Randomized nonnegative matrix factorization

•A novel randomized hierarchical alternating least squares algorithm for NMF.•The randomized algorithm scales up to big data.•The algorithm outperforms previous compressed NMF algorithms in speed and accuracy.•Both synthetic and real-world data are used for evaluation.•A Python implementation is pro...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters Vol. 104; pp. 1 - 7
Main Authors: Erichson, N. Benjamin, Mendible, Ariana, Wihlborn, Sophie, Kutz, J. Nathan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.03.2018
Elsevier Science Ltd
Subjects:
ISSN:0167-8655, 1872-7344
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel randomized hierarchical alternating least squares algorithm for NMF.•The randomized algorithm scales up to big data.•The algorithm outperforms previous compressed NMF algorithms in speed and accuracy.•Both synthetic and real-world data are used for evaluation.•A Python implementation is provided on GitHub. Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a more efficient nonnegative decomposition can be computed. Our algorithm scales to big data applications while attaining a near-optimal factorization, i.e., the algorithm scales with the target rank of the data rather than the ambient dimension of measurement space. The proposed algorithm is evaluated using synthetic and real world data and shows substantial speedups compared to deterministic HALS.
AbstractList Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a more efficient nonnegative decomposition can be computed. Our algorithm scales to big data applications while attaining a near-optimal factorization, i.e., the algorithm scales with the target rank of the data rather than the ambient dimension of measurement space. The proposed algorithm is evaluated using synthetic and real world data and shows substantial speedups compared to deterministic HALS.
•A novel randomized hierarchical alternating least squares algorithm for NMF.•The randomized algorithm scales up to big data.•The algorithm outperforms previous compressed NMF algorithms in speed and accuracy.•Both synthetic and real-world data are used for evaluation.•A Python implementation is provided on GitHub. Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a more efficient nonnegative decomposition can be computed. Our algorithm scales to big data applications while attaining a near-optimal factorization, i.e., the algorithm scales with the target rank of the data rather than the ambient dimension of measurement space. The proposed algorithm is evaluated using synthetic and real world data and shows substantial speedups compared to deterministic HALS.
Author Kutz, J. Nathan
Wihlborn, Sophie
Mendible, Ariana
Erichson, N. Benjamin
Author_xml – sequence: 1
  givenname: N. Benjamin
  orcidid: 0000-0003-0667-3516
  surname: Erichson
  fullname: Erichson, N. Benjamin
  email: erichson@uw.edu, nbe@st-andrews.ac.uk
  organization: Department of Applied Mathematics, University of Washington, Seattle, USA
– sequence: 2
  givenname: Ariana
  surname: Mendible
  fullname: Mendible, Ariana
  organization: Department of Applied Mathematics, University of Washington, Seattle, USA
– sequence: 3
  givenname: Sophie
  orcidid: 0000-0001-8675-0264
  surname: Wihlborn
  fullname: Wihlborn, Sophie
  organization: Fidelity International, London, UK
– sequence: 4
  givenname: J. Nathan
  surname: Kutz
  fullname: Kutz, J. Nathan
  organization: Department of Applied Mathematics, University of Washington, Seattle, USA
BookMark eNqFkE9LAzEQxYNUsK1-Aw8Fj7LrJNlNsh4EKfUPFATRc8gmWcnSbmo2LdpPb-p68qBzGRh-7w3vTdCo851F6BxDjgGzqzbfqBiszglgkQPOAfgRGmPBScZpUYzQOGE8E6wsT9Ck71sAYLQSY3T5rDrj125vzSy5dvZNRbezs3UydB-zRunog9uno-9O0XGjVr09-9lT9Hq3eJk_ZMun-8f57TLTVEDMTE1qbCvGSkUbUwqhMQFeAyXMljhtVlWYUBBFQzhwjEldG61NWTGhQJV0ii4G303w71vbR9n6bejSS0mApSkYrxJVDJQOvu-DbeQmuLUKnxKDPNQiWznUIg-1SMAy1ZJk179k2sXveDEot_pPfDOIbYq_czbIXjvbaWtcQqM03v1t8AUPpIFd
CitedBy_id crossref_primary_10_1007_s10015_023_00875_x
crossref_primary_10_1007_s10898_022_01167_7
crossref_primary_10_1162_neco_a_01157
crossref_primary_10_1002_nme_6009
crossref_primary_10_5194_gmd_18_2891_2025
crossref_primary_10_1109_ACCESS_2019_2933845
crossref_primary_10_1137_18M118966X
crossref_primary_10_1007_s40305_020_00322_9
crossref_primary_10_1109_ACCESS_2019_2933877
crossref_primary_10_1109_TSP_2021_3066258
crossref_primary_10_1137_20M1352405
crossref_primary_10_1016_j_is_2024_102379
crossref_primary_10_1109_TMI_2019_2923466
crossref_primary_10_1109_TSP_2024_3469830
crossref_primary_10_1109_TIT_2025_3529680
crossref_primary_10_1016_j_cmpb_2025_108866
crossref_primary_10_1371_journal_pone_0225265
crossref_primary_10_1007_s10915_025_02976_0
crossref_primary_10_1109_ACCESS_2022_3197291
crossref_primary_10_1109_TETCI_2020_3042268
crossref_primary_10_1137_24M1638355
crossref_primary_10_1109_TMTT_2022_3208917
crossref_primary_10_1145_3432185
crossref_primary_10_1371_journal_pone_0207579
Cites_doi 10.1002/env.3170050203
10.1007/BF02288367
10.1137/140977898
10.1007/s10107-015-0892-3
10.1109/JSTARS.2012.2194696
10.1073/pnas.0803205106
10.1109/TSP.2016.2516971
10.1038/44565
10.1145/2842602
10.1587/transfun.E92.A.708
10.1137/090771806
10.1109/34.41390
10.1109/5.726791
10.1088/2632-2153/ab8240
10.1137/12086755X
10.1137/130938700
10.1016/j.csda.2006.11.006
10.1109/34.927464
10.1162/NECO_a_00256
10.1109/LSP.2014.2374838
10.1007/s10898-013-0035-4
10.1137/080736417
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2018
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2018.01.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 7
ExternalDocumentID 10_1016_j_patrec_2018_01_007
S0167865518300138
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
7SC
7TK
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c380t-db2b1e9665a3fd588c1207b0326e51b03699123084f2707112bbdccd5968a0a53
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425990600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sat Jul 26 03:14:21 EDT 2025
Sat Nov 29 07:22:52 EST 2025
Tue Nov 18 21:51:59 EST 2025
Fri Feb 23 02:24:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Randomized algorithm
Dimension reduction
NMF
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-db2b1e9665a3fd588c1207b0326e51b03699123084f2707112bbdccd5968a0a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0667-3516
0000-0001-8675-0264
OpenAccessLink https://doi.org/10.1016/j.patrec.2018.01.007
PQID 2066664679
PQPubID 2047552
PageCount 7
ParticipantIDs proquest_journals_2066664679
crossref_primary_10_1016_j_patrec_2018_01_007
crossref_citationtrail_10_1016_j_patrec_2018_01_007
elsevier_sciencedirect_doi_10_1016_j_patrec_2018_01_007
PublicationCentury 2000
PublicationDate 2018-03-01
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Cohen, Farias, Comon (bib0007) 2015; 22
Gillis, Glineur (bib0015) 2012; 24
N.B. Erichson, K. Manohar, S.L. Brunton, J.N. Kutz, Randomized CP tensor decomposition, Preprint arXiv
A. Szlam, Y. Kluger, M. Tygert, An implementation of a randomized algorithm for principal component analysis, Preprint arXiv
N.B. Erichson, S. Voronin, S.L. Brunton, J.N. Kutz, Randomized matrix decompositions using r, arXiv preprint arXiv
Georghiades, Belhumeur, Kriegman (bib0012) 2001; 23
Boutsidis, Drineas, Magdon-Ismail (bib0004) 2014; 43
Boutsidis, Woodruff (bib0005) 2017; 46
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0029) 2011; 12
Kirby, Sirovich (bib0020) 1990; 12
Gillis (bib0013) 2014
Lee, Seung (bib0024) 2001
Arora, Ge, Kannan, Moitra (bib0001) 2012
Drineas, Mahoney (bib0008) 2016; 59
Zhou, Bian, Tao (bib0039) 2013
N. Gillis, Introduction to nonnegative matrix factorization, arXiv preprint arXiv
Halko, Martinsson, Tropp (bib0017) 2011; 53
A.N. Langville, C.D. Meyer, R. Albright, J. Cox, D. Duling, Algorithms, initializations, and convergence for the nonnegative matrix factorization, arXiv preprint arXiv
Kim, He, Park (bib0018) 2014; 58
Berry, Browne, Langville, Pauca, Plemmons (bib0002) 2007; 52
Paatero, Tapper (bib0028) 1994; 5
(2014) 1–13.
