On the take-off of airborne wind energy systems based on rigid wings

The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy Jg. 107; S. 473 - 488
Hauptverfasser: Fagiano, L., Schnez, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2017
Schlagworte:
ISSN:0960-1481, 1879-0682
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criteria introduced to assess their technical and economic viability. In particular, the additional power required by the take-off functionality is computed and related to the peak mechanical power generated by the system. Moreover, the additionally required on-board mass is estimated, which impacts the cut-in wind speed of the generator. Finally, the approximate ground area required for take-off is also determined. After the theoretical comparison, a deeper study of the concept that is deemed the most viable one, i.e. a linear take-off maneuver combined with on-board propellers, is performed by means of numerical simulations. The simulation results are used to refine the initial analysis and further confirm the viability of the approach. •An assessment of four take-off approaches for airborne wind energy is presented.•The power required for the take-off functionality is related to the overall generated power.•A theoretical analysis shows that a linear take-off concept is the most viable one.•Numerical simulations refine the theoretical results and further confirm the main findings.
AbstractList The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criteria introduced to assess their technical and economic viability. In particular, the additional power required by the take-off functionality is computed and related to the peak mechanical power generated by the system. Moreover, the additionally required on-board mass is estimated, which impacts the cut-in wind speed of the generator. Finally, the approximate ground area required for take-off is also determined. After the theoretical comparison, a deeper study of the concept that is deemed the most viable one, i.e. a linear take-off maneuver combined with on-board propellers, is performed by means of numerical simulations. The simulation results are used to refine the initial analysis and further confirm the viability of the approach.
The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an analysis of four different take-off approaches is carried out. The approaches are then compared on the basis of quantitative and qualitative criteria introduced to assess their technical and economic viability. In particular, the additional power required by the take-off functionality is computed and related to the peak mechanical power generated by the system. Moreover, the additionally required on-board mass is estimated, which impacts the cut-in wind speed of the generator. Finally, the approximate ground area required for take-off is also determined. After the theoretical comparison, a deeper study of the concept that is deemed the most viable one, i.e. a linear take-off maneuver combined with on-board propellers, is performed by means of numerical simulations. The simulation results are used to refine the initial analysis and further confirm the viability of the approach. •An assessment of four take-off approaches for airborne wind energy is presented.•The power required for the take-off functionality is related to the overall generated power.•A theoretical analysis shows that a linear take-off concept is the most viable one.•Numerical simulations refine the theoretical results and further confirm the main findings.
Author Fagiano, L.
Schnez, S.
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0002-0109-6484
  surname: Fagiano
  fullname: Fagiano, L.
  email: lorenzo.fagiano@polimi.it
  organization: Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
– sequence: 2
  givenname: S.
  surname: Schnez
  fullname: Schnez, S.
  email: stephan.schnez@ch.abb.com
  organization: ABB Switzerland Ltd, Corporate Research, Segelhofstrasse 1K, CH - 5405, Baden-Dättwil, Switzerland
BookMark eNqFkLtOAzEQRS0EEiHwBxQuaTaMd72OlwIJ8ZYipYHa8trj4JDYYBtQ_p6NQkUBmitNc88tzhHZDzEgIacMJgyYOF9OEobhJjWw6QTqIc0eGTE57SoQst4nI-gEVIxLdkiOcl4CsFZO-YjczAMtL0iLfsUqOkejo9qnPqaA9MsHS4fdtNjQvMkF15n2OqOlMdDkF95uK4t8TA6cXmU8-flj8nx3-3T9UM3m94_XV7PKNBJK5YS2tuX9lPOuM8ida9DaGvu216Z3Ak0nHJO86-tWtAB1D8zoBqzQjWC2a8bkbLf7luL7B-ai1j4bXK10wPiRVQ0AjZSSw1C92FVNijkndMr4oouPoSTtV4qB2qpTS7VTp7bqFNRDmgHmv-C35Nc6bf7DLncYDg4-PSaVjcdg0PqEpigb_d8D32fgjPU
CitedBy_id crossref_primary_10_1088_1757_899X_700_1_012064
crossref_primary_10_1109_TMECH_2017_2698405
crossref_primary_10_1016_j_energy_2020_117841
crossref_primary_10_1002_we_2957
crossref_primary_10_1016_j_renene_2020_07_129
crossref_primary_10_1016_j_ifacol_2017_08_1456
crossref_primary_10_1016_j_rser_2022_112316
crossref_primary_10_2514_1_G007859
crossref_primary_10_1016_j_egyr_2023_01_045
crossref_primary_10_3390_en14248337
crossref_primary_10_1016_j_arcontrol_2021_03_002
crossref_primary_10_1016_j_enconman_2018_09_067
crossref_primary_10_3390_en15197291
crossref_primary_10_1146_annurev_control_042820_124658
crossref_primary_10_2514_1_G003535
crossref_primary_10_1016_j_conengprac_2021_104794
crossref_primary_10_3390_en16010351
crossref_primary_10_1007_s12555_023_0588_z
crossref_primary_10_1007_s13272_024_00791_1
crossref_primary_10_1016_j_energy_2018_12_025
crossref_primary_10_1016_j_renene_2021_06_011
crossref_primary_10_2514_1_G006099
crossref_primary_10_3390_en15072502
Cites_doi 10.1109/TCST.2009.2017933
10.1109/TCST.2013.2279592
10.2514/1.G000545
10.1109/TEC.2009.2032582
10.1109/TCST.2013.2269865
10.3390/en20200307
10.1109/20.364638
10.1049/iet-cta.2011.0037
10.2514/3.58686
10.1016/j.renene.2008.11.001
10.1016/j.renene.2009.09.006
10.1109/TCST.2012.2221093
10.1109/TSTE.2014.2349071
10.1109/TCST.2014.2332537
10.1109/TMECH.2014.2322761
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2017.02.023
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 488
ExternalDocumentID 10_1016_j_renene_2017_02_023
S0960148117301015
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c380t-f6add54b74499ce4ff3edd2eb5bacbf6ec96f1849b2565002b01ca30d6a361d93
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396946900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Sat Sep 27 18:40:07 EDT 2025
Sat Nov 29 06:21:26 EST 2025
Tue Nov 18 21:49:54 EST 2025
Fri Feb 23 02:34:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autonomous take-off
Airborne wind energy
Mechatronic systems
Wind energy
Tethered aircraft
Renewable energy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-f6add54b74499ce4ff3edd2eb5bacbf6ec96f1849b2565002b01ca30d6a361d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0109-6484
PQID 2000388840
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2000388840
crossref_citationtrail_10_1016_j_renene_2017_02_023
crossref_primary_10_1016_j_renene_2017_02_023
elsevier_sciencedirect_doi_10_1016_j_renene_2017_02_023
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Canale, Fagiano, Milanese (bib12) mar. 2010; 18
Michael Erhard and Hans Strauch. Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice, submitted. preprint available on arXiv:1409.3083.
Mccormick (bib40) 1995
Fechner, Schmehl (bib27) 2014; 524
Stuyts, Horn, Vandermeulen, Driesen, Diehl (bib43) 2015; 6
(last accessed 21 September 2016).
Hull (bib32) 2007
Bontekoe (bib7) August 2010
Loyd (bib36) 1980; 4
Fagiano, Nguyen-Van, Rager, Schnez, Ohler (bib26) 2016
Milanese, Taddei, Milanese (bib41) 2014
Bormann, Ranneberg, Kövesdi, Gebhardt, Skutnik (bib8) 2014
Vander Lind (bib35) 2014
Houska, Diehl (bib31) 2007
Makani Power Inc.
Leloup, Roncin, Bles, Leroux, Jochum, Parlier (bib34) 2014
.
Horlock (bib30) 1978
Baayen, Ockels (bib6) 2012; 6
(bib1) 2014
Argatov, Rautakorpi, Silvennoinen (bib4) 2009; 34
R. Luchsinger. Closing the gap: Pumping cycle kite power with twings. Oral presentation at The International Airborne Wind Energy Conference 2015, available online
Fagiano, Marks (bib19) 2014; 20
Luchsinger, Gohl (bib17) 2014
Fagiano, Zgraggen, Morari, Khammash (bib23) 2014; 22
Doyle, Samuel, Conway, Klimowski (bib13) 1995; 31
Erhard, Strauch (bib15) 2013; 21
Vermillion, Glass, Rein (bib45) 2014
Fagiano, Milanese, Piga (bib21) mar. 2010; 25
Fagiano, Milanese, Piga (bib22) 2011
Archer (bib2) 2014
Zanon, Gros, Diehl (bib46) 2013
Archer, Caldeira (bib3) 2009; 2
Manalis (bib39) 1976; 13
Gibson (bib16) 1987; 38
Ruiterkamp, Sieberling (bib42) 2014
Fagiano, Nguyen-Van, Rager, Schnez, Ohler (bib24) March 2016
(last accessed 11 December 2016).
van der Vlugt, Peschel, Schmehl (bib44) 2014
Bosch, Schmehl, Tiso, Rixen (bib9) 2014
Bosch, Schmehl, Tiso, Rixen (bib10) 2014; 37
Zgraggen, Fagiano, Morari (bib48) 2015; 23
Breukels, Schmehl, Ockels (bib11) 2014
Fritz (bib28) 2014
Zillmann, Hach (bib49) 2014
Fagiano, Milanese (bib20) 2012
Argatov, Silvennoinen (bib5) 2010; 35
T. Håarklau. Kitemill, a Driver of Second-Generation Wind Energy! Oral presentation at The International Airborne Wind Energy Conference 2015, available online
Fagiano, Huynh, Bamieh, Khammash (bib18) 2014; 22
Fagiano, Nguyen-Van, Rager, Schnez, Ohler (bib25) 2017
Zanon, Gros, Diehl (bib47) 2014
M. Kruijff. Preparing for a commercially viable awe system in the utility sector. Oral presentation at The International Airborne Wind Energy Conference 2015, available online
Bormann (10.1016/j.renene.2017.02.023_bib8) 2014
Gibson (10.1016/j.renene.2017.02.023_bib16) 1987; 38
Bosch (10.1016/j.renene.2017.02.023_bib9) 2014
Fagiano (10.1016/j.renene.2017.02.023_bib18) 2014; 22
Fagiano (10.1016/j.renene.2017.02.023_bib23) 2014; 22
Archer (10.1016/j.renene.2017.02.023_bib3) 2009; 2
Horlock (10.1016/j.renene.2017.02.023_bib30) 1978
Loyd (10.1016/j.renene.2017.02.023_bib36) 1980; 4
10.1016/j.renene.2017.02.023_bib14
Fagiano (10.1016/j.renene.2017.02.023_bib21) 2010; 25
Fagiano (10.1016/j.renene.2017.02.023_bib24) 2016
10.1016/j.renene.2017.02.023_bib33
Fechner (10.1016/j.renene.2017.02.023_bib27) 2014; 524
Houska (10.1016/j.renene.2017.02.023_bib31) 2007
Mccormick (10.1016/j.renene.2017.02.023_bib40) 1995
Baayen (10.1016/j.renene.2017.02.023_bib6) 2012; 6
Fagiano (10.1016/j.renene.2017.02.023_bib19) 2014; 20
Fagiano (10.1016/j.renene.2017.02.023_bib26) 2016
Vermillion (10.1016/j.renene.2017.02.023_bib45) 2014
10.1016/j.renene.2017.02.023_bib29
Breukels (10.1016/j.renene.2017.02.023_bib11) 2014
Erhard (10.1016/j.renene.2017.02.023_bib15) 2013; 21
Fagiano (10.1016/j.renene.2017.02.023_bib20) 2012
Zanon (10.1016/j.renene.2017.02.023_bib46) 2013
Hull (10.1016/j.renene.2017.02.023_bib32) 2007
Argatov (10.1016/j.renene.2017.02.023_bib5) 2010; 35
Bosch (10.1016/j.renene.2017.02.023_bib10) 2014; 37
Fagiano (10.1016/j.renene.2017.02.023_bib22) 2011
Archer (10.1016/j.renene.2017.02.023_bib2) 2014
10.1016/j.renene.2017.02.023_bib38
10.1016/j.renene.2017.02.023_bib37
Luchsinger (10.1016/j.renene.2017.02.023_bib17) 2014
Zgraggen (10.1016/j.renene.2017.02.023_bib48) 2015; 23
Zillmann (10.1016/j.renene.2017.02.023_bib49) 2014
Leloup (10.1016/j.renene.2017.02.023_bib34) 2014
Fritz (10.1016/j.renene.2017.02.023_bib28) 2014
van der Vlugt (10.1016/j.renene.2017.02.023_bib44) 2014
Zanon (10.1016/j.renene.2017.02.023_bib47) 2014
Manalis (10.1016/j.renene.2017.02.023_bib39) 1976; 13
(10.1016/j.renene.2017.02.023_bib1) 2014
Ruiterkamp (10.1016/j.renene.2017.02.023_bib42) 2014
Bontekoe (10.1016/j.renene.2017.02.023_bib7) 2010
Milanese (10.1016/j.renene.2017.02.023_bib41) 2014
Stuyts (10.1016/j.renene.2017.02.023_bib43) 2015; 6
Fagiano (10.1016/j.renene.2017.02.023_bib25) 2017
Doyle (10.1016/j.renene.2017.02.023_bib13) 1995; 31
Vander Lind (10.1016/j.renene.2017.02.023_bib35) 2014
Argatov (10.1016/j.renene.2017.02.023_bib4) 2009; 34
Canale (10.1016/j.renene.2017.02.023_bib12) 2010; 18
References_xml – reference: R. Luchsinger. Closing the gap: Pumping cycle kite power with twings. Oral presentation at The International Airborne Wind Energy Conference 2015, available online:
– year: 2014
  ident: bib2
  article-title: Airborne wind energy
  publication-title: An Introduction to Meteorology for Airborne Wind Energy, Page 81
– volume: 35
  start-page: 1052
  year: 2010
  ident: bib5
  article-title: Energy conversion efficiency of the pumping kite wind generator
  publication-title: Renew. Energy
– year: 2014
  ident: bib42
  article-title: Airborne Wind Energy
  publication-title: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System, Page 443
– year: 2016
  ident: bib26
  article-title: A Small-scale Prototype to Study the Take-off of Tethered Rigid Aircrafts for Airborne Wind Energy
– volume: 4
  start-page: 106
  year: 1980
  end-page: 111
  ident: bib36
  article-title: Crosswind kite power
  publication-title: J. Energy
– year: 2014
  ident: bib49
  article-title: Airborne Wind Energy
  publication-title: Financing Strategies for Airborne Wind Energy, Page 117
– reference: M. Kruijff. Preparing for a commercially viable awe system in the utility sector. Oral presentation at The International Airborne Wind Energy Conference 2015, available online:
– volume: 524
  year: 2014
  ident: bib27
  article-title: Feed-forward control of kite power systems
  publication-title: J. Phys. Conf. Ser.
– year: 2014
  ident: bib17
  article-title: Airborne Wind Energy
  publication-title: Simulation Based Wing Design for Kite Power, Page 325
– reference: T. Håarklau. Kitemill, a Driver of Second-Generation Wind Energy! Oral presentation at The International Airborne Wind Energy Conference 2015, available online:
– year: 2007
  ident: bib32
  article-title: Fundamentals of Airplane Flight Dynamics
– volume: 23
  start-page: 434
  year: 2015
  end-page: 448
  ident: bib48
  article-title: Real-time optimization and adaptation of the crosswind flight of tethered wings for airborne wind energy
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2014
  ident: bib45
  article-title: Airborne Wind Energy
  publication-title: Lighter-than-air Wind Energy Systems, Page 501
– year: 2014
  ident: bib9
  article-title: Airborne Wind Energy
  publication-title: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite, Page 307
– volume: 25
  start-page: 168
  year: mar. 2010
  end-page: 180
  ident: bib21
  article-title: High-altitude wind power generation
  publication-title: IEEE Trans. Energy Convers.
– year: 1995
  ident: bib40
  article-title: Aerodynamics, Aeronautics, and Flight Mechanics
– reference: Makani Power Inc.
– year: 2014
  ident: bib28
  article-title: Airborne Wind Energy
  publication-title: Application of an Automated Kite System for Ship Propulsion and Power Generation, Page 359
– year: 2014
  ident: bib41
  article-title: Airborne Wind Energy
  publication-title: Design and Testing of a 60 KW Yo-yo Airborne Wind Energy Generator, Page 373
– reference: Michael Erhard and Hans Strauch. Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice, submitted. preprint available on arXiv:1409.3083.
– volume: 31
  start-page: 528
  year: 1995
  end-page: 533
  ident: bib13
  article-title: Electromagnetic aircraft launch system-EMALS
  publication-title: IEEE Trans. Magnet.
– year: 1978
  ident: bib30
  article-title: Actuator Disk Theory: Discontinuities in Thermo Fluid Dynamics
– volume: 2
  start-page: 307
  year: 2009
  end-page: 319
  ident: bib3
  article-title: Global assessment of high-altitude wind power
  publication-title: Energies
– year: 2011
  ident: bib22
  article-title: Optimization of airborne wind energy generators
  publication-title: Int. J. Robust Nonlinear Controll
– volume: 21
  start-page: 1629
  year: 2013
  end-page: 1640
  ident: bib15
  article-title: Control of towing kites for seagoing vessels
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 20
  start-page: 166
  year: 2014
  end-page: 177
  ident: bib19
  article-title: Design of a small-scale prototype for research in airborne wind energy
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 13
  start-page: 543
  year: 1976
  end-page: 544
  ident: bib39
  article-title: Airborne windmills and communication aerostats
  publication-title: J. Aircr.
– volume: 34
  start-page: 1525
  year: 2009
  ident: bib4
  article-title: Estimation of the mechanical energy output of the kite wind generator
  publication-title: Renew. Energy
– year: 2017
  ident: bib25
  article-title: Autonomous Take off and Flight of a Tethered Aircraft for Airborne Wind Energy, 2016
  publication-title: IEEE Trans. Control Syst. Technol.
– reference: (last accessed 11 December 2016).
– year: 2014
  ident: bib35
  article-title: Airborne Wind Energy
  publication-title: Analysis and Flight Test Validation of High Performance Airborne Wind Turbines, Page 473
– volume: 6
  start-page: 182
  year: 2012
  end-page: 191
  ident: bib6
  article-title: Tracking control with adaption of kites
  publication-title: IET Control Theory Appl.
– volume: 22
  start-page: 1433
  year: 2014
  end-page: 1447
  ident: bib23
  article-title: Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2014
  ident: bib1
  publication-title: Airborne Wind Energy
– volume: 38
  start-page: 28
  year: 1987
  end-page: 31
  ident: bib16
  article-title: Understanding the winch launch
  publication-title: Sailpl. Glid.
– year: 2014
  ident: bib47
  article-title: Airborne Wind Energy
  publication-title: Model Predictive Control of Rigid-airfoil Airborne Wind Energy Systems, Page 219
– year: 2013
  ident: bib46
  article-title: Rotational start-up of tethered airplanes based on nonlinear mpc and mhe
  publication-title: European Control Conference (ECC) 2013, Pages 1023–1028, Zuerich, Switzerland, July 2013
– year: 2014
  ident: bib34
  article-title: Airborne Wind Energy
  publication-title: Estimation of the Lift-to-drag Ratio Using the Lifting Line Method: Application to a Leading Edge Inflatable Kite, Page 339
– year: March 2016
  ident: bib24
  article-title: Autonomous Tethered Take-off and Flight for Airborne Wind Energy - Movie
– reference: (last accessed 21 September 2016).
– year: 2012
  ident: bib20
  article-title: Airborne wind energy: an overview
  publication-title: American Control Conference 2012, Pages 3132–3143, Montreal, Canada
– year: 2014
  ident: bib11
  article-title: Airborne Wind Energy
  publication-title: Aeroelastic Simulation of Flexible Membrane Wings Based on Multibody System Dynamics, Page 287
– reference: .
– year: 2014
  ident: bib44
  article-title: Airborne Wind Energy
  publication-title: Design and Experimental Characterization of a Pumping Kite Power System, Page 403
– year: 2007
  ident: bib31
  article-title: Optimal control for power generating kites
  publication-title: 9th European Control Conference, Pages 3560–3567, Kos, GR
– year: August 2010
  ident: bib7
  article-title: Up! - How to Launch and Retrieve a Tethered Aircraft. Master's Thesis, TU Delft
– volume: 37
  start-page: 1426
  year: 2014
  end-page: 1436
  ident: bib10
  article-title: Dynamic nonlinear aeroelastic model of a kite for power generation
  publication-title: AIAA J. Guid. Control Dyn.
– volume: 6
  start-page: 2
  year: 2015
  end-page: 10
  ident: bib43
  article-title: Effect of the electrical energy conversion on optimal cycles for pumping airborne wind energy
  publication-title: IEEE Trans. Sustain. Energy
– volume: 18
  start-page: 279
  year: mar. 2010
  end-page: 293
  ident: bib12
  article-title: High altitude wind energy generation using controlled power kites
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 22
  start-page: 930
  year: 2014
  end-page: 943
  ident: bib18
  article-title: On sensor fusion for airborne wind energy systems
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2014
  ident: bib8
  article-title: Airborne Wind Energy
  publication-title: Development of a Three-line Ground-actuated Airborne Wind Energy Converter, Page 427
– year: 1995
  ident: 10.1016/j.renene.2017.02.023_bib40
– volume: 18
  start-page: 279
  issue: 2
  year: 2010
  ident: 10.1016/j.renene.2017.02.023_bib12
  article-title: High altitude wind energy generation using controlled power kites
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2009.2017933
– volume: 22
  start-page: 1433
  issue: 4
  year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib23
  article-title: Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2279592
– year: 2013
  ident: 10.1016/j.renene.2017.02.023_bib46
  article-title: Rotational start-up of tethered airplanes based on nonlinear mpc and mhe
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib1
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib45
  article-title: Airborne Wind Energy
– volume: 37
  start-page: 1426
  issue: 5
  year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib10
  article-title: Dynamic nonlinear aeroelastic model of a kite for power generation
  publication-title: AIAA J. Guid. Control Dyn.
  doi: 10.2514/1.G000545
– year: 2010
  ident: 10.1016/j.renene.2017.02.023_bib7
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib35
  article-title: Airborne Wind Energy
– year: 2007
  ident: 10.1016/j.renene.2017.02.023_bib31
  article-title: Optimal control for power generating kites
– year: 1978
  ident: 10.1016/j.renene.2017.02.023_bib30
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib47
  article-title: Airborne Wind Energy
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib2
  article-title: Airborne wind energy
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib8
  article-title: Airborne Wind Energy
– year: 2017
  ident: 10.1016/j.renene.2017.02.023_bib25
  article-title: Autonomous Take off and Flight of a Tethered Aircraft for Airborne Wind Energy, 2016
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 25
  start-page: 168
  issue: 1
  year: 2010
  ident: 10.1016/j.renene.2017.02.023_bib21
  article-title: High-altitude wind power generation
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2009.2032582
– volume: 22
  start-page: 930
  issue: 3
  year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib18
  article-title: On sensor fusion for airborne wind energy systems
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2269865
– volume: 2
  start-page: 307
  issue: 2
  year: 2009
  ident: 10.1016/j.renene.2017.02.023_bib3
  article-title: Global assessment of high-altitude wind power
  publication-title: Energies
  doi: 10.3390/en20200307
– volume: 31
  start-page: 528
  issue: 1
  year: 1995
  ident: 10.1016/j.renene.2017.02.023_bib13
  article-title: Electromagnetic aircraft launch system-EMALS
  publication-title: IEEE Trans. Magnet.
  doi: 10.1109/20.364638
– ident: 10.1016/j.renene.2017.02.023_bib29
– volume: 6
  start-page: 182
  issue: 2
  year: 2012
  ident: 10.1016/j.renene.2017.02.023_bib6
  article-title: Tracking control with adaption of kites
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2011.0037
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib17
  article-title: Airborne Wind Energy
– volume: 13
  start-page: 543
  issue: 7
  year: 1976
  ident: 10.1016/j.renene.2017.02.023_bib39
  article-title: Airborne windmills and communication aerostats
  publication-title: J. Aircr.
  doi: 10.2514/3.58686
– ident: 10.1016/j.renene.2017.02.023_bib37
– year: 2011
  ident: 10.1016/j.renene.2017.02.023_bib22
  article-title: Optimization of airborne wind energy generators
  publication-title: Int. J. Robust Nonlinear Controll
– ident: 10.1016/j.renene.2017.02.023_bib14
– ident: 10.1016/j.renene.2017.02.023_bib33
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib42
  article-title: Airborne Wind Energy
– year: 2016
  ident: 10.1016/j.renene.2017.02.023_bib26
– year: 2016
  ident: 10.1016/j.renene.2017.02.023_bib24
– volume: 34
  start-page: 1525
  year: 2009
  ident: 10.1016/j.renene.2017.02.023_bib4
  article-title: Estimation of the mechanical energy output of the kite wind generator
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.11.001
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib9
  article-title: Airborne Wind Energy
– volume: 38
  start-page: 28
  issue: 1
  year: 1987
  ident: 10.1016/j.renene.2017.02.023_bib16
  article-title: Understanding the winch launch
  publication-title: Sailpl. Glid.
– year: 2012
  ident: 10.1016/j.renene.2017.02.023_bib20
  article-title: Airborne wind energy: an overview
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib34
  article-title: Airborne Wind Energy
– volume: 35
  start-page: 1052
  year: 2010
  ident: 10.1016/j.renene.2017.02.023_bib5
  article-title: Energy conversion efficiency of the pumping kite wind generator
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.09.006
– volume: 21
  start-page: 1629
  issue: 5
  year: 2013
  ident: 10.1016/j.renene.2017.02.023_bib15
  article-title: Control of towing kites for seagoing vessels
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2221093
– year: 2007
  ident: 10.1016/j.renene.2017.02.023_bib32
– ident: 10.1016/j.renene.2017.02.023_bib38
– volume: 6
  start-page: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.renene.2017.02.023_bib43
  article-title: Effect of the electrical energy conversion on optimal cycles for pumping airborne wind energy
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2349071
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib49
  article-title: Airborne Wind Energy
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib41
  article-title: Airborne Wind Energy
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib44
  article-title: Airborne Wind Energy
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib28
  article-title: Airborne Wind Energy
– volume: 23
  start-page: 434
  issue: 2
  year: 2015
  ident: 10.1016/j.renene.2017.02.023_bib48
  article-title: Real-time optimization and adaptation of the crosswind flight of tethered wings for airborne wind energy
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2332537
– year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib11
  article-title: Airborne Wind Energy
– volume: 4
  start-page: 106
  issue: 3
  year: 1980
  ident: 10.1016/j.renene.2017.02.023_bib36
  article-title: Crosswind kite power
  publication-title: J. Energy
– volume: 20
  start-page: 166
  issue: 1
  year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib19
  article-title: Design of a small-scale prototype for research in airborne wind energy
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2322761
– volume: 524
  issue: 012081
  year: 2014
  ident: 10.1016/j.renene.2017.02.023_bib27
  article-title: Feed-forward control of kite power systems
  publication-title: J. Phys. Conf. Ser.
SSID ssj0015874
Score 2.3938649
Snippet The problem of launching a tethered rigid aircraft for airborne wind energy generation is investigated. Exploiting well-assessed physical principles, an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 473
SubjectTerms Airborne wind energy
aircraft
Autonomous take-off
economic sustainability
mathematical models
Mechatronic systems
Renewable energy
Tethered aircraft
viability
Wind energy
wind power
wind speed
wings
Title On the take-off of airborne wind energy systems based on rigid wings
URI https://dx.doi.org/10.1016/j.renene.2017.02.023
https://www.proquest.com/docview/2000388840
Volume 107
WOSCitedRecordID wos000396946900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ba9UwGA-6-aAPMm-4OSWCbyOHtEmb9HG4yZSxCU44b6VJE92UdJxzdvnz_XLrmRs69yAcyqFNQttf-t0vCL0rlbamt5wYkD0IN9QQ2XWUSFYooakwmoVE4X1xcCCn0-Zz6mY_D-0EhHPy8rI5_a9QwzkA26fO3gHucVE4Af8BdDgC7HD8J-APY-DiovthyGBtcPQfzwBqECcvQAPfMjHdL9Zwnm95PtZ7n4FvkeVj0bPpPJfthvEXIcEqThwR777B1gqW1v3J0p_z3UWb9JfJVYNCIcbg09EyWFMCWlLxG5GMvWkTmeOx_UjimDw25rtBjKNd4GTia3M6X5K0EKE-asmWzCc73K_xpDFSMAehnbRxldav0tISfuw-Wi1F1QAtW93-uDv9NHqPKhmrb-cHySmTIa7v5t38SSS5xpyDxHG0hh4nVQFvR4ifoHvGPUWPrhSQfIZ2Dh0GsHEGGw8WZ7CxBxtHzHACGwew8eBwABsHsJ-jrx92j97vkdQXg2gm6YLYGphSxZXgoK5qw61lpu9LoyrVaWVro5vagubeKJBnK2B5iha6Y7SvO1YXfcNeoBU3OPMSYQ7jGMiMEmg57wsq-0YVlbZUKi3gwjpi-dW0OhWN971LfrZ_A2YdkXHWaSyacst4kd96mwS_KNC1sJVumfk2g9QCXfTOrs6Z4Wzu26v6QkeS04073s0r9HD5WWyilcXszLxGD_T54ng-e5P22i_x0YYT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+take-off+of+airborne+wind+energy+systems+based+on+rigid+wings&rft.jtitle=Renewable+energy&rft.au=Fagiano%2C+L.&rft.au=Schnez%2C+S.&rft.date=2017-07-01&rft.issn=0960-1481&rft.volume=107&rft.spage=473&rft.epage=488&rft_id=info:doi/10.1016%2Fj.renene.2017.02.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2017_02_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon