Sparse Coding for Alpha Matting

Existing color sampling-based alpha matting methods use the compositing equation to estimate alpha at a pixel from the pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse cod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 25; číslo 7; s. 3032 - 3043
Hlavní autoři: Johnson, Jubin, Varnousfaderani, Ehsan Shahrian, Cholakkal, Hisham, Rajan, Deepu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Existing color sampling-based alpha matting methods use the compositing equation to estimate alpha at a pixel from the pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to (F,B) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms the current stateoftheart in image and video matting.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2016.2555705