Rokhlin, Szlam, Tygert (bib0030) 2009; 31
Zhou, Tao (bib0040) 2012
Mahoney, Drineas (bib0026) 2009; 106
M. Udell, A. Townsend, Nice latent variable models have log-rank, arXiv preprint arXiv
Kimura, Tanaka, Kudo (bib0019) 2015; 39
(2016) 1–55.
Wright (bib0038) 2015; 151
(2014).
(2017) 1–29.
(2015) 1–15.
Wang, Zhang, Zhang (bib0037) 2016; 17
Lee, Seung (bib0023) 1999; 401
Mahoney (bib0025) 2011; 3
Bioucas-Dias, Plaza, Dobigeon, Parente, Du, Gader, Chanussot (bib0003) 2012; 5
Lecun, Bottou, Bengio, Haffner (bib0022) 1998; 86
Cichocki, Anh-Huy (bib0006) 2009; 92
Wang, Zhang (bib0036) 2013; 14
P.-G. Martinsson, Randomized methods for matrix computations and analysis of high dimensional data, Preprint arXiv
(2017).
(2016).
Tepper, Sapiro (bib0032) 2016; 64
Gu (bib0016) 2015; 37
S. Voronin, P.-G. Martinsson, Rsvdpack: subroutines for computing partial singular value decompositions via randomized sampling on single core, multi core, and GPU architectures, Preprint arXiv
Eckart, Young (bib0009) 1936; 1
Turk, Pentland (bib0033) 1991
Boutsidis (10.1016/j.patrec.2018.01.007_bib0005) 2017; 46
Wang (10.1016/j.patrec.2018.01.007_bib0037) 2016; 17
Cohen (10.1016/j.patrec.2018.01.007_bib0007) 2015; 22
Rokhlin (10.1016/j.patrec.2018.01.007_bib0030) 2009; 31
Georghiades (10.1016/j.patrec.2018.01.007_bib0012) 2001; 23
Pedregosa (10.1016/j.patrec.2018.01.007_bib0029) 2011; 12
Tepper (10.1016/j.patrec.2018.01.007_bib0032) 2016; 64
Wang (10.1016/j.patrec.2018.01.007_bib0036) 2013; 14
10.1016/j.patrec.2018.01.007_bib0027
Kim (10.1016/j.patrec.2018.01.007_bib0018) 2014; 58
Kimura (10.1016/j.patrec.2018.01.007_bib0019) 2015; 39
10.1016/j.patrec.2018.01.007_bib0021
Berry (10.1016/j.patrec.2018.01.007_bib0002) 2007; 52
Paatero (10.1016/j.patrec.2018.01.007_bib0028) 1994; 5
Gillis (10.1016/j.patrec.2018.01.007_bib0015) 2012; 24
Bioucas-Dias (10.1016/j.patrec.2018.01.007_bib0003) 2012; 5
Wright (10.1016/j.patrec.2018.01.007_bib0038) 2015; 151
Gillis (10.1016/j.patrec.2018.01.007_bib0013) 2014
Gu (10.1016/j.patrec.2018.01.007_bib0016) 2015; 37
Zhou (10.1016/j.patrec.2018.01.007_bib0040) 2012
Drineas (10.1016/j.patrec.2018.01.007_bib0008) 2016; 59
Lecun (10.1016/j.patrec.2018.01.007_bib0022) 1998; 86
Kirby (10.1016/j.patrec.2018.01.007_bib0020) 1990; 12
Arora (10.1016/j.patrec.2018.01.007_bib0001) 2012
Turk (10.1016/j.patrec.2018.01.007_bib0033) 1991
10.1016/j.patrec.2018.01.007_bib0014
Lee (10.1016/j.patrec.2018.01.007_bib0023) 1999; 401
10.1016/j.patrec.2018.01.007_bib0035
Cichocki (10.1016/j.patrec.2018.01.007_bib0006) 2009; 92
10.1016/j.patrec.2018.01.007_bib0010
10.1016/j.patrec.2018.01.007_bib0031
Mahoney (10.1016/j.patrec.2018.01.007_bib0025) 2011; 3
10.1016/j.patrec.2018.01.007_bib0034
10.1016/j.patrec.2018.01.007_bib0011
Zhou (10.1016/j.patrec.2018.01.007_bib0039) 2013
Mahoney (10.1016/j.patrec.2018.01.007_bib0026) 2009; 106
Halko (10.1016/j.patrec.2018.01.007_bib0017) 2011; 53
Eckart (10.1016/j.patrec.2018.01.007_bib0009) 1936; 1
Lee (10.1016/j.patrec.2018.01.007_bib0024) 2001
Boutsidis (10.1016/j.patrec.2018.01.007_bib0004) 2014; 43
References_xml – volume: 43
  start-page: 687
  year: 2014
  end-page: 717
  ident: bib0004
  article-title: Near-optimal column-based matrix reconstruction
  publication-title: SIAM J. Comput.
– volume: 1
  start-page: 211
  year: 1936
  end-page: 218
  ident: bib0009
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
– volume: 37
  start-page: 1139
  year: 2015
  end-page: 1173
  ident: bib0016
  article-title: Subspace iteration randomization and singular value problems
  publication-title: SIAM J. Sci. Comput.
– start-page: 257
  year: 2014
  end-page: 291
  ident: bib0013
  article-title: The Why and How of Nonnegative Matrix Factorization
  publication-title: Regularization, Optimization, Kernels, and Support Vector Machines
– reference: (2016) 1–55.
– volume: 12
  start-page: 103
  year: 1990
  end-page: 108
  ident: bib0020
  article-title: Application of the Karhunen–Loeve procedure for the characterization of human faces
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
– volume: 31
  start-page: 1100
  year: 2009
  end-page: 1124
  ident: bib0030
  article-title: A randomized algorithm for principal component analysis
  publication-title: SIAM J. Matrix Anal. Appl.
– reference: (2016).
– reference: N.B. Erichson, K. Manohar, S.L. Brunton, J.N. Kutz, Randomized CP tensor decomposition, Preprint arXiv:
– start-page: 586
  year: 1991
  end-page: 591
  ident: bib0033
  article-title: Face recognition using eigenfaces
  publication-title: Proceedings on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 862
  year: 2015
  end-page: 866
  ident: bib0007
  article-title: Fast decomposition of large nonnegative tensors
  publication-title: IEEE Signal Process. Lett.
– reference: N. Gillis, Introduction to nonnegative matrix factorization, arXiv preprint arXiv:
– volume: 151
  start-page: 3
  year: 2015
  end-page: 34
  ident: bib0038
  article-title: Coordinate descent algorithms
  publication-title: Math. Program.
– volume: 5
  start-page: 111
  year: 1994
  end-page: 126
  ident: bib0028
  article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
– volume: 92
  start-page: 708
  year: 2009
  end-page: 721
  ident: bib0006
  article-title: Fast local algorithms for large scale nonnegative matrix and tensor factorizations
  publication-title: IEICE Trans. Fundam. Electr. Commun. Comput. Sci.
– volume: 64
  start-page: 2269
  year: 2016
  end-page: 2283
  ident: bib0032
  article-title: Compressed nonnegative matrix factorization is fast and accurate
  publication-title: IEEE Trans. Signal Process.
– reference: A. Szlam, Y. Kluger, M. Tygert, An implementation of a randomized algorithm for principal component analysis, Preprint arXiv:
– volume: 52
  start-page: 155
  year: 2007
  end-page: 173
  ident: bib0002
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data Anal.
– volume: 58
  start-page: 285
  year: 2014
  end-page: 319
  ident: bib0018
  article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
  publication-title: J. Global Optim.
– reference: (2014) 1–13.
– start-page: 556
  year: 2001
  end-page: 562
  ident: bib0024
  article-title: Algorithms for Non-negative Matrix Factorization
  publication-title: Advances in Neural Information Processing Systems
– volume: 23
  start-page: 643
  year: 2001
  end-page: 660
  ident: bib0012
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Udell, A. Townsend, Nice latent variable models have log-rank, arXiv preprint arXiv:
– reference: (2014).
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0029
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 354
  year: 2012
  end-page: 379
  ident: bib0003
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 3
  start-page: 123
  year: 2011
  end-page: 224
  ident: bib0025
  article-title: Randomized algorithms for matrices and data
  publication-title: Found. Trends Mach. Learn.
– volume: 14
  start-page: 2729
  year: 2013
  end-page: 2769
  ident: bib0036
  article-title: Improving cur matrix decomposition and the nyström approximation via adaptive sampling
  publication-title: J. Mach. Learn. Res.
– start-page: 145
  year: 2012
  end-page: 162
  ident: bib0001
  article-title: Computing a nonnegative matrix factorization–provably
  publication-title: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing
– reference: N.B. Erichson, S. Voronin, S.L. Brunton, J.N. Kutz, Randomized matrix decompositions using r, arXiv preprint arXiv:
– volume: 39
  start-page: 129
  year: 2015
  end-page: 141
  ident: bib0019
  article-title: A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization
  publication-title: Proceedings of the Sixth Asian Conference on Machine Learning
– reference: (2015) 1–15.
– volume: 24
  start-page: 1085
  year: 2012
  end-page: 1105
  ident: bib0015
  article-title: Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization
  publication-title: Neural Comput.
– reference: P.-G. Martinsson, Randomized methods for matrix computations and analysis of high dimensional data, Preprint arXiv:
– volume: 17
  start-page: 1
  year: 2016
  end-page: 49
  ident: bib0037
  article-title: Towards more efficient spsd matrix approximation and cur matrix decomposition
  publication-title: J. Mach. Learn. Res.
– reference: (2017) 1–29.
– volume: 46
  start-page: 543
  year: 2017
  end-page: 589
  ident: bib0005
  article-title: Optimal cur matrix decompositions
  publication-title: SIAM J. Comput.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0022
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– start-page: 1286
  year: 2012
  end-page: 1290
  ident: bib0040
  article-title: Bilateral random projections
  publication-title: Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
– reference: A.N. Langville, C.D. Meyer, R. Albright, J. Cox, D. Duling, Algorithms, initializations, and convergence for the nonnegative matrix factorization, arXiv preprint arXiv:
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0023
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 106
  start-page: 697
  year: 2009
  end-page: 702
  ident: bib0026
  article-title: Cur matrix decompositions for improved data analysis
  publication-title: Proc. Natl. Acad. Sci.
– reference: S. Voronin, P.-G. Martinsson, Rsvdpack: subroutines for computing partial singular value decompositions via randomized sampling on single core, multi core, and GPU architectures, Preprint arXiv:
– volume: 59
  start-page: 80
  year: 2016
  end-page: 90
  ident: bib0008
  article-title: Randnla: randomized numerical linear algebra
  publication-title: Commun. ACM
– volume: 53
  start-page: 217
  year: 2011
  end-page: 288
  ident: bib0017
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
– start-page: 917
  year: 2013
  end-page: 926
  ident: bib0039
  article-title: Divide-and-conquer anchoring for near-separable nonnegative matrix factorization and completion in high dimensions
  publication-title: Data Mining (ICDM), 2013 IEEE 13th International Conference on
– reference: (2017).
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 10.1016/j.patrec.2018.01.007_bib0028
  article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  ident: 10.1016/j.patrec.2018.01.007_bib0009
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 14
  start-page: 2729
  issue: 1
  year: 2013
  ident: 10.1016/j.patrec.2018.01.007_bib0036
  article-title: Improving cur matrix decomposition and the nyström approximation via adaptive sampling
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 543
  issue: 2
  year: 2017
  ident: 10.1016/j.patrec.2018.01.007_bib0005
  article-title: Optimal cur matrix decompositions
  publication-title: SIAM J. Comput.
  doi: 10.1137/140977898
– volume: 17
  start-page: 1
  issue: 210
  year: 2016
  ident: 10.1016/j.patrec.2018.01.007_bib0037
  article-title: Towards more efficient spsd matrix approximation and cur matrix decomposition
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.patrec.2018.01.007_bib0035
– volume: 151
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.patrec.2018.01.007_bib0038
  article-title: Coordinate descent algorithms
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0892-3
– ident: 10.1016/j.patrec.2018.01.007_bib0014
– start-page: 145
  year: 2012
  ident: 10.1016/j.patrec.2018.01.007_bib0001
  article-title: Computing a nonnegative matrix factorization–provably
– volume: 3
  start-page: 123
  issue: 2
  year: 2011
  ident: 10.1016/j.patrec.2018.01.007_bib0025
  article-title: Randomized algorithms for matrices and data
  publication-title: Found. Trends Mach. Learn.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.patrec.2018.01.007_bib0029
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 354
  issue: 2
  year: 2012
  ident: 10.1016/j.patrec.2018.01.007_bib0003
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– start-page: 1286
  year: 2012
  ident: 10.1016/j.patrec.2018.01.007_bib0040
  article-title: Bilateral random projections
– start-page: 257
  year: 2014
  ident: 10.1016/j.patrec.2018.01.007_bib0013
  article-title: The Why and How of Nonnegative Matrix Factorization
– volume: 106
  start-page: 697
  issue: 3
  year: 2009
  ident: 10.1016/j.patrec.2018.01.007_bib0026
  article-title: Cur matrix decompositions for improved data analysis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0803205106
– volume: 64
  start-page: 2269
  issue: 9
  year: 2016
  ident: 10.1016/j.patrec.2018.01.007_bib0032
  article-title: Compressed nonnegative matrix factorization is fast and accurate
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2516971
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.patrec.2018.01.007_bib0023
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– start-page: 917
  year: 2013
  ident: 10.1016/j.patrec.2018.01.007_bib0039
  article-title: Divide-and-conquer anchoring for near-separable nonnegative matrix factorization and completion in high dimensions
– volume: 59
  start-page: 80
  issue: 6
  year: 2016
  ident: 10.1016/j.patrec.2018.01.007_bib0008
  article-title: Randnla: randomized numerical linear algebra
  publication-title: Commun. ACM
  doi: 10.1145/2842602
– ident: 10.1016/j.patrec.2018.01.007_bib0027
– start-page: 586
  year: 1991
  ident: 10.1016/j.patrec.2018.01.007_bib0033
  article-title: Face recognition using eigenfaces
– volume: 92
  start-page: 708
  issue: 3
  year: 2009
  ident: 10.1016/j.patrec.2018.01.007_bib0006
  article-title: Fast local algorithms for large scale nonnegative matrix and tensor factorizations
  publication-title: IEICE Trans. Fundam. Electr. Commun. Comput. Sci.
  doi: 10.1587/transfun.E92.A.708
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 10.1016/j.patrec.2018.01.007_bib0017
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– volume: 12
  start-page: 103
  issue: 1
  year: 1990
  ident: 10.1016/j.patrec.2018.01.007_bib0020
  article-title: Application of the Karhunen–Loeve procedure for the characterization of human faces
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/34.41390
– ident: 10.1016/j.patrec.2018.01.007_bib0021
– start-page: 556
  year: 2001
  ident: 10.1016/j.patrec.2018.01.007_bib0024
  article-title: Algorithms for Non-negative Matrix Factorization
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patrec.2018.01.007_bib0022
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.patrec.2018.01.007_bib0011
– ident: 10.1016/j.patrec.2018.01.007_bib0010
  doi: 10.1088/2632-2153/ab8240
– volume: 43
  start-page: 687
  issue: 2
  year: 2014
  ident: 10.1016/j.patrec.2018.01.007_bib0004
  article-title: Near-optimal column-based matrix reconstruction
  publication-title: SIAM J. Comput.
  doi: 10.1137/12086755X
– ident: 10.1016/j.patrec.2018.01.007_bib0034
– volume: 37
  start-page: 1139
  issue: 3
  year: 2015
  ident: 10.1016/j.patrec.2018.01.007_bib0016
  article-title: Subspace iteration randomization and singular value problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130938700
– volume: 52
  start-page: 155
  issue: 1
  year: 2007
  ident: 10.1016/j.patrec.2018.01.007_bib0002
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.11.006
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 10.1016/j.patrec.2018.01.007_bib0012
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– ident: 10.1016/j.patrec.2018.01.007_bib0031
– volume: 24
  start-page: 1085
  issue: 4
  year: 2012
  ident: 10.1016/j.patrec.2018.01.007_bib0015
  article-title: Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00256
– volume: 22
  start-page: 862
  issue: 7
  year: 2015
  ident: 10.1016/j.patrec.2018.01.007_bib0007
  article-title: Fast decomposition of large nonnegative tensors
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2374838
– volume: 58
  start-page: 285
  issue: 2
  year: 2014
  ident: 10.1016/j.patrec.2018.01.007_bib0018
  article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-013-0035-4
– volume: 39
  start-page: 129
  year: 2015
  ident: 10.1016/j.patrec.2018.01.007_bib0019
  article-title: A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization
– volume: 31
  start-page: 1100
  issue: 3
  year: 2009
  ident: 10.1016/j.patrec.2018.01.007_bib0030
  article-title: A randomized algorithm for principal component analysis
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/080736417
SSID ssj0006398
Score 2.4637694
Snippet •A novel randomized hierarchical alternating least squares algorithm for NMF.•The randomized algorithm scales up to big data.•The algorithm outperforms...
Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Big Data
Data management
Data mining
Data processing
Decomposition
Dimension reduction
Factorization
Matrix
NMF
Numerical analysis
Probability
Randomization
Randomized algorithm
Randomized algorithms
Title Randomized nonnegative matrix factorization
URI https://dx.doi.org/10.1016/j.patrec.2018.01.007
https://www.proquest.com/docview/2066664679
Volume 104
WOSCitedRecordID wos000425990600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELYg5QCHAgVES0F74BZtZe9zfAyoCApUFRSUm7V-pNko2UZNiiJ-PeO190ELKiBx2USreHfj-Xb82Z75hpCXYLKk0FyHGY8mYaLyLJScxiFIgJTLRJl69_zrh_z4GMZjfuLDilZ1OYG8qmCz4cv_amo8h8a2qbN_Ye72ongCv6PR8Yhmx-MfGf5TUenzRfnd7uvbKJYzJ-29sFr8G19fxydf9pnpSS20aZNbfEQRwmJe5_p0rBt95rTN0Bq-MtWsWJQtuj6aSpfShSeP8I9Wnccvp3PEmltqPV9OyxZN7y_rerLDowMbNj31UPWrEAy6MCy3NHYtPcatVqIXtpmvbrBxHhZypPSxE31sXTBNek6U9Ubj_Jdu3q04zA7sfoGxQpQMavFVV0D3ioD2Z_sY9inQe9Ubs7fJVpSnHAZka_TucHzUjtzI1qDRgrcNmlTLOh7w-r1-R2WuDOo1Uzl9QLb9FCMYOWg8JLdMtUPuN-U7Au_Nd8i9nhblIzLscBP0cBM43AQ_4eYx-fLm8PT129BX0ghVDHQdahlJZnBmmxbxRKcAikU0lxS5u0kZfmY4TcDJKCSTKEfSySIptVI65RkUtEjjJ2SAtzZPSQAqKpQV_ZswnWhmgBU4RknAaQZNaVbskrjpFKG8zLytdjIXTTzhTLiuFLYrBWUCu3KXhG2rpZNZueH3edPfwlNFRwEFQuSGlvuNeYR_a1fC1jTIMuQMfO-fL_yM3O1ejH0yWF9cmufkjvq2LlcXLzzUfgAtMJil
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+nonnegative+matrix+factorization&rft.jtitle=Pattern+recognition+letters&rft.au=Erichson%2C+N.+Benjamin&rft.au=Mendible%2C+Ariana&rft.au=Wihlborn%2C+Sophie&rft.au=Kutz%2C+J.+Nathan&rft.date=2018-03-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=104&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.patrec.2018.01.007&rft.externalDocID=S0167865518300138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon