On the take-off of airborne wind energy systems based on rigid wings
The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criter...
Gespeichert in:
| Veröffentlicht in: | Renewable energy Jg. 107; S. 473 - 488 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2017
|
| Schlagworte: | |
| ISSN: | 0960-1481, 1879-0682 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criteria introduced to assess their technical and economic viability. In particular, the additional power required by the take-off functionality is computed and related to the peak mechanical power generated by the system. Moreover, the additionally required on-board mass is estimated, which impacts the cut-in wind speed of the generator. Finally, the approximate ground area required for take-off is also determined. After the theoretical comparison, a deeper study of the concept that is deemed the most viable one, i.e. a linear take-off maneuver combined with on-board propellers, is performed by means of numerical simulations. The simulation results are used to refine the initial analysis and further confirm the viability of the approach.
•An assessment of four take-off approaches for airborne wind energy is presented.•The power required for the take-off functionality is related to the overall generated power.•A theoretical analysis shows that a linear take-off concept is the most viable one.•Numerical simulations refine the theoretical results and further confirm the main findings. |
|---|---|
| AbstractList | The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criteria introduced to assess their technical and economic viability. In particular, the additional power required by the take-off functionality is computed and related to the peak mechanical power generated by the system. Moreover, the additionally required on-board mass is estimated, which impacts the cut-in wind speed of the generator. Finally, the approximate ground area required for take-off is also determined. After the theoretical comparison, a deeper study of the concept that is deemed the most viable one, i.e. a linear take-off maneuver combined with on-board propellers, is performed by means of numerical simulations. The simulation results are used to refine the initial analysis and further confirm the viability of the approach. The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criteria introduced to assess their technical and economic viability. In particular, the additional power required by the take-off functionality is computed and related to the peak mechanical power generated by the system. Moreover, the additionally required on-board mass is estimated, which impacts the cut-in wind speed of the generator. Finally, the approximate ground area required for take-off is also determined. After the theoretical comparison, a deeper study of the concept that is deemed the most viable one, i.e. a linear take-off maneuver combined with on-board propellers, is performed by means of numerical simulations. The simulation results are used to refine the initial analysis and further confirm the viability of the approach. •An assessment of four take-off approaches for airborne wind energy is presented.•The power required for the take-off functionality is related to the overall generated power.•A theoretical analysis shows that a linear take-off concept is the most viable one.•Numerical simulations refine the theoretical results and further confirm the main findings. |
| Author | Fagiano, L. Schnez, S. |
| Author_xml | – sequence: 1 givenname: L. orcidid: 0000-0002-0109-6484 surname: Fagiano fullname: Fagiano, L. email: lorenzo.fagiano@polimi.it organization: Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, 20133, Milano, Italy – sequence: 2 givenname: S. surname: Schnez fullname: Schnez, S. email: stephan.schnez@ch.abb.com organization: ABB Switzerland Ltd, Corporate Research, Segelhofstrasse 1K, CH - 5405, Baden-Dättwil, Switzerland |
| BookMark | eNqFkLtOAzEQRS0EEiHwBxQuaTaMd72OlwIJ8ZYipYHa8trj4JDYYBtQ_p6NQkUBmitNc88tzhHZDzEgIacMJgyYOF9OEobhJjWw6QTqIc0eGTE57SoQst4nI-gEVIxLdkiOcl4CsFZO-YjczAMtL0iLfsUqOkejo9qnPqaA9MsHS4fdtNjQvMkF15n2OqOlMdDkF95uK4t8TA6cXmU8-flj8nx3-3T9UM3m94_XV7PKNBJK5YS2tuX9lPOuM8ida9DaGvu216Z3Ak0nHJO86-tWtAB1D8zoBqzQjWC2a8bkbLf7luL7B-ai1j4bXK10wPiRVQ0AjZSSw1C92FVNijkndMr4oouPoSTtV4qB2qpTS7VTp7bqFNRDmgHmv-C35Nc6bf7DLncYDg4-PSaVjcdg0PqEpigb_d8D32fgjPU |
| CitedBy_id | crossref_primary_10_1088_1757_899X_700_1_012064 crossref_primary_10_1109_TMECH_2017_2698405 crossref_primary_10_1016_j_energy_2020_117841 crossref_primary_10_1002_we_2957 crossref_primary_10_1016_j_renene_2020_07_129 crossref_primary_10_1016_j_ifacol_2017_08_1456 crossref_primary_10_1016_j_rser_2022_112316 crossref_primary_10_2514_1_G007859 crossref_primary_10_1016_j_egyr_2023_01_045 crossref_primary_10_3390_en14248337 crossref_primary_10_1016_j_arcontrol_2021_03_002 crossref_primary_10_1016_j_enconman_2018_09_067 crossref_primary_10_3390_en15197291 crossref_primary_10_1146_annurev_control_042820_124658 crossref_primary_10_2514_1_G003535 crossref_primary_10_1016_j_conengprac_2021_104794 crossref_primary_10_3390_en16010351 crossref_primary_10_1007_s12555_023_0588_z crossref_primary_10_1007_s13272_024_00791_1 crossref_primary_10_1016_j_energy_2018_12_025 crossref_primary_10_1016_j_renene_2021_06_011 crossref_primary_10_2514_1_G006099 crossref_primary_10_3390_en15072502 |
| Cites_doi | 10.1109/TCST.2009.2017933 10.1109/TCST.2013.2279592 10.2514/1.G000545 10.1109/TEC.2009.2032582 10.1109/TCST.2013.2269865 10.3390/en20200307 10.1109/20.364638 10.1049/iet-cta.2011.0037 10.2514/3.58686 10.1016/j.renene.2008.11.001 10.1016/j.renene.2009.09.006 10.1109/TCST.2012.2221093 10.1109/TSTE.2014.2349071 10.1109/TCST.2014.2332537 10.1109/TMECH.2014.2322761 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2017.02.023 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 488 |
| ExternalDocumentID | 10_1016_j_renene_2017_02_023 S0960148117301015 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c380t-f6add54b74499ce4ff3edd2eb5bacbf6ec96f1849b2565002b01ca30d6a361d93 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396946900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 |
| IngestDate | Sat Sep 27 18:40:07 EDT 2025 Sat Nov 29 06:21:26 EST 2025 Tue Nov 18 21:49:54 EST 2025 Fri Feb 23 02:34:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Autonomous take-off Airborne wind energy Mechatronic systems Wind energy Tethered aircraft Renewable energy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c380t-f6add54b74499ce4ff3edd2eb5bacbf6ec96f1849b2565002b01ca30d6a361d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0109-6484 |
| PQID | 2000388840 |
| PQPubID | 24069 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2000388840 crossref_citationtrail_10_1016_j_renene_2017_02_023 crossref_primary_10_1016_j_renene_2017_02_023 elsevier_sciencedirect_doi_10_1016_j_renene_2017_02_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Canale, Fagiano, Milanese (bib12) mar. 2010; 18 Michael Erhard and Hans Strauch. Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice, submitted. preprint available on arXiv:1409.3083. Mccormick (bib40) 1995 Fechner, Schmehl (bib27) 2014; 524 Stuyts, Horn, Vandermeulen, Driesen, Diehl (bib43) 2015; 6 (last accessed 21 September 2016). Hull (bib32) 2007 Bontekoe (bib7) August 2010 Loyd (bib36) 1980; 4 Fagiano, Nguyen-Van, Rager, Schnez, Ohler (bib26) 2016 Milanese, Taddei, Milanese (bib41) 2014 Bormann, Ranneberg, Kövesdi, Gebhardt, Skutnik (bib8) 2014 Vander Lind (bib35) 2014 Houska, Diehl (bib31) 2007 Makani Power Inc. Leloup, Roncin, Bles, Leroux, Jochum, Parlier (bib34) 2014 . Horlock (bib30) 1978 Baayen, Ockels (bib6) 2012; 6 (bib1) 2014 Argatov, Rautakorpi, Silvennoinen (bib4) 2009; 34 R. Luchsinger. Closing the gap: Pumping cycle kite power with twings. Oral presentation at The International Airborne Wind Energy Conference 2015, available online Fagiano, Marks (bib19) 2014; 20 Luchsinger, Gohl (bib17) 2014 Fagiano, Zgraggen, Morari, Khammash (bib23) 2014; 22 Doyle, Samuel, Conway, Klimowski (bib13) 1995; 31 Erhard, Strauch (bib15) 2013; 21 Vermillion, Glass, Rein (bib45) 2014 Fagiano, Milanese, Piga (bib21) mar. 2010; 25 Fagiano, Milanese, Piga (bib22) 2011 Archer (bib2) 2014 Zanon, Gros, Diehl (bib46) 2013 Archer, Caldeira (bib3) 2009; 2 Manalis (bib39) 1976; 13 Gibson (bib16) 1987; 38 Ruiterkamp, Sieberling (bib42) 2014 Fagiano, Nguyen-Van, Rager, Schnez, Ohler (bib24) March 2016 (last accessed 11 December 2016). van der Vlugt, Peschel, Schmehl (bib44) 2014 Bosch, Schmehl, Tiso, Rixen (bib9) 2014 Bosch, Schmehl, Tiso, Rixen (bib10) 2014; 37 Zgraggen, Fagiano, Morari (bib48) 2015; 23 Breukels, Schmehl, Ockels (bib11) 2014 Fritz (bib28) 2014 Zillmann, Hach (bib49) 2014 Fagiano, Milanese (bib20) 2012 Argatov, Silvennoinen (bib5) 2010; 35 T. Håarklau. Kitemill, a Driver of Second-Generation Wind Energy! Oral presentation at The International Airborne Wind Energy Conference 2015, available online Fagiano, Huynh, Bamieh, Khammash (bib18) 2014; 22 Fagiano, Nguyen-Van, Rager, Schnez, Ohler (bib25) 2017 Zanon, Gros, Diehl (bib47) 2014 M. Kruijff. Preparing for a commercially viable awe system in the utility sector. Oral presentation at The International Airborne Wind Energy Conference 2015, available online Bormann (10.1016/j.renene.2017.02.023_bib8) 2014 Gibson (10.1016/j.renene.2017.02.023_bib16) 1987; 38 Bosch (10.1016/j.renene.2017.02.023_bib9) 2014 Fagiano (10.1016/j.renene.2017.02.023_bib18) 2014; 22 Fagiano (10.1016/j.renene.2017.02.023_bib23) 2014; 22 Archer (10.1016/j.renene.2017.02.023_bib3) 2009; 2 Horlock (10.1016/j.renene.2017.02.023_bib30) 1978 Loyd (10.1016/j.renene.2017.02.023_bib36) 1980; 4 10.1016/j.renene.2017.02.023_bib14 Fagiano (10.1016/j.renene.2017.02.023_bib21) 2010; 25 Fagiano (10.1016/j.renene.2017.02.023_bib24) 2016 10.1016/j.renene.2017.02.023_bib33 Fechner (10.1016/j.renene.2017.02.023_bib27) 2014; 524 Houska (10.1016/j.renene.2017.02.023_bib31) 2007 Mccormick (10.1016/j.renene.2017.02.023_bib40) 1995 Baayen (10.1016/j.renene.2017.02.023_bib6) 2012; 6 Fagiano (10.1016/j.renene.2017.02.023_bib19) 2014; 20 Fagiano (10.1016/j.renene.2017.02.023_bib26) 2016 Vermillion (10.1016/j.renene.2017.02.023_bib45) 2014 10.1016/j.renene.2017.02.023_bib29 Breukels (10.1016/j.renene.2017.02.023_bib11) 2014 Erhard (10.1016/j.renene.2017.02.023_bib15) 2013; 21 Fagiano (10.1016/j.renene.2017.02.023_bib20) 2012 Zanon (10.1016/j.renene.2017.02.023_bib46) 2013 Hull (10.1016/j.renene.2017.02.023_bib32) 2007 Argatov (10.1016/j.renene.2017.02.023_bib5) 2010; 35 Bosch (10.1016/j.renene.2017.02.023_bib10) 2014; 37 Fagiano (10.1016/j.renene.2017.02.023_bib22) 2011 Archer (10.1016/j.renene.2017.02.023_bib2) 2014 10.1016/j.renene.2017.02.023_bib38 10.1016/j.renene.2017.02.023_bib37 Luchsinger (10.1016/j.renene.2017.02.023_bib17) 2014 Zgraggen (10.1016/j.renene.2017.02.023_bib48) 2015; 23 Zillmann (10.1016/j.renene.2017.02.023_bib49) 2014 Leloup (10.1016/j.renene.2017.02.023_bib34) 2014 Fritz (10.1016/j.renene.2017.02.023_bib28) 2014 van der Vlugt (10.1016/j.renene.2017.02.023_bib44) 2014 Zanon (10.1016/j.renene.2017.02.023_bib47) 2014 Manalis (10.1016/j.renene.2017.02.023_bib39) 1976; 13 (10.1016/j.renene.2017.02.023_bib1) 2014 Ruiterkamp (10.1016/j.renene.2017.02.023_bib42) 2014 Bontekoe (10.1016/j.renene.2017.02.023_bib7) 2010 Milanese (10.1016/j.renene.2017.02.023_bib41) 2014 Stuyts (10.1016/j.renene.2017.02.023_bib43) 2015; 6 Fagiano (10.1016/j.renene.2017.02.023_bib25) 2017 Doyle (10.1016/j.renene.2017.02.023_bib13) 1995; 31 Vander Lind (10.1016/j.renene.2017.02.023_bib35) 2014 Argatov (10.1016/j.renene.2017.02.023_bib4) 2009; 34 Canale (10.1016/j.renene.2017.02.023_bib12) 2010; 18 |
| References_xml | – reference: R. Luchsinger. Closing the gap: Pumping cycle kite power with twings. Oral presentation at The International Airborne Wind Energy Conference 2015, available online: – year: 2014 ident: bib2 article-title: Airborne wind energy publication-title: An Introduction to Meteorology for Airborne Wind Energy, Page 81 – volume: 35 start-page: 1052 year: 2010 ident: bib5 article-title: Energy conversion efficiency of the pumping kite wind generator publication-title: Renew. Energy – year: 2014 ident: bib42 article-title: Airborne Wind Energy publication-title: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System, Page 443 – year: 2016 ident: bib26 article-title: A Small-scale Prototype to Study the Take-off of Tethered Rigid Aircrafts for Airborne Wind Energy – volume: 4 start-page: 106 year: 1980 end-page: 111 ident: bib36 article-title: Crosswind kite power publication-title: J. Energy – year: 2014 ident: bib49 article-title: Airborne Wind Energy publication-title: Financing Strategies for Airborne Wind Energy, Page 117 – reference: M. Kruijff. Preparing for a commercially viable awe system in the utility sector. Oral presentation at The International Airborne Wind Energy Conference 2015, available online: – volume: 524 year: 2014 ident: bib27 article-title: Feed-forward control of kite power systems publication-title: J. Phys. Conf. Ser. – year: 2014 ident: bib17 article-title: Airborne Wind Energy publication-title: Simulation Based Wing Design for Kite Power, Page 325 – reference: T. Håarklau. Kitemill, a Driver of Second-Generation Wind Energy! Oral presentation at The International Airborne Wind Energy Conference 2015, available online: – year: 2007 ident: bib32 article-title: Fundamentals of Airplane Flight Dynamics – volume: 23 start-page: 434 year: 2015 end-page: 448 ident: bib48 article-title: Real-time optimization and adaptation of the crosswind flight of tethered wings for airborne wind energy publication-title: IEEE Trans. Control Syst. Technol. – year: 2014 ident: bib45 article-title: Airborne Wind Energy publication-title: Lighter-than-air Wind Energy Systems, Page 501 – year: 2014 ident: bib9 article-title: Airborne Wind Energy publication-title: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite, Page 307 – volume: 25 start-page: 168 year: mar. 2010 end-page: 180 ident: bib21 article-title: High-altitude wind power generation publication-title: IEEE Trans. Energy Convers. – year: 1995 ident: bib40 article-title: Aerodynamics, Aeronautics, and Flight Mechanics – reference: Makani Power Inc. – year: 2014 ident: bib28 article-title: Airborne Wind Energy publication-title: Application of an Automated Kite System for Ship Propulsion and Power Generation, Page 359 – year: 2014 ident: bib41 article-title: Airborne Wind Energy publication-title: Design and Testing of a 60 KW Yo-yo Airborne Wind Energy Generator, Page 373 – reference: Michael Erhard and Hans Strauch. Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice, submitted. preprint available on arXiv:1409.3083. – volume: 31 start-page: 528 year: 1995 end-page: 533 ident: bib13 article-title: Electromagnetic aircraft launch system-EMALS publication-title: IEEE Trans. Magnet. – year: 1978 ident: bib30 article-title: Actuator Disk Theory: Discontinuities in Thermo Fluid Dynamics – volume: 2 start-page: 307 year: 2009 end-page: 319 ident: bib3 article-title: Global assessment of high-altitude wind power publication-title: Energies – year: 2011 ident: bib22 article-title: Optimization of airborne wind energy generators publication-title: Int. J. Robust Nonlinear Controll – volume: 21 start-page: 1629 year: 2013 end-page: 1640 ident: bib15 article-title: Control of towing kites for seagoing vessels publication-title: IEEE Trans. Control Syst. Technol. – volume: 20 start-page: 166 year: 2014 end-page: 177 ident: bib19 article-title: Design of a small-scale prototype for research in airborne wind energy publication-title: IEEE/ASME Trans. Mechatron. – volume: 13 start-page: 543 year: 1976 end-page: 544 ident: bib39 article-title: Airborne windmills and communication aerostats publication-title: J. Aircr. – volume: 34 start-page: 1525 year: 2009 ident: bib4 article-title: Estimation of the mechanical energy output of the kite wind generator publication-title: Renew. Energy – year: 2017 ident: bib25 article-title: Autonomous Take off and Flight of a Tethered Aircraft for Airborne Wind Energy, 2016 publication-title: IEEE Trans. Control Syst. Technol. – reference: (last accessed 11 December 2016). – year: 2014 ident: bib35 article-title: Airborne Wind Energy publication-title: Analysis and Flight Test Validation of High Performance Airborne Wind Turbines, Page 473 – volume: 6 start-page: 182 year: 2012 end-page: 191 ident: bib6 article-title: Tracking control with adaption of kites publication-title: IET Control Theory Appl. – volume: 22 start-page: 1433 year: 2014 end-page: 1447 ident: bib23 article-title: Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results publication-title: IEEE Trans. Control Syst. Technol. – year: 2014 ident: bib1 publication-title: Airborne Wind Energy – volume: 38 start-page: 28 year: 1987 end-page: 31 ident: bib16 article-title: Understanding the winch launch publication-title: Sailpl. Glid. – year: 2014 ident: bib47 article-title: Airborne Wind Energy publication-title: Model Predictive Control of Rigid-airfoil Airborne Wind Energy Systems, Page 219 – year: 2013 ident: bib46 article-title: Rotational start-up of tethered airplanes based on nonlinear mpc and mhe publication-title: European Control Conference (ECC) 2013, Pages 1023–1028, Zuerich, Switzerland, July 2013 – year: 2014 ident: bib34 article-title: Airborne Wind Energy publication-title: Estimation of the Lift-to-drag Ratio Using the Lifting Line Method: Application to a Leading Edge Inflatable Kite, Page 339 – year: March 2016 ident: bib24 article-title: Autonomous Tethered Take-off and Flight for Airborne Wind Energy - Movie – reference: (last accessed 21 September 2016). – year: 2012 ident: bib20 article-title: Airborne wind energy: an overview publication-title: American Control Conference 2012, Pages 3132–3143, Montreal, Canada – year: 2014 ident: bib11 article-title: Airborne Wind Energy publication-title: Aeroelastic Simulation of Flexible Membrane Wings Based on Multibody System Dynamics, Page 287 – reference: . – year: 2014 ident: bib44 article-title: Airborne Wind Energy publication-title: Design and Experimental Characterization of a Pumping Kite Power System, Page 403 – year: 2007 ident: bib31 article-title: Optimal control for power generating kites publication-title: 9th European Control Conference, Pages 3560–3567, Kos, GR – year: August 2010 ident: bib7 article-title: Up! - How to Launch and Retrieve a Tethered Aircraft. Master's Thesis, TU Delft – volume: 37 start-page: 1426 year: 2014 end-page: 1436 ident: bib10 article-title: Dynamic nonlinear aeroelastic model of a kite for power generation publication-title: AIAA J. Guid. Control Dyn. – volume: 6 start-page: 2 year: 2015 end-page: 10 ident: bib43 article-title: Effect of the electrical energy conversion on optimal cycles for pumping airborne wind energy publication-title: IEEE Trans. Sustain. Energy – volume: 18 start-page: 279 year: mar. 2010 end-page: 293 ident: bib12 article-title: High altitude wind energy generation using controlled power kites publication-title: IEEE Trans. Control Syst. Technol. – volume: 22 start-page: 930 year: 2014 end-page: 943 ident: bib18 article-title: On sensor fusion for airborne wind energy systems publication-title: IEEE Trans. Control Syst. Technol. – year: 2014 ident: bib8 article-title: Airborne Wind Energy publication-title: Development of a Three-line Ground-actuated Airborne Wind Energy Converter, Page 427 – year: 1995 ident: 10.1016/j.renene.2017.02.023_bib40 – volume: 18 start-page: 279 issue: 2 year: 2010 ident: 10.1016/j.renene.2017.02.023_bib12 article-title: High altitude wind energy generation using controlled power kites publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2009.2017933 – volume: 22 start-page: 1433 issue: 4 year: 2014 ident: 10.1016/j.renene.2017.02.023_bib23 article-title: Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2279592 – year: 2013 ident: 10.1016/j.renene.2017.02.023_bib46 article-title: Rotational start-up of tethered airplanes based on nonlinear mpc and mhe – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib1 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib45 article-title: Airborne Wind Energy – volume: 37 start-page: 1426 issue: 5 year: 2014 ident: 10.1016/j.renene.2017.02.023_bib10 article-title: Dynamic nonlinear aeroelastic model of a kite for power generation publication-title: AIAA J. Guid. Control Dyn. doi: 10.2514/1.G000545 – year: 2010 ident: 10.1016/j.renene.2017.02.023_bib7 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib35 article-title: Airborne Wind Energy – year: 2007 ident: 10.1016/j.renene.2017.02.023_bib31 article-title: Optimal control for power generating kites – year: 1978 ident: 10.1016/j.renene.2017.02.023_bib30 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib47 article-title: Airborne Wind Energy – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib2 article-title: Airborne wind energy – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib8 article-title: Airborne Wind Energy – year: 2017 ident: 10.1016/j.renene.2017.02.023_bib25 article-title: Autonomous Take off and Flight of a Tethered Aircraft for Airborne Wind Energy, 2016 publication-title: IEEE Trans. Control Syst. Technol. – volume: 25 start-page: 168 issue: 1 year: 2010 ident: 10.1016/j.renene.2017.02.023_bib21 article-title: High-altitude wind power generation publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2009.2032582 – volume: 22 start-page: 930 issue: 3 year: 2014 ident: 10.1016/j.renene.2017.02.023_bib18 article-title: On sensor fusion for airborne wind energy systems publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2269865 – volume: 2 start-page: 307 issue: 2 year: 2009 ident: 10.1016/j.renene.2017.02.023_bib3 article-title: Global assessment of high-altitude wind power publication-title: Energies doi: 10.3390/en20200307 – volume: 31 start-page: 528 issue: 1 year: 1995 ident: 10.1016/j.renene.2017.02.023_bib13 article-title: Electromagnetic aircraft launch system-EMALS publication-title: IEEE Trans. Magnet. doi: 10.1109/20.364638 – ident: 10.1016/j.renene.2017.02.023_bib29 – volume: 6 start-page: 182 issue: 2 year: 2012 ident: 10.1016/j.renene.2017.02.023_bib6 article-title: Tracking control with adaption of kites publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2011.0037 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib17 article-title: Airborne Wind Energy – volume: 13 start-page: 543 issue: 7 year: 1976 ident: 10.1016/j.renene.2017.02.023_bib39 article-title: Airborne windmills and communication aerostats publication-title: J. Aircr. doi: 10.2514/3.58686 – ident: 10.1016/j.renene.2017.02.023_bib37 – year: 2011 ident: 10.1016/j.renene.2017.02.023_bib22 article-title: Optimization of airborne wind energy generators publication-title: Int. J. Robust Nonlinear Controll – ident: 10.1016/j.renene.2017.02.023_bib14 – ident: 10.1016/j.renene.2017.02.023_bib33 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib42 article-title: Airborne Wind Energy – year: 2016 ident: 10.1016/j.renene.2017.02.023_bib26 – year: 2016 ident: 10.1016/j.renene.2017.02.023_bib24 – volume: 34 start-page: 1525 year: 2009 ident: 10.1016/j.renene.2017.02.023_bib4 article-title: Estimation of the mechanical energy output of the kite wind generator publication-title: Renew. Energy doi: 10.1016/j.renene.2008.11.001 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib9 article-title: Airborne Wind Energy – volume: 38 start-page: 28 issue: 1 year: 1987 ident: 10.1016/j.renene.2017.02.023_bib16 article-title: Understanding the winch launch publication-title: Sailpl. Glid. – year: 2012 ident: 10.1016/j.renene.2017.02.023_bib20 article-title: Airborne wind energy: an overview – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib34 article-title: Airborne Wind Energy – volume: 35 start-page: 1052 year: 2010 ident: 10.1016/j.renene.2017.02.023_bib5 article-title: Energy conversion efficiency of the pumping kite wind generator publication-title: Renew. Energy doi: 10.1016/j.renene.2009.09.006 – volume: 21 start-page: 1629 issue: 5 year: 2013 ident: 10.1016/j.renene.2017.02.023_bib15 article-title: Control of towing kites for seagoing vessels publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2221093 – year: 2007 ident: 10.1016/j.renene.2017.02.023_bib32 – ident: 10.1016/j.renene.2017.02.023_bib38 – volume: 6 start-page: 2 issue: 1 year: 2015 ident: 10.1016/j.renene.2017.02.023_bib43 article-title: Effect of the electrical energy conversion on optimal cycles for pumping airborne wind energy publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2349071 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib49 article-title: Airborne Wind Energy – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib41 article-title: Airborne Wind Energy – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib44 article-title: Airborne Wind Energy – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib28 article-title: Airborne Wind Energy – volume: 23 start-page: 434 issue: 2 year: 2015 ident: 10.1016/j.renene.2017.02.023_bib48 article-title: Real-time optimization and adaptation of the crosswind flight of tethered wings for airborne wind energy publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2332537 – year: 2014 ident: 10.1016/j.renene.2017.02.023_bib11 article-title: Airborne Wind Energy – volume: 4 start-page: 106 issue: 3 year: 1980 ident: 10.1016/j.renene.2017.02.023_bib36 article-title: Crosswind kite power publication-title: J. Energy – volume: 20 start-page: 166 issue: 1 year: 2014 ident: 10.1016/j.renene.2017.02.023_bib19 article-title: Design of a small-scale prototype for research in airborne wind energy publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2322761 – volume: 524 issue: 012081 year: 2014 ident: 10.1016/j.renene.2017.02.023_bib27 article-title: Feed-forward control of kite power systems publication-title: J. Phys. Conf. Ser. |
| SSID | ssj0015874 |
| Score | 2.3938649 |
| Snippet | The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 473 |
| SubjectTerms | Airborne wind energy aircraft Autonomous take-off economic sustainability mathematical models Mechatronic systems Renewable energy Tethered aircraft viability Wind energy wind power wind speed wings |
| Title | On the take-off of airborne wind energy systems based on rigid wings |
| URI | https://dx.doi.org/10.1016/j.renene.2017.02.023 https://www.proquest.com/docview/2000388840 |
| Volume | 107 |
| WOSCitedRecordID | wos000396946900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ba9UwGA-6-aAPMm-4OSWCbyOHtEmb9HG4yZSxCU44b6VJE92UdJxzdvnz_XLrmRs69yAcyqFNQttf-t0vCL0rlbamt5wYkD0IN9QQ2XWUSFYooakwmoVE4X1xcCCn0-Zz6mY_D-0EhHPy8rI5_a9QwzkA26fO3gHucVE4Af8BdDgC7HD8J-APY-DiovthyGBtcPQfzwBqECcvQAPfMjHdL9Zwnm95PtZ7n4FvkeVj0bPpPJfthvEXIcEqThwR777B1gqW1v3J0p_z3UWb9JfJVYNCIcbg09EyWFMCWlLxG5GMvWkTmeOx_UjimDw25rtBjKNd4GTia3M6X5K0EKE-asmWzCc73K_xpDFSMAehnbRxldav0tISfuw-Wi1F1QAtW93-uDv9NHqPKhmrb-cHySmTIa7v5t38SSS5xpyDxHG0hh4nVQFvR4ifoHvGPUWPrhSQfIZ2Dh0GsHEGGw8WZ7CxBxtHzHACGwew8eBwABsHsJ-jrx92j97vkdQXg2gm6YLYGphSxZXgoK5qw61lpu9LoyrVaWVro5vagubeKJBnK2B5iha6Y7SvO1YXfcNeoBU3OPMSYQ7jGMiMEmg57wsq-0YVlbZUKi3gwjpi-dW0OhWN971LfrZ_A2YdkXHWaSyacst4kd96mwS_KNC1sJVumfk2g9QCXfTOrs6Z4Wzu26v6QkeS04073s0r9HD5WWyilcXszLxGD_T54ng-e5P22i_x0YYT |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+take-off+of+airborne+wind+energy+systems+based+on+rigid+wings&rft.jtitle=Renewable+energy&rft.au=Fagiano%2C+L.&rft.au=Schnez%2C+S.&rft.date=2017-07-01&rft.issn=0960-1481&rft.volume=107&rft.spage=473&rft.epage=488&rft_id=info:doi/10.1016%2Fj.renene.2017.02.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2017_02_023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |