A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data

Accurate estimation and prediction of urban link travel times are important for urban traffic operations and management. This paper develops a Bayesian mixture model to estimate short-term average urban link travel times using large-scale trip-based data with partial information. Unlike typical GPS...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automation in construction Ročník 72; s. 237 - 246
Hlavní autori: Zhan, Xianyuan, Ukkusuri, Satish V., Yang, Chao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.12.2016
Elsevier BV
Predmet:
ISSN:0926-5805, 1872-7891
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate estimation and prediction of urban link travel times are important for urban traffic operations and management. This paper develops a Bayesian mixture model to estimate short-term average urban link travel times using large-scale trip-based data with partial information. Unlike typical GPS trajectory data, trip-based data from taxies or other sources provide limited trip level information, which only contains the trip origin and destination locations, trip travel times and distances, etc. The focus of this study is to develop a robust probabilistic short-term average link travel time estimation model and demonstrate the feasibility of estimating network conditions using large-scale trip level information. In the model, the path taken by each trip is considered as latent and modeled using a multinomial logit distribution. The observed trip data given the possible path set and the mean and variance of the average link travel times can thus be characterized using a finite mixture distribution. A transition model is also introduced to serve as an informative prior that captures the temporal and spatial dependencies of link travel times. A solution approach based on the expectation–maximization (EM) algorithm is proposed to solve the problem. The model is tested on estimating the mean and variance of the average link travel times for 30min time intervals using a large-scale taxi trip dataset from New York City. More robust estimation results are obtained owing to the adoption of the Bayesian framework.
AbstractList Accurate estimation and prediction of urban link travel times are important for urban traffic operations and management. This paper develops a Bayesian mixture model to estimate short-term average urban link travel times using large-scale trip-based data with partial information. Unlike typical GPS trajectory data, trip-based data from taxies or other sources provide limited trip level information, which only contains the trip origin and destination locations, trip travel times and distances, etc. The focus of this study is to develop a robust probabilistic short-term average link travel time estimation model and demonstrate the feasibility of estimating network conditions using large-scale trip level information. In the model, the path taken by each trip is considered as latent and modeled using a multinomial logit distribution. The observed trip data given the possible path set and the mean and variance of the average link travel times can thus be characterized using a finite mixture distribution. A transition model is also introduced to serve as an informative prior that captures the temporal and spatial dependencies of link travel times. A solution approach based on the expectation–maximization (EM) algorithm is proposed to solve the problem. The model is tested on estimating the mean and variance of the average link travel times for 30 min time intervals using a large-scale taxi trip dataset from New York City. More robust estimation results are obtained owing to the adoption of the Bayesian framework.
Accurate estimation and prediction of urban link travel times are important for urban traffic operations and management. This paper develops a Bayesian mixture model to estimate short-term average urban link travel times using large-scale trip-based data with partial information. Unlike typical GPS trajectory data, trip-based data from taxies or other sources provide limited trip level information, which only contains the trip origin and destination locations, trip travel times and distances, etc. The focus of this study is to develop a robust probabilistic short-term average link travel time estimation model and demonstrate the feasibility of estimating network conditions using large-scale trip level information. In the model, the path taken by each trip is considered as latent and modeled using a multinomial logit distribution. The observed trip data given the possible path set and the mean and variance of the average link travel times can thus be characterized using a finite mixture distribution. A transition model is also introduced to serve as an informative prior that captures the temporal and spatial dependencies of link travel times. A solution approach based on the expectation–maximization (EM) algorithm is proposed to solve the problem. The model is tested on estimating the mean and variance of the average link travel times for 30min time intervals using a large-scale taxi trip dataset from New York City. More robust estimation results are obtained owing to the adoption of the Bayesian framework.
Author Zhan, Xianyuan
Yang, Chao
Ukkusuri, Satish V.
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Zhan
  fullname: Zhan, Xianyuan
  email: zhanxianyuan@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Satish V.
  orcidid: 0000-0001-8754-9925
  surname: Ukkusuri
  fullname: Ukkusuri, Satish V.
  email: sukkusur@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
– sequence: 3
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  email: tongjiyc@tongji.edu.cn
  organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, School of Transportation Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
BookMark eNqFkEFv3CAUhFGVSN1N8g9yQOrZLjg2Nj1U2q7SJNJKvSRn9AzPW7Y2bAFHyTH_vGw2px4SCekJmBmYb0lOnHdIyCVnJWdcfN2VMCftXVkx3pS8KhlrP5EF79qqaDvJT8iCyUoUTceaz2QZ445lBRNyQV5W9Ac8Y7Tg6GSf0hyQTt7gSAcfaPztQyoShonCIwbYIh2t-0NTyNuRJjshxZgHJOsdnaN1WzpC2GIRNYwH9WQTGmpdjntTpWD3RQ8xHxtIcE5OBxgjXrzNM_Lw8_p-fVtsft3crVebQl91LBWDRtkK5Lyt8-r7tpEd9AO2-bo3osYeEND0pq4lNLUUaIamHqSuhRBQNVdn5Msxdx_83zn_Wu38HFx-UnHJZdN1reyyqj6qdPAxBhzUPuR64Vlxpg6w1U4dYasDbMUrlVFm27f_bNqm17oZlR0_Mn8_mjHXf7QYVNQWnUZjA-qkjLfvB_wDHYCjFA
CitedBy_id crossref_primary_10_1109_TKDE_2016_2621104
crossref_primary_10_1016_j_autcon_2017_12_036
crossref_primary_10_1155_2019_8582761
crossref_primary_10_1177_0361198120918576
crossref_primary_10_1049_itr2_12379
crossref_primary_10_3390_jimaging8040101
crossref_primary_10_3390_math12081255
crossref_primary_10_1080_21680566_2024_2416181
crossref_primary_10_1016_j_eswa_2018_02_033
crossref_primary_10_1016_j_trc_2020_102660
crossref_primary_10_1109_TITS_2016_2521862
crossref_primary_10_1080_15472450_2019_1617141
crossref_primary_10_35940_ijies_G1106_12060625
crossref_primary_10_3390_su11154214
crossref_primary_10_1109_TITS_2022_3168865
crossref_primary_10_1080_23249935_2025_2517306
crossref_primary_10_1109_TITS_2019_2919595
crossref_primary_10_1109_TITS_2022_3140511
crossref_primary_10_3390_app12105017
crossref_primary_10_3390_app9010104
crossref_primary_10_1145_3292390_3292396
crossref_primary_10_1016_j_ins_2021_12_091
crossref_primary_10_1109_TITS_2017_2703652
crossref_primary_10_1109_TITS_2018_2803085
crossref_primary_10_1016_j_autcon_2016_12_008
crossref_primary_10_3390_ijgi12020044
crossref_primary_10_1016_j_eswa_2022_118319
crossref_primary_10_1016_j_eswa_2023_123009
crossref_primary_10_11648_j_ajcbm_20250902_11
Cites_doi 10.1016/j.trb.2007.08.005
10.1016/j.trc.2015.06.001
10.1111/j.2517-6161.1977.tb01600.x
10.1016/S0965-8564(01)00046-5
10.1109/TITS.2004.837813
10.1016/j.autcon.2006.11.001
10.1109/TPDS.2008.147
10.1016/j.trc.2011.05.014
10.1016/j.trc.2013.04.001
10.1016/j.trc.2009.04.003
10.3141/2192-13
10.1016/S0968-090X(03)00026-3
10.1016/j.trb.2005.11.003
10.3141/1617-23
10.1287/mnsc.17.11.712
10.1016/j.trc.2009.10.006
10.1016/j.trc.2012.04.007
10.1162/089976600300015664
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright Elsevier BV Dec 2016
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 2016
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2015.12.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
EndPage 246
ExternalDocumentID 10_1016_j_autcon_2015_12_007
S0926580515002472
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABFNM
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c380t-fce976e1174174bb7598abfe7c38bd64ebaeaedbd449a5496edf54f9c4666a253
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390722200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Fri Jul 25 07:31:10 EDT 2025
Sat Nov 29 07:14:26 EST 2025
Tue Nov 18 21:50:46 EST 2025
Thu Oct 24 23:31:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Short-term average link travel time estimation
Bayesian mixture model
EM algorithm
Trip based data with partial information
Path inference
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-fce976e1174174bb7598abfe7c38bd64ebaeaedbd449a5496edf54f9c4666a253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8754-9925
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0926580515002472
PQID 1919588798
PQPubID 2045277
PageCount 10
ParticipantIDs proquest_journals_1919588798
crossref_primary_10_1016_j_autcon_2015_12_007
crossref_citationtrail_10_1016_j_autcon_2015_12_007
elsevier_sciencedirect_doi_10_1016_j_autcon_2015_12_007
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2016
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References De Freitas, Niranjan, Gee, Doucet (bb0020) 2000; 12
Yen (bb0115) 1971; 17
Li, Rose (bb0075) 2011; 19
Zhan, Li, Ukkusuri (bb0130) 2015; 57
Beijing Municipal Committee (bb0005) July 2012
Wu, Ho, Lee (bb0110) 2004; 5
Bishop (bb0010) 2006
Kurihara, Nakada, Yosui, Matsumoto (bb0065) 2001
Lu, Chen, Shen, Lam, Liu (bb0080) 2007; 16
Herrera, Work, Ban, Herring, Jacobson, Bayen (bb0040) 2010; 18
Coifman (bb0015) 2002; 36
Zhang, Rice (bb0135) 2003; 11
Park, Rilett (bb0095) 1998
Yeon, Elefteriadou, Lawphongpanich (bb0120) 2008; 42
Government of Hong Kong (bb0035) 2013
Zheng, Van Zuylen (bb0145) 2013; 31
NYCTLC (bb0085) 2012
Herring, Hofleitner, Abbeel (bb0045) September, 2010
Kwong, Kavaler, Rajagopal, Varaiya (bb0070) 2009; 17
Zhu, Li, Zhu, Ni (bb0150) 2009; 20
Zhan, Hasan, Ukkusuri, Kamga (bb0125) 2013; 33
Sherali, Desai, Rakha (bb0105) 2006; 40
Zheng, Van Zuylen (bb0140) 2010; 2192
Oh, J.S., Jayakrishnan, R., Recker, W., 2003. Section Travel Time Estimation from Point Detection Data. 82nd Annual Meeting of Transportation Research Board, Washington, DC, USA.
Dempster, Laird, Rubin (bb0025) 1977
Rakha, El-Shawarby, Arafeh, Dion (bb0100) 2006
Hunter, Herring, Abbeel (bb0050) December 2009
Beijing Municipal Committee (10.1016/j.autcon.2015.12.007_bb0005)
Kurihara (10.1016/j.autcon.2015.12.007_bb0065) 2001
Zheng (10.1016/j.autcon.2015.12.007_bb0140) 2010; 2192
Zhan (10.1016/j.autcon.2015.12.007_bb0125) 2013; 33
Sherali (10.1016/j.autcon.2015.12.007_bb0105) 2006; 40
Hunter (10.1016/j.autcon.2015.12.007_bb0050) 2009
Li (10.1016/j.autcon.2015.12.007_bb0075) 2011; 19
Government of Hong Kong (10.1016/j.autcon.2015.12.007_bb0035) 2013
Rakha (10.1016/j.autcon.2015.12.007_bb0100) 2006
Herring (10.1016/j.autcon.2015.12.007_bb0045) 2010
Bishop (10.1016/j.autcon.2015.12.007_bb0010) 2006
Coifman (10.1016/j.autcon.2015.12.007_bb0015) 2002; 36
Zhan (10.1016/j.autcon.2015.12.007_bb0130) 2015; 57
De Freitas (10.1016/j.autcon.2015.12.007_bb0020) 2000; 12
Yeon (10.1016/j.autcon.2015.12.007_bb0120) 2008; 42
Park (10.1016/j.autcon.2015.12.007_bb0095) 1998
Kwong (10.1016/j.autcon.2015.12.007_bb0070) 2009; 17
NYCTLC (10.1016/j.autcon.2015.12.007_bb0085) 2012
Zhu (10.1016/j.autcon.2015.12.007_bb0150) 2009; 20
Yen (10.1016/j.autcon.2015.12.007_bb0115) 1971; 17
Lu (10.1016/j.autcon.2015.12.007_bb0080) 2007; 16
Zheng (10.1016/j.autcon.2015.12.007_bb0145) 2013; 31
Dempster (10.1016/j.autcon.2015.12.007_bb0025) 1977
10.1016/j.autcon.2015.12.007_bb0090
Wu (10.1016/j.autcon.2015.12.007_bb0110) 2004; 5
Herrera (10.1016/j.autcon.2015.12.007_bb0040) 2010; 18
Zhang (10.1016/j.autcon.2015.12.007_bb0135) 2003; 11
References_xml – volume: 5
  start-page: 276
  year: 2004
  end-page: 281
  ident: bb0110
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2012
  ident: bb0085
  article-title: New York City Taxi and Limousine Commission 2012 Annual Report
– volume: 42
  start-page: 325
  year: 2008
  end-page: 338
  ident: bb0120
  article-title: Travel time estimation on a freeway using discrete time Markov chains
  publication-title: Transp. Res. B Methodol.
– year: 2013
  ident: bb0035
  article-title: Transport — Hong Kong: the Facts
– start-page: 163
  year: 1998
  end-page: 170
  ident: bb0095
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: J. Transp. Res. Board
– volume: 18
  start-page: 568
  year: 2010
  end-page: 583
  ident: bb0040
  article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment
  publication-title: Transp. Res. C Emerg. Technol.
– year: 2006
  ident: bb0010
  article-title: Pattern Recognition and Machine Learning
– start-page: 19
  year: September, 2010
  end-page: 22
  ident: bb0045
  article-title: Estimating Arterial Traffic Conditions Using Sparse Probe Data
  publication-title: Proceedings of the ITS
– volume: 12
  start-page: 955
  year: 2000
  end-page: 993
  ident: bb0020
  article-title: Sequential Monte Carlo methods to train neural network models
  publication-title: Neural Comput.
– start-page: 1
  year: 1977
  end-page: 38
  ident: bb0025
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 11
  start-page: 187
  year: 2003
  end-page: 210
  ident: bb0135
  article-title: Short-term travel time prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 36
  start-page: 899
  year: 2002
  end-page: 917
  ident: bb0015
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transp. Res. A Policy Pract.
– volume: 20
  start-page: 740
  year: 2009
  end-page: 752
  ident: bb0150
  article-title: HERO: online real-time vehicle tracking
  publication-title: IEEE Trans. Parallel and Distrib. Syst.
– year: July 2012
  ident: bb0005
  article-title: The twelfth five-year plan for the transportation development of Beijing
– start-page: 163
  year: 2001
  end-page: 172
  ident: bb0065
  article-title: Bayesian On-line Learning: A Sequential Monte Carlo with Importance Resampling
  publication-title: Neural Networks for Signal Processing XI, 2001. Proceedings of the 2001 IEEE Signal Processing Society Workshop
– volume: 17
  start-page: 712
  year: 1971
  end-page: 716
  ident: bb0115
  article-title: Finding the K shortest loopless paths in a network
  publication-title: Manag. Sci.
– volume: 57
  start-page: 85
  year: 2015
  end-page: 102
  ident: bb0130
  article-title: Lane-based real time queue length estimation using license plate recognition data
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 31
  start-page: 145
  year: 2013
  end-page: 157
  ident: bb0145
  article-title: Urban link travel time estimation based on sparse probe vehicle data
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 17
  start-page: 586
  year: 2009
  end-page: 606
  ident: bb0070
  article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2006
  ident: bb0100
  article-title: Estimating Path Travel-time Reliability
  publication-title: Proceedings of the IEEE Intelligent Transportation Systems Conference 2006
– volume: 2192
  start-page: 136
  year: 2010
  end-page: 146
  ident: bb0140
  article-title: Uncertainty and predictability of urban link travel time
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 16
  start-page: 647
  year: 2007
  end-page: 656
  ident: bb0080
  article-title: Positioning and tracking construction vehicles in highly dense urban areas and building construction sites
  publication-title: Autom. Constr.
– volume: 19
  start-page: 1006
  year: 2011
  end-page: 1018
  ident: bb0075
  article-title: Incorporating uncertainty into short-term travel time predictions
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Oh, J.S., Jayakrishnan, R., Recker, W., 2003. Section Travel Time Estimation from Point Detection Data. 82nd Annual Meeting of Transportation Research Board, Washington, DC, USA.
– volume: 40
  start-page: 857
  year: 2006
  end-page: 871
  ident: bb0105
  article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times
  publication-title: Transp. Res. B Methodol.
– volume: 33
  start-page: 37
  year: 2013
  end-page: 49
  ident: bb0125
  article-title: Urban link travel time estimation using large-scale taxi data with partial information
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: December 2009
  ident: bb0050
  article-title: Path and Travel Time Inference from GPS Probe Vehicle Data
  publication-title: Neural Information Processing Systems Foundation (NIPS)
– volume: 42
  start-page: 325
  issue: 4
  year: 2008
  ident: 10.1016/j.autcon.2015.12.007_bb0120
  article-title: Travel time estimation on a freeway using discrete time Markov chains
  publication-title: Transp. Res. B Methodol.
  doi: 10.1016/j.trb.2007.08.005
– year: 2013
  ident: 10.1016/j.autcon.2015.12.007_bb0035
– volume: 57
  start-page: 85
  year: 2015
  ident: 10.1016/j.autcon.2015.12.007_bb0130
  article-title: Lane-based real time queue length estimation using license plate recognition data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2015.06.001
– start-page: 1
  year: 1977
  ident: 10.1016/j.autcon.2015.12.007_bb0025
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.autcon.2015.12.007_bb0005
– volume: 36
  start-page: 899
  issue: 10
  year: 2002
  ident: 10.1016/j.autcon.2015.12.007_bb0015
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transp. Res. A Policy Pract.
  doi: 10.1016/S0965-8564(01)00046-5
– start-page: 19
  year: 2010
  ident: 10.1016/j.autcon.2015.12.007_bb0045
  article-title: Estimating Arterial Traffic Conditions Using Sparse Probe Data
  publication-title: Proceedings of the ITS
– year: 2012
  ident: 10.1016/j.autcon.2015.12.007_bb0085
– volume: 5
  start-page: 276
  issue: 4
  year: 2004
  ident: 10.1016/j.autcon.2015.12.007_bb0110
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2004.837813
– volume: 16
  start-page: 647
  year: 2007
  ident: 10.1016/j.autcon.2015.12.007_bb0080
  article-title: Positioning and tracking construction vehicles in highly dense urban areas and building construction sites
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2006.11.001
– volume: 20
  start-page: 740
  year: 2009
  ident: 10.1016/j.autcon.2015.12.007_bb0150
  article-title: HERO: online real-time vehicle tracking
  publication-title: IEEE Trans. Parallel and Distrib. Syst.
  doi: 10.1109/TPDS.2008.147
– volume: 19
  start-page: 1006
  issue: 6
  year: 2011
  ident: 10.1016/j.autcon.2015.12.007_bb0075
  article-title: Incorporating uncertainty into short-term travel time predictions
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2011.05.014
– year: 2006
  ident: 10.1016/j.autcon.2015.12.007_bb0100
  article-title: Estimating Path Travel-time Reliability
– volume: 33
  start-page: 37
  year: 2013
  ident: 10.1016/j.autcon.2015.12.007_bb0125
  article-title: Urban link travel time estimation using large-scale taxi data with partial information
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2013.04.001
– volume: 17
  start-page: 586
  year: 2009
  ident: 10.1016/j.autcon.2015.12.007_bb0070
  article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2009.04.003
– volume: 2192
  start-page: 136
  year: 2010
  ident: 10.1016/j.autcon.2015.12.007_bb0140
  article-title: Uncertainty and predictability of urban link travel time
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2192-13
– volume: 11
  start-page: 187
  issue: 3–4
  year: 2003
  ident: 10.1016/j.autcon.2015.12.007_bb0135
  article-title: Short-term travel time prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(03)00026-3
– volume: 40
  start-page: 857
  issue: 10
  year: 2006
  ident: 10.1016/j.autcon.2015.12.007_bb0105
  article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times
  publication-title: Transp. Res. B Methodol.
  doi: 10.1016/j.trb.2005.11.003
– year: 2009
  ident: 10.1016/j.autcon.2015.12.007_bb0050
  article-title: Path and Travel Time Inference from GPS Probe Vehicle Data
  publication-title: Neural Information Processing Systems Foundation (NIPS)
– start-page: 163
  issue: 98
  year: 1998
  ident: 10.1016/j.autcon.2015.12.007_bb0095
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: J. Transp. Res. Board
  doi: 10.3141/1617-23
– volume: 17
  start-page: 712
  year: 1971
  ident: 10.1016/j.autcon.2015.12.007_bb0115
  article-title: Finding the K shortest loopless paths in a network
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.17.11.712
– volume: 18
  start-page: 568
  year: 2010
  ident: 10.1016/j.autcon.2015.12.007_bb0040
  article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment
  publication-title: Transp. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2009.10.006
– volume: 31
  start-page: 145
  year: 2013
  ident: 10.1016/j.autcon.2015.12.007_bb0145
  article-title: Urban link travel time estimation based on sparse probe vehicle data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2012.04.007
– year: 2006
  ident: 10.1016/j.autcon.2015.12.007_bb0010
– ident: 10.1016/j.autcon.2015.12.007_bb0090
– start-page: 163
  year: 2001
  ident: 10.1016/j.autcon.2015.12.007_bb0065
  article-title: Bayesian On-line Learning: A Sequential Monte Carlo with Importance Resampling
– volume: 12
  start-page: 955
  issue: 4
  year: 2000
  ident: 10.1016/j.autcon.2015.12.007_bb0020
  article-title: Sequential Monte Carlo methods to train neural network models
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015664
SSID ssj0007069
Score 2.3526833
Snippet Accurate estimation and prediction of urban link travel times are important for urban traffic operations and management. This paper develops a Bayesian mixture...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Bayesian analysis
Bayesian mixture model
Economic models
EM algorithm
Estimation
Path inference
Probabilistic methods
Probability theory
Scale (ratio)
Short term
Short-term average link travel time estimation
Spatial dependencies
Traffic engineering
Traffic flow
Traffic information
Traffic management
Traffic models
Travel
Travel time
Trip based data with partial information
Trip estimation
Variance (statistics)
Welfare economics
Title A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data
URI https://dx.doi.org/10.1016/j.autcon.2015.12.007
https://www.proquest.com/docview/1919588798
Volume 72
WOSCitedRecordID wos000390722200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007069
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB6WVlAfRKtitco8-BZGcpnJTB5jqagPRWgr-xYmmQm13WaL2SzbR3-A_9kzl1zoIlVBWMKSnWSy-b6cc-bkXBB6y1WsJK0ZqXVWEUo1JULUgtSgrqhmJVWltM0m-PGxmM-zL7PZzz4XZr3gTSM2m-z6v0IN-wBskzr7F3APJ4Ud8B1Ahy3ADts_Aj4P3ssbbXMjr75t7AsC2-7GBhS252BuEyOOAwn_zATsmFe4plPEWi9sp_nA1N1wCY1BZz0JCxMtTlpA04y2CVGBL7hqR61A8BCjDlXgU90GezfvVks_yga8j_Vqpx5rg_McLvimG7l6dnnZtZ3Lgz-RtvDS13eDjPJe7sNzuZz6LaL0VgzIdkKN80rGKWEiZFMB7Xr79BLW1Yjxyjp2_sstPeBcEhcmCsi4FWB-Zr2-IR_13hCNeGJmNZOCcQwmCweNvhtzloGQ3M0_Hc0_D6qdh6kr3uivss_FtAGD23P9zta5pfWtKXP6GD3yaxCcO-48QTPd7KH7fYp6u4ceTqpUPkU_ctwzCntGYcsoDBTAI6OwZxQ2jMKOUdgwCo-MwpZReMIo7BmFJ4zCI6OwYdQzdPbh6PTwI_GdO0iViHBF6kqDmasjWO7CpyzhZgpZ1prDz6VKqS6lllqVitJMMpqlWtWM1llFYTUtY5Y8RzvNstEvEGZJqBNVVRVLK5qoSJRwlGai5hlgpOJ9lPT3uKh8WXvTXWVR9PGLF4VDpjDIFFFcADL7iAxHXbuyLneM5z18hTdNnclZAOPuOPKgR7vwUqItoszUeBI8Ey__-cSv0IPxsTpAO_D46tfoXrWGJ_L7G8_cX34Nx54
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+mixture+model+for+short-term+average+link+travel+time+estimation+using+large-scale+limited+information+trip-based+data&rft.jtitle=Automation+in+construction&rft.au=Zhan%2C+Xianyuan&rft.au=Ukkusuri%2C+Satish+V.&rft.au=Yang%2C+Chao&rft.date=2016-12-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.volume=72&rft.spage=237&rft.epage=246&rft_id=info:doi/10.1016%2Fj.autcon.2015.12.007&rft.externalDocID=S0926580515002472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon