbiolchem.2020.107247_bib0025) 1999; 3
Ma (10.1016/j.compbiolchem.2020.107247_bib0105) 2011; 11
Li-Hong (10.1016/j.compbiolchem.2020.107247_bib0095) 2011; 44
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0160) 2015; 65
Kumar (10.1016/j.compbiolchem.2020.107247_bib0090) 2015
Xie (10.1016/j.compbiolchem.2020.107247_bib0215) 2013; 46
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0175) 2016; 106
Sood (10.1016/j.compbiolchem.2020.107247_bib0185) 2014; 5
McIntosh (10.1016/j.compbiolchem.2020.107247_bib0110) 2006
Adam (10.1016/j.compbiolchem.2020.107247_bib0005) 1980
Huerta (10.1016/j.compbiolchem.2020.107247_bib0075) 2007; 143
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0180) 2017; 150
Shrivastava (10.1016/j.compbiolchem.2020.107247_bib0150) 2015; 63
Tuba (10.1016/j.compbiolchem.2020.107247_bib0205) 2013; 7
Dorigo (10.1016/j.compbiolchem.2020.107247_bib0050) 1991
Sander (10.1016/j.compbiolchem.2020.107247_bib0140) 1993; 28
References_xml – year: 1999
  ident: bib0220
  article-title: Malaysian Patients Knowledge of Psoriasis: Psoriasis Association Members Vs Non-Members
– volume: 5
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0145
  article-title: Measurement of psoriasis Area and severity index Area score of Indian psoriasis patients
  publication-title: J. Med. Imaging Health Inf.
– volume: 64
  start-page: 65
  year: 2005
  end-page: 68
  ident: bib0055
  article-title: Psoriasis assessment tools in clinical trials
  publication-title: Ann. Rheumatic Dis.
– volume: 28
  start-page: 27
  year: 2016
  end-page: 40
  ident: bib0170
  article-title: A novel approach to multiclass psoriasis disease risk stratification: machine learning paradigm
  publication-title: Biomed. Signal Process. Control
– start-page: 197
  year: 2015
  end-page: 202
  ident: bib0090
  article-title: Identification of fractional-order circuits from frequency response data using seeker optimization algorithm
  publication-title: IEEE International Conference on Industrial Instrumentation and Control
– volume: 63
  start-page: 52
  year: 2015
  end-page: 63
  ident: bib0150
  article-title: First review on psoriasis severity risk stratification: an engineering perspective
  publication-title: Comput. Biol. Med.
– volume: 35
  start-page: 19
  year: 2003
  end-page: 27
  ident: bib0195
  article-title: Neuro-fuzzy approach to the segmentation of psoriasis images
  publication-title: J. VLSI Sig. Proc.
– volume: 6
  start-page: 648
  year: 2010
  end-page: 652
  ident: bib0115
  article-title: Psoriasis detection using color and texture features
  publication-title: J. Comp. Sci.
– volume: 290
  start-page: 463
  year: 1998
  ident: bib0070
  article-title: Genetics of psoriasis
  publication-title: Arch. Dermatol. Res.
– volume: 42
  start-page: 6184
  year: 2015
  end-page: 6195
  ident: bib0155
  article-title: Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm
  publication-title: Expert Syst. Appl.
– year: 1985
  ident: bib0125
  article-title: Psoriasis, Marcel Dekker
– start-page: 95
  year: 2012
  end-page: 100
  ident: bib0135
  article-title: Development of image segmentation techniques using swarm intelligence ABC-based clustering algorithm for image segmentation
  publication-title: International Conference on Computing and Information Technology
– volume: 126
  start-page: 98
  year: 2016
  end-page: 109
  ident: bib0165
  article-title: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
  publication-title: Comp. Method Programs Biomed.
– volume: 28
  year: 2012
  ident: bib0030
  article-title: Psoriasis segmentation through chromatic regions and geometric active contours
  publication-title: International Conference of the IEEE EMBS
– volume: 9045
  year: 2013
  ident: bib0065
  article-title: Easy interactive and quick psoriasis lesion segmentation
  publication-title: International Conference on Optical Instruments and Technology
– volume: 7
  start-page: 867
  year: 2013
  end-page: 875
  ident: bib0205
  article-title: Hybrid seeker optimization algorithm for global optimization
  publication-title: Appl. Math. Inf. Sci.
– year: 1991
  ident: bib0050
  article-title: Positive Feedback as a Search Strategy, Tech. Report 91-016, Department Electronic
– year: 2004
  ident: bib0035
  article-title: Handbook of Psoriasis
– year: 1980
  ident: bib0005
  article-title: Psoriasis in hospital population
  publication-title: Med. J. Malaysia
– volume: 32
  start-page: 719
  year: 2013
  end-page: 730
  ident: bib0100
  article-title: Automatic segmentation of scaling in 2-D psoriasis skin images
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  start-page: 5205
  year: 2011
  end-page: 5214
  ident: bib0105
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 150
  start-page: 9
  year: 2017
  end-page: 22
  ident: bib0180
  article-title: A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification: inter-comparison of nine systems
  publication-title: Comp. Methods Programs Biomed.
– start-page: 596
  year: 2004
  end-page: 599
  ident: bib0130
  article-title: Border Segmentation on Digitized Psoriasis Skin Lesion Images
– volume: 12
  start-page: 304
  year: 2003
  end-page: 316
  ident: bib0210
  article-title: A cellular evolutionary algorithm for image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 44
  start-page: 895
  year: 2011
  end-page: 905
  ident: bib0095
  article-title: Psoriasis image identification using k-means clustering with morphological processing
  publication-title: Measurement
– volume: 106
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib0175
  article-title: Reliability analysis of psoriasis decision support system in principal component analysis framework
  publication-title: Data Knowledge Eng.
– volume: 13
  start-page: 3066
  year: 2013
  end-page: 3091
  ident: bib0015
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Appl. Soft Comput.
– volume: 6
  start-page: 1046
  year: 1997
  end-page: 1048
  ident: bib0045
  article-title: A study of efficiency and accuracy in the transformation from RGB to CIELAB color space
  publication-title: IEEE Trans. Image Process.
– volume: 65
  start-page: 54
  year: 2015
  end-page: 68
  ident: bib0160
  article-title: Exploring the color feature power for psoriasis risk stratification and classification: a data mining paradigm
  publication-title: Comput. Biol. Med.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: bib0010
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– year: 2006
  ident: bib0040
  article-title: Fuzzy C-Means Clustering with Spatial Information for Image Segmentation, in Computerized Medical Imaging and Graphics, 30, 9, 15
– volume: 29
  start-page: 28
  year: 2011
  end-page: 34
  ident: bib0020
  article-title: Color image segmentation using CIELab color space using ant Colony optimization
  publication-title: Int. J. Computer Appl.
– volume: 36
  start-page: 390
  year: 2006
  end-page: 402
  ident: bib0200
  article-title: Segmentation of psoriasis vulgaris images using multiresolution-based orthogonal subspace techniques
  publication-title: IEEE Trans. Syst. Man Cybernet, Part B: Cybernet.
– volume: 3
  start-page: 1
  year: 1999
  end-page: 21
  ident: bib0025
  article-title: Image segmentation using evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 143
  start-page: 1559
  year: 2007
  end-page: 1565
  ident: bib0075
  article-title: Incidence and risk factors for psoriasis in the general population
  publication-title: Arch. Dermatol.
– start-page: 1171
  year: 2006
  end-page: 1178
  ident: bib0060
  article-title: Segmentation of medical images using a genetic algorithm, in GECCO, Mike Cattolico
  publication-title: ACM Ed.
– volume: 8
  start-page: 332
  year: 2006
  end-page: 344
  ident: bib0120
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
– volume: 5
  start-page: 6831
  year: 2014
  end-page: 6837
  ident: bib0185
  article-title: Segmentation of skin lesions from digital images using an optimized approach: genetic algorithm
  publication-title: Int. J. Comp. Sci. and Inf. Technol.
– start-page: 789
  year: 2007
  end-page: 798
  ident: bib0085
  article-title: Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems
  publication-title: IFSA’07 Proceedings of the 12
– volume: 46
  start-page: 1012
  year: 2013
  end-page: 1019
  ident: bib0215
  article-title: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm
  publication-title: Patt. Recogn.
– volume: 38
  start-page: 10839
  year: 2011
  end-page: 10846
  ident: bib0080
  article-title: Particle swarm optimization based K-means clustering approach for security assessment in power systems
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 422
  year: 1993
  end-page: 425
  ident: bib0140
  article-title: The annual cost of psoriasis
  publication-title: J. Am. Acad. Dermatol.
– year: 2006
  ident: bib0110
  publication-title: Genetic Algorithm-Driven Statistically Deformed Models for Medical Image Segmentation
– volume: 23
  start-page: 674
  year: 2001
  end-page: 680
  ident: bib0190
  article-title: A modified version of the K-means algorithm with distance based on cluster symmetry
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
– volume: 8
  start-page: 332
  issue: 1
  year: 2006
  ident: 10.1016/j.compbiolchem.2020.107247_bib0120
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-005-0015-5
– year: 1991
  ident: 10.1016/j.compbiolchem.2020.107247_bib0050
– year: 2004
  ident: 10.1016/j.compbiolchem.2020.107247_bib0035
– volume: 143
  start-page: 1559
  issue: 12
  year: 2007
  ident: 10.1016/j.compbiolchem.2020.107247_bib0075
  article-title: Incidence and risk factors for psoriasis in the general population
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.143.12.1559
– year: 2006
  ident: 10.1016/j.compbiolchem.2020.107247_bib0110
– volume: 46
  start-page: 1012
  year: 2013
  ident: 10.1016/j.compbiolchem.2020.107247_bib0215
  article-title: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm
  publication-title: Patt. Recogn.
  doi: 10.1016/j.patcog.2012.08.012
– volume: 23
  start-page: 674
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiolchem.2020.107247_bib0190
  article-title: A modified version of the K-means algorithm with distance based on cluster symmetry
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
  doi: 10.1109/34.927466
– year: 1999
  ident: 10.1016/j.compbiolchem.2020.107247_bib0220
– volume: 28
  year: 2012
  ident: 10.1016/j.compbiolchem.2020.107247_bib0030
  article-title: Psoriasis segmentation through chromatic regions and geometric active contours
  publication-title: International Conference of the IEEE EMBS
– volume: 126
  start-page: 98
  year: 2016
  ident: 10.1016/j.compbiolchem.2020.107247_bib0165
  article-title: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
  publication-title: Comp. Method Programs Biomed.
  doi: 10.1016/j.cmpb.2015.11.013
– volume: 106
  start-page: 1
  year: 2016
  ident: 10.1016/j.compbiolchem.2020.107247_bib0175
  article-title: Reliability analysis of psoriasis decision support system in principal component analysis framework
  publication-title: Data Knowledge Eng.
  doi: 10.1016/j.datak.2016.09.001
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.compbiolchem.2020.107247_bib0145
  article-title: Measurement of psoriasis Area and severity index Area score of Indian psoriasis patients
  publication-title: J. Med. Imaging Health Inf.
– volume: 3
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.compbiolchem.2020.107247_bib0025
  article-title: Image segmentation using evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.752917
– volume: 13
  start-page: 3066
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiolchem.2020.107247_bib0015
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.072
– issue: June
  year: 1980
  ident: 10.1016/j.compbiolchem.2020.107247_bib0005
  article-title: Psoriasis in hospital population
  publication-title: Med. J. Malaysia
– volume: 42
  start-page: 6184
  issue: 15
  year: 2015
  ident: 10.1016/j.compbiolchem.2020.107247_bib0155
  article-title: Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.03.014
– volume: 64
  start-page: 65
  issue: 2
  year: 2005
  ident: 10.1016/j.compbiolchem.2020.107247_bib0055
  article-title: Psoriasis assessment tools in clinical trials
  publication-title: Ann. Rheumatic Dis.
  doi: 10.1136/ard.2004.031237
– volume: 63
  start-page: 52
  year: 2015
  ident: 10.1016/j.compbiolchem.2020.107247_bib0150
  article-title: First review on psoriasis severity risk stratification: an engineering perspective
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.05.005
– start-page: 197
  year: 2015
  ident: 10.1016/j.compbiolchem.2020.107247_bib0090
  article-title: Identification of fractional-order circuits from frequency response data using seeker optimization algorithm
– volume: 6
  start-page: 648
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiolchem.2020.107247_bib0115
  article-title: Psoriasis detection using color and texture features
  publication-title: J. Comp. Sci.
  doi: 10.3844/jcssp.2010.648.652
– volume: 29
  start-page: 28
  issue: 9
  year: 2011
  ident: 10.1016/j.compbiolchem.2020.107247_bib0020
  article-title: Color image segmentation using CIELab color space using ant Colony optimization
  publication-title: Int. J. Computer Appl.
– start-page: 1171
  year: 2006
  ident: 10.1016/j.compbiolchem.2020.107247_bib0060
  article-title: Segmentation of medical images using a genetic algorithm, in GECCO, Mike Cattolico
  publication-title: ACM Ed.
– volume: 6
  start-page: 1046
  issue: 7
  year: 1997
  ident: 10.1016/j.compbiolchem.2020.107247_bib0045
  article-title: A study of efficiency and accuracy in the transformation from RGB to CIELAB color space
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597279
– volume: 11
  start-page: 5205
  issue: 8
  year: 2011
  ident: 10.1016/j.compbiolchem.2020.107247_bib0105
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.039
– volume: 7
  start-page: 867
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiolchem.2020.107247_bib0205
  article-title: Hybrid seeker optimization algorithm for global optimization
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/070304
– volume: 35
  start-page: 19
  year: 2003
  ident: 10.1016/j.compbiolchem.2020.107247_bib0195
  article-title: Neuro-fuzzy approach to the segmentation of psoriasis images
  publication-title: J. VLSI Sig. Proc.
  doi: 10.1023/A:1023379719594
– volume: 28
  start-page: 27
  year: 2016
  ident: 10.1016/j.compbiolchem.2020.107247_bib0170
  article-title: A novel approach to multiclass psoriasis disease risk stratification: machine learning paradigm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.04.001
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.compbiolchem.2020.107247_bib0010
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– start-page: 95
  year: 2012
  ident: 10.1016/j.compbiolchem.2020.107247_bib0135
  article-title: Development of image segmentation techniques using swarm intelligence ABC-based clustering algorithm for image segmentation
  publication-title: International Conference on Computing and Information Technology
– volume: 150
  start-page: 9
  year: 2017
  ident: 10.1016/j.compbiolchem.2020.107247_bib0180
  article-title: A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification: inter-comparison of nine systems
  publication-title: Comp. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.07.011
– start-page: 789
  year: 2007
  ident: 10.1016/j.compbiolchem.2020.107247_bib0085
  article-title: Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems
  publication-title: IFSA’07 Proceedings of the 12th International Fuzzy Systems Association World Congress on Foundations of Fuzzy Logic and Soft Computing
  doi: 10.1007/978-3-540-72950-1_77
– volume: 12
  start-page: 304
  issue: 3
  year: 2003
  ident: 10.1016/j.compbiolchem.2020.107247_bib0210
  article-title: A cellular evolutionary algorithm for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2002.806256
– volume: 65
  start-page: 54
  year: 2015
  ident: 10.1016/j.compbiolchem.2020.107247_bib0160
  article-title: Exploring the color feature power for psoriasis risk stratification and classification: a data mining paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.021
– year: 1985
  ident: 10.1016/j.compbiolchem.2020.107247_bib0125
– volume: 28
  start-page: 422
  year: 1993
  ident: 10.1016/j.compbiolchem.2020.107247_bib0140
  article-title: The annual cost of psoriasis
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/0190-9622(93)70062-X
– volume: 36
  start-page: 390
  issue: 2
  year: 2006
  ident: 10.1016/j.compbiolchem.2020.107247_bib0200
  article-title: Segmentation of psoriasis vulgaris images using multiresolution-based orthogonal subspace techniques
  publication-title: IEEE Trans. Syst. Man Cybernet, Part B: Cybernet.
  doi: 10.1109/TSMCB.2005.859935
– volume: 32
  start-page: 719
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiolchem.2020.107247_bib0100
  article-title: Automatic segmentation of scaling in 2-D psoriasis skin images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2236349
– volume: 5
  start-page: 6831
  issue: 5
  year: 2014
  ident: 10.1016/j.compbiolchem.2020.107247_bib0185
  article-title: Segmentation of skin lesions from digital images using an optimized approach: genetic algorithm
  publication-title: Int. J. Comp. Sci. and Inf. Technol.
– year: 2006
  ident: 10.1016/j.compbiolchem.2020.107247_bib0040
– volume: 290
  start-page: 463
  year: 1998
  ident: 10.1016/j.compbiolchem.2020.107247_bib0070
  article-title: Genetics of psoriasis
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s004030050338
– volume: 38
  start-page: 10839
  issue: 9
  year: 2011
  ident: 10.1016/j.compbiolchem.2020.107247_bib0080
  article-title: Particle swarm optimization based K-means clustering approach for security assessment in power systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.086
– start-page: 596
  year: 2004
  ident: 10.1016/j.compbiolchem.2020.107247_bib0130
– volume: 9045
  year: 2013
  ident: 10.1016/j.compbiolchem.2020.107247_bib0065
  article-title: Easy interactive and quick psoriasis lesion segmentation
  publication-title: International Conference on Optical Instruments and Technology
– volume: 44
  start-page: 895
  year: 2011
  ident: 10.1016/j.compbiolchem.2020.107247_bib0095
  article-title: Psoriasis image identification using k-means clustering with morphological processing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.02.006
SSID ssj0023005
Score 2.3698804
Snippet [Display omitted] •Objective analysis of psoriasis disease over a larger dataset of 780 images.•Implementation of swarm intelligence algorithms to obtain...
In psoriasis skin disease, psoriatic cells develop rapidly than the normal healthy cells. This speedy growth causes accumulation of dead skin cells on the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107247
SubjectTerms Algorithms
Cluster Analysis
Clustering
Fuzzy C-means
Humans
Image Processing, Computer-Assisted - methods
K-means
Lesion segmentation
Optimization
Psoriasis
Psoriasis - diagnosis
Sensitivity and Specificity
Swarm intelligence techniques
Title Swarm intelligence based clustering technique for automated lesion detection and diagnosis of psoriasis
URI https://dx.doi.org/10.1016/j.compbiolchem.2020.107247
https://www.ncbi.nlm.nih.gov/pubmed/32413831
https://www.proquest.com/docview/2404045853
Volume 86
WOSCitedRecordID wos000537621900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: AIEXJ
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DgQvCAaD8jEZCfEyZWqTNnEeeJimjq-pIK1DfbMSx6atuiQkaRm_iL_JvXHiBEGl8sBLlFpxY_ec2ufa1_cS8qrfVzAPDVxLgD1hoQFhBTJQcKeiyGcqYL5ONuFNJmw28z93Oj_rszCblRfH7ObGT_8r1FAGYOPR2X-A23wpFMA9gA5XgB2uOwF_-T3IrsswECbUJk5V0bFYrTEqQnk-ykRuLZ0o10UCwhUeWUlcPDuOZCGrFOJxhMuz6I2nA5ekeQJ9yBd5W9Xq1BD1smI7rpOo88k1K-L5XJ8RioF88bLlEpTE0VzqER8ddbOg8UZ-O090NRjn5slyYXx1LufZYhOAwt2UIvjL4hoa8LG9lGH3G5eravQdeq7l22WuYZic_lJWDdmsPeaCAWvrqJ1_TAd6ZWKJaKbYeez0Cb75pKn0ewzuySd-fnVxwafj2fR1-s3C9GS4jV_latkj-7Y38lmX7J--H88-GNseo_6XB9mq1tbxbUtXwm2v36aFttk6peaZ3if3KmOFnmqSPSAdGR-Q2zp96Y8DcuesRvch-VrSjrZpR0va0YZ21NCOAu2ooR3VtKOGdhSoQw3taKKood0jcnU-np69s6okHpZwWL-wlJARk75wxcBRrhPZSoHIZ6j8pafCYYhuyFJF3sgehQMxsGXIFMwsricC-Gw7h6QbJ7F8Qig8iGm1WMhgEgEZD9JZ9FXo-NFQOmBH94hf_5xcVBHuMdHKiteujEvehoIjFFxD0SOOqZvqOC871XpTo8YrxaqVKAcG7lT_ZQ01B7xwry6IZbLOOQjtIfowjJweeaw5YNrl4F44cwZPd6j9jNxt_mnPSbfI1vIFuSU2xSLPjsieN2NHFZd_ATgJ1tQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm+intelligence+based+clustering+technique+for+automated+lesion+detection+and+diagnosis+of+psoriasis&rft.jtitle=Computational+biology+and+chemistry&rft.au=Dash%2C+Manoranjan&rft.au=Londhe%2C+Narendra+D&rft.au=Ghosh%2C+Subhojit&rft.au=Shrivastava%2C+Vimal+K&rft.date=2020-06-01&rft.issn=1476-928X&rft.eissn=1476-928X&rft.volume=86&rft.spage=107247&rft_id=info:doi/10.1016%2Fj.compbiolchem.2020.107247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-9271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-9271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-9271&client=summon