A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms

   Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international Jg. 29; H. 14; S. 20496 - 20516
Hauptverfasser: Alavi, Javad, Ewees, Ahmed A., Ansari, Sepideh, Shahid, Shamsuddin, Yaseen, Zaher Mundher
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Schlagworte:
ISSN:0944-1344, 1614-7499, 1614-7499
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract    Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
AbstractList Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
   Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
Author Yaseen, Zaher Mundher
Ewees, Ahmed A.
Alavi, Javad
Shahid, Shamsuddin
Ansari, Sepideh
Author_xml – sequence: 1
  givenname: Javad
  surname: Alavi
  fullname: Alavi, Javad
  organization: Department of Environmental Sciences and Engineering, Kheradgarayan Motahar Institute of Higher Education
– sequence: 2
  givenname: Ahmed A.
  surname: Ewees
  fullname: Ewees, Ahmed A.
  organization: Computer Department, Damietta University
– sequence: 3
  givenname: Sepideh
  surname: Ansari
  fullname: Ansari, Sepideh
  organization: Department of Environmental Sciences and Engineering, Kheradgarayan Motahar Institute of Higher Education
– sequence: 4
  givenname: Shamsuddin
  surname: Shahid
  fullname: Shahid, Shamsuddin
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM)
– sequence: 5
  givenname: Zaher Mundher
  orcidid: 0000-0003-3647-7137
  surname: Yaseen
  fullname: Yaseen, Zaher Mundher
  email: zaheryaseen88@gmail.com, yaseen@alayen.edu.iq
  organization: Department of Urban Planning, Engineering Networks and Systems, Institute of Architecture and Construction, South Ural State University, New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, College of Creative Design, Asia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34741267$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCC7BAXrIx-C8z42VV8SdVYgF76459k7jMeFLbQ5q-CK-Lk7QbFmVxZV35O-dK51yQszhFJOSt4B8E5-3HLIRaNoxLwUQrDGfyBVmIRmjWamPOyIIbrZlQWp-Ti5xvOZfcyPYVOVe61UI27YL8uaIRdzTEHNabQldToglhYCWMSHeQC-6gYKJ3Mwyh7Ok2oQ-uhCnSOYe4ppt9n4IPD-jpL0wRB9ZDrgvel4TVY0BI8QCO4DYhYqa7UDYU_G-IrnLTtp4KD3C0hGE9pfo95tfk5QqGjG8e30vy4_Onn9df2c33L9-ur26YUx0vzIvWaw-AoLtGm15y73vnhUbHuVES6yijvew63hnXGd82LTQgVj3nXF2S9yfXbZruZszFjiE7HAaIOM3ZylZ0UnEl9f_RpdHSqKWUFX33iM79iN5uUxgh7e1T6hXoToBLU84JV9aFckygJAiDFdweCrangm0t2B4Ltgdv-Y_0yf1ZkTqJcoXjGpO9neYUa67Pqf4CpL-7QA
CitedBy_id crossref_primary_10_3390_chemosensors12120247
crossref_primary_10_3390_w16071018
crossref_primary_10_3390_w15132454
crossref_primary_10_1051_e3sconf_202454702008
crossref_primary_10_2166_ws_2021_441
crossref_primary_10_1007_s11356_022_21864_w
crossref_primary_10_1038_s41598_025_05708_4
crossref_primary_10_1016_j_jwpe_2024_105306
crossref_primary_10_3390_app14135824
crossref_primary_10_1016_j_chemosphere_2024_141472
crossref_primary_10_1080_1573062X_2023_2209558
crossref_primary_10_1016_j_aei_2025_103638
crossref_primary_10_3390_pr11010077
crossref_primary_10_3390_su151813557
crossref_primary_10_1007_s11356_022_20472_y
crossref_primary_10_1007_s12145_024_01575_1
crossref_primary_10_1016_j_jwpe_2023_104758
crossref_primary_10_1007_s10661_023_11497_y
crossref_primary_10_3390_w15112079
crossref_primary_10_1016_j_jenvman_2024_121430
crossref_primary_10_2166_nh_2025_160
crossref_primary_10_1007_s00477_023_02559_1
crossref_primary_10_1155_2022_3123475
Cites_doi 10.1016/j.watres.2017.10.053
10.1109/TSMCB.2011.2168604
10.1016/j.watres.2016.04.003
10.1016/j.jhydrol.2020.124974
10.1016/j.advengsoft.2017.07.002
10.1016/j.cej.2016.12.096
10.3390/w11040742
10.1016/j.measurement.2019.02.014
10.1007/s00477-014-0889-0
10.1016/j.chemosphere.2020.129465
10.1109/SDPC.2018.8664791
10.1007/s00521-018-3629-4
10.1007/s13762-013-0266-4
10.1016/j.wasman.2019.03.036
10.1016/j.geoderma.2018.05.030
10.1016/j.jhydrol.2020.125468
10.25130/tjes.26.3.04
10.1016/j.engappai.2012.08.015
10.1109/ACCESS.2018.2884827
10.1016/j.resconrec.2019.01.030
10.1007/s10652-007-9037-4
10.1039/c9ra06609h
10.1109/ACCESS.2020.2965303
10.1186/2052-336X-12-40
10.1016/j.cherd.2015.06.009
10.1016/j.marpolbul.2021.112639
10.1016/j.jenvman.2019.06.001
10.1016/j.neucom.2019.03.086
10.3390/ijerph16030453
10.1039/c9ew00505f
10.1016/j.advengsoft.2013.12.007
10.1016/j.resconrec.2016.07.014
10.25130/tjes.26.4.06
10.1016/j.scs.2019.101670
10.1109/ACCESS.2021.3100490
10.1007/978-3-030-12127-3_12
10.2166/wst.2020.298
10.1016/j.jhydrol.2020.124670
10.1016/B978-0-12-821092-5.00009-7
10.1016/j.ibiod.2019.104719
10.1038/s41598-021-82977-9
10.1016/j.procbio.2020.06.020
10.25130/tjes.26.1.01
10.1201/b13775
10.1016/j.chemosphere.2021.130126
10.1061/(ASCE)PS.1949-1204.0000347
10.1007/978-1-84882-983-1
10.1007/s10668-020-00927-3
10.1016/j.saa.2020.118827
10.1109/ChiCC.2016.7553666
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1007/s11356-021-17190-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 20516
ExternalDocumentID 34741267
10_1007_s11356_021_17190_2
Genre Journal Article
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c380t-d17d4daaea48649b20ddbcd14ec00932e932394d288089c89d767a6a1fb0003
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714885400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-1344
1614-7499
IngestDate Sun Nov 09 09:56:34 EST 2025
Sun Nov 09 12:51:10 EST 2025
Thu Apr 03 07:07:45 EDT 2025
Sat Nov 29 03:30:06 EST 2025
Tue Nov 18 21:28:13 EST 2025
Fri Feb 21 02:47:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Real-time water quality prediction
Time-series learning
Kernel-based extreme learning machine
Wastewater
Consumer behaviour
Intelligent algorithms
Language English
License 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-d17d4daaea48649b20ddbcd14ec00932e932394d288089c89d767a6a1fb0003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3647-7137
PMID 34741267
PQID 2594293522
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_2718230324
proquest_miscellaneous_2594293522
pubmed_primary_34741267
crossref_citationtrail_10_1007_s11356_021_17190_2
crossref_primary_10_1007_s11356_021_17190_2
springer_journals_10_1007_s11356_021_17190_2
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
2022-Mar
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Wang, Man, Hu (CR43) 2019; 5
CR35
Mirjalili, Mirjalili, Lewis (CR27) 2014
CR32
CR6
Bernardelli, Marsili-Libelli, Manzini (CR10) 2020; 81
Man, Hu, Ren (CR25) 2019; 144
Abba, Hadi, Sammen (CR1) 2020; 587
Srinu Naik, Pydi Setty (CR37) 2014; 11
CR7
CR48
He, Tan, Gao, Fan (CR16) 2019
CR47
CR46
Yu, Bai (CR49) 2019; 2018
Singh, Kansal (CR36) 2018; 128
CR42
Wei, Kusiak (CR45) 2014; 29
CR40
Aras, Toğan, Berkun (CR9) 2007; 7
Abyaneh (CR3) 2014; 12
Alaba, Popoola, Olatomiwa (CR8) 2019; 350
Hai, Sharafati, Mohammed (CR15) 2020; 8
Li, Huang, Chen (CR22) 2019; 9
He, Geng, Zhu (CR17) 2015; 102
CR19
Ibrahim (CR20) 2019; 26
CR14
CR13
CR12
Al-Doury, Alwan (CR4) 2019; 26
Verma, Wei, Kusiak (CR41) 2013; 26
CR50
Abouzari, Pahlavani, Izaditame, Bigdeli (CR2) 2021; 270
Mirjalili, Gandomi, Mirjalili (CR26) 2017; 0
Wei, Wu, Kong (CR44) 2019
Bolyard, Motlagh, Lozinski, Reinhart (CR11) 2019
CR28
Zhang, Tan, Wang, Wang (CR51) 2019; 31
Tiyasha, Tung, Bhagat (CR39) 2021; 170
Sharafati, Asadollah, Neshat (CR34) 2020
CR24
Sanikhani, Deo, Yaseen (CR33) 2018; 330
CR23
Zhu, Kang, Anderson (CR52) 2018; 128
Al-Obaidi, Li, Kara-Zaïtri, Mujtaba (CR5) 2017; 316
Revilla, Galán, Viguri (CR31) 2016
Huang, Zhou, Ding, Zhang (CR18) 2012; 42
Najafzadeh, Zeinolabedini (CR30) 2019; 138
Kim, Kim, Noh, Kim (CR21) 2018; 6
Tchobanoglous, Burton, Stensel (CR38) 2003
Naganna, Deka, Ghorbani (CR29) 2019
E Aras (17190_CR9) 2007; 7
A Verma (17190_CR41) 2013; 26
MMI Al-Doury (17190_CR4) 2019; 26
A Sharafati (17190_CR34) 2020
SI Abba (17190_CR1) 2020; 587
17190_CR24
C Wei (17190_CR44) 2019
A Ibrahim (17190_CR20) 2019; 26
17190_CR23
17190_CR28
S Mirjalili (17190_CR27) 2014
L He (17190_CR16) 2019
K Kim (17190_CR21) 2018; 6
M Abouzari (17190_CR2) 2021; 270
T Hai (17190_CR15) 2020; 8
G-B Huang (17190_CR18) 2012; 42
G Tchobanoglous (17190_CR38) 2003
17190_CR50
17190_CR6
17190_CR7
17190_CR13
YL He (17190_CR17) 2015; 102
17190_CR14
17190_CR12
M Revilla (17190_CR31) 2016
A Bernardelli (17190_CR10) 2020; 81
Z Wang (17190_CR43) 2019; 5
S Naganna (17190_CR29) 2019
17190_CR19
HZ Abyaneh (17190_CR3) 2014; 12
Y Man (17190_CR25) 2019; 144
JJ Zhu (17190_CR52) 2018; 128
17190_CR42
Z Li (17190_CR22) 2019; 9
17190_CR40
17190_CR46
17190_CR47
S Srinu Naik (17190_CR37) 2014; 11
17190_CR48
SC Bolyard (17190_CR11) 2019
H Sanikhani (17190_CR33) 2018; 330
T Tiyasha (17190_CR39) 2021; 170
17190_CR32
17190_CR35
MA Al-Obaidi (17190_CR5) 2017; 316
T Yu (17190_CR49) 2019; 2018
M Najafzadeh (17190_CR30) 2019; 138
X Wei (17190_CR45) 2014; 29
S Zhang (17190_CR51) 2019; 31
P Singh (17190_CR36) 2018; 128
S Mirjalili (17190_CR26) 2017; 0
PA Alaba (17190_CR8) 2019; 350
References_xml – volume: 128
  start-page: 304
  year: 2018
  end-page: 313
  ident: CR52
  article-title: Predicting influent biochemical oxygen demand: balancing energy demand and risk management
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.10.053
– ident: CR12
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: CR18
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2011.2168604
– year: 2016
  ident: CR31
  article-title: An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.04.003
– volume: 587
  start-page: 124974
  year: 2020
  ident: CR1
  article-title: Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124974
– volume: 0
  start-page: 1
  year: 2017
  end-page: 29
  ident: CR26
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: CR35
– volume: 316
  start-page: 91
  year: 2017
  end-page: 100
  ident: CR5
  article-title: Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.12.096
– ident: CR42
– year: 2019
  ident: CR29
  article-title: Dew point temperature estimation: application of artificial intelligence model integrated with nature-inspired optimization algorithms
  publication-title: Water
  doi: 10.3390/w11040742
– ident: CR46
– ident: CR19
– volume: 138
  start-page: 690
  year: 2019
  end-page: 701
  ident: CR30
  article-title: Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.014
– ident: CR50
– volume: 29
  start-page: 241
  year: 2014
  end-page: 249
  ident: CR45
  article-title: Short-term prediction of influent flow in wastewater treatment plant
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0889-0
– volume: 270
  start-page: 129465
  year: 2021
  ident: CR2
  article-title: Estimating the chemical oxygen demand of petrochemical wastewater treatment plants using linear and nonlinear statistical models–a case study
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129465
– ident: CR32
– volume: 2018
  start-page: 221
  year: 2019
  end-page: 225
  ident: CR49
  article-title: Comparative study of optimization intelligent models in wastewater quality prediction
  publication-title: Proc - 2018 Int Conf Sensing Diagnostics, Progn Control SDPC
  doi: 10.1109/SDPC.2018.8664791
– volume: 31
  start-page: 4629
  year: 2019
  end-page: 4638
  ident: CR51
  article-title: A new method of online extreme learning machine based on hybrid kernel function
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3629-4
– volume: 11
  start-page: 823
  year: 2014
  end-page: 830
  ident: CR37
  article-title: Optimization of parameters using response surface methodology and genetic algorithm for biological denitrification of wastewater
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-013-0266-4
– year: 2019
  ident: CR11
  article-title: Impact of organic matter from leachate discharged to wastewater treatment plants on effluent quality and UV disinfection
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2019.03.036
– volume: 330
  start-page: 52
  year: 2018
  end-page: 64
  ident: CR33
  article-title: Non-tuned data intelligent model for soil temperature estimation: a new approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.030
– year: 2020
  ident: CR34
  article-title: A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125468
– volume: 26
  start-page: 31
  year: 2019
  end-page: 36
  ident: CR4
  article-title: Phenol removal from synthetic wastewater using batch adsorption scheme
  publication-title: Tikrit J Eng Sci
  doi: 10.25130/tjes.26.3.04
– volume: 26
  start-page: 1366
  year: 2013
  end-page: 1372
  ident: CR41
  article-title: Predicting the total suspended solids in wastewater: a data-mining approach
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.08.015
– volume: 6
  start-page: 75216
  year: 2018
  end-page: 75228
  ident: CR21
  article-title: Stable forecasting of environmental time series via long short term memory recurrent neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884827
– volume: 144
  start-page: 56
  year: 2019
  end-page: 64
  ident: CR25
  article-title: Forecasting COD load in municipal sewage based on ARMA and VAR algorithms
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2019.01.030
– volume: 7
  start-page: 439
  year: 2007
  end-page: 450
  ident: CR9
  article-title: River water quality management model using genetic algorithm
  publication-title: Environ Fluid Mech
  doi: 10.1007/s10652-007-9037-4
– ident: CR47
– ident: CR14
– ident: CR6
– volume: 81
  start-page: 2391
  year: 2020
  end-page: 2400
  ident: CR10
  article-title: Real-time model predictive control of a wastewater treatment plant based on machine learning
  publication-title: Water Sci Technol
– volume: 9
  start-page: 34196
  year: 2019
  end-page: 34206
  ident: CR22
  article-title: A novel method for total chlorine detection using machine learning with electrode arrays
  publication-title: RSC Adv
  doi: 10.1039/c9ra06609h
– ident: CR40
– ident: CR23
– volume: 8
  start-page: 12026
  year: 2020
  end-page: 12042
  ident: CR15
  article-title: Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965303
– volume: 12
  start-page: 40
  year: 2014
  ident: CR3
  article-title: Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters
  publication-title: J Environ Heal Sci Eng
  doi: 10.1186/2052-336X-12-40
– ident: CR48
– volume: 102
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR17
  article-title: Data driven soft sensor development for complex chemical processes using extreme learning machine
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2015.06.009
– volume: 170
  start-page: 112639
  year: 2021
  ident: CR39
  article-title: Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: development of hybrid tree-based artificial intelligence models
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2021.112639
– year: 2019
  ident: CR44
  article-title: Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2019.06.001
– volume: 350
  start-page: 70
  year: 2019
  end-page: 90
  ident: CR8
  article-title: Towards a more efficient and cost-sensitive extreme learning machine: a state-of-the-art review of recent trend
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.086
– ident: CR13
– year: 2019
  ident: CR16
  article-title: The shock effect of inorganic suspended solids in surface runoff on wastewater treatment plant performance
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16030453
– volume: 5
  start-page: 2210
  year: 2019
  end-page: 2218
  ident: CR43
  article-title: A deep learning based dynamic COD prediction model for urban sewage
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/c9ew00505f
– year: 2003
  ident: CR38
  publication-title: Wastewater engineering: treatment and reuse
– year: 2014
  ident: CR27
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: CR7
– volume: 128
  start-page: 499
  year: 2018
  end-page: 507
  ident: CR36
  article-title: Energy and GHG accounting for wastewater infrastructure
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2016.07.014
– ident: CR28
– ident: CR24
– volume: 26
  start-page: 38
  year: 2019
  end-page: 42
  ident: CR20
  article-title: Effect of the horizontal perforated plates on the turbidity removal efficiency in water treatment plant of Tikrit University
  publication-title: Tikrit J Eng Sci
  doi: 10.25130/tjes.26.4.06
– ident: 17190_CR13
  doi: 10.1016/j.scs.2019.101670
– year: 2014
  ident: 17190_CR27
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 6
  start-page: 75216
  year: 2018
  ident: 17190_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884827
– ident: 17190_CR19
– volume: 26
  start-page: 1366
  year: 2013
  ident: 17190_CR41
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.08.015
– volume: 102
  start-page: 1
  year: 2015
  ident: 17190_CR17
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2015.06.009
– volume: 2018
  start-page: 221
  year: 2019
  ident: 17190_CR49
  publication-title: Proc - 2018 Int Conf Sensing Diagnostics, Progn Control SDPC
  doi: 10.1109/SDPC.2018.8664791
– volume: 9
  start-page: 34196
  year: 2019
  ident: 17190_CR22
  publication-title: RSC Adv
  doi: 10.1039/c9ra06609h
– volume: 5
  start-page: 2210
  year: 2019
  ident: 17190_CR43
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/c9ew00505f
– volume: 587
  start-page: 124974
  year: 2020
  ident: 17190_CR1
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124974
– volume: 350
  start-page: 70
  year: 2019
  ident: 17190_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.086
– ident: 17190_CR6
  doi: 10.1109/ACCESS.2021.3100490
– volume: 8
  start-page: 12026
  year: 2020
  ident: 17190_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965303
– volume-title: Wastewater engineering: treatment and reuse
  year: 2003
  ident: 17190_CR38
– ident: 17190_CR28
  doi: 10.1007/978-3-030-12127-3_12
– volume: 330
  start-page: 52
  year: 2018
  ident: 17190_CR33
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.030
– volume: 81
  start-page: 2391
  year: 2020
  ident: 17190_CR10
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2020.298
– ident: 17190_CR40
  doi: 10.1016/j.jhydrol.2020.124670
– volume: 26
  start-page: 31
  year: 2019
  ident: 17190_CR4
  publication-title: Tikrit J Eng Sci
  doi: 10.25130/tjes.26.3.04
– volume: 11
  start-page: 823
  year: 2014
  ident: 17190_CR37
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-013-0266-4
– ident: 17190_CR42
  doi: 10.1016/B978-0-12-821092-5.00009-7
– volume: 128
  start-page: 304
  year: 2018
  ident: 17190_CR52
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.10.053
– volume: 316
  start-page: 91
  year: 2017
  ident: 17190_CR5
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.12.096
– year: 2019
  ident: 17190_CR44
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2019.06.001
– year: 2020
  ident: 17190_CR34
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125468
– volume: 7
  start-page: 439
  year: 2007
  ident: 17190_CR9
  publication-title: Environ Fluid Mech
  doi: 10.1007/s10652-007-9037-4
– year: 2016
  ident: 17190_CR31
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.04.003
– ident: 17190_CR50
  doi: 10.1016/j.ibiod.2019.104719
– volume: 270
  start-page: 129465
  year: 2021
  ident: 17190_CR2
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129465
– ident: 17190_CR48
  doi: 10.1038/s41598-021-82977-9
– year: 2019
  ident: 17190_CR16
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16030453
– volume: 12
  start-page: 40
  year: 2014
  ident: 17190_CR3
  publication-title: J Environ Heal Sci Eng
  doi: 10.1186/2052-336X-12-40
– volume: 0
  start-page: 1
  year: 2017
  ident: 17190_CR26
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 31
  start-page: 4629
  year: 2019
  ident: 17190_CR51
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3629-4
– volume: 170
  start-page: 112639
  year: 2021
  ident: 17190_CR39
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2021.112639
– volume: 144
  start-page: 56
  year: 2019
  ident: 17190_CR25
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2019.01.030
– ident: 17190_CR24
  doi: 10.1016/j.procbio.2020.06.020
– ident: 17190_CR7
  doi: 10.25130/tjes.26.1.01
– ident: 17190_CR14
  doi: 10.1201/b13775
– ident: 17190_CR47
  doi: 10.1016/j.chemosphere.2021.130126
– volume: 26
  start-page: 38
  year: 2019
  ident: 17190_CR20
  publication-title: Tikrit J Eng Sci
  doi: 10.25130/tjes.26.4.06
– volume: 138
  start-page: 690
  year: 2019
  ident: 17190_CR30
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.014
– ident: 17190_CR35
  doi: 10.1061/(ASCE)PS.1949-1204.0000347
– volume: 128
  start-page: 499
  year: 2018
  ident: 17190_CR36
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2016.07.014
– year: 2019
  ident: 17190_CR11
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2019.03.036
– ident: 17190_CR46
  doi: 10.1007/978-1-84882-983-1
– ident: 17190_CR32
  doi: 10.1007/s10668-020-00927-3
– year: 2019
  ident: 17190_CR29
  publication-title: Water
  doi: 10.3390/w11040742
– ident: 17190_CR12
  doi: 10.1016/j.saa.2020.118827
– volume: 29
  start-page: 241
  year: 2014
  ident: 17190_CR45
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0889-0
– volume: 42
  start-page: 513
  year: 2012
  ident: 17190_CR18
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2011.2168604
– ident: 17190_CR23
  doi: 10.1109/ChiCC.2016.7553666
SSID ssj0020927
Score 2.4454043
Snippet    Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the...
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20496
SubjectTerms Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
chemical oxygen demand
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Machine Learning
prediction
Research Article
swarms
time series analysis
Waste Water Technology
Wastewater
wastewater treatment
Water Management
Water Pollution Control
Title A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms
URI https://link.springer.com/article/10.1007/s11356-021-17190-2
https://www.ncbi.nlm.nih.gov/pubmed/34741267
https://www.proquest.com/docview/2594293522
https://www.proquest.com/docview/2718230324
Volume 29
WOSCitedRecordID wos000714885400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZglwMX3gvlUQ0SN7AUO25iH5eqKy5UFYugnCIntktFm66SLmj5I_xdZvJohRZVgkNGiuwk1mQ8D3s-D2OvcmHlyIfAhdOBKy0Kbp1BIoMVufIiikNTbCKdTvV8bmYdKKzus937LclGU-_BbiIeUcKs4CIlADQq3uMRnTZDMfr5p12YFZm2UKtRiotYqQ4q8_d3_GmOrvmY1_ZHG7Nzdvf_BnyP3encTDht5eI-u-HLB-xkske1YWM3reuH7NcpoHcNy7KmUB3QjwX0JVecCs_DD1vTAhvyH1oE5hVcVLS9Q78UKG9-AV-vCPi1_OkdfPNV6VecrKMD1Py0_ghdbYoFrJvcTV8Drf9Cn4AAG1Rc6w4RCna12FTYvK4fsfOzycfxO95VbOBFrKMtdyJ1ylnrrdKJMrmMnMsLJ5QvaOlEerxio5xEraFNoY1Lk9QmVoQmODthR-Wm9E8YyDxg5KYLO5Je5cabPElCHHSqXB7Z2A6Y6H9bVnSHmVNNjVW2P4aZuJ8h97OG-5kcsNe7Zy7aozwO9n7ZS0OGM462UWzpN5d1hgEjGnFyXA_0QZOPwR16qwP2uBWl3TdjhV6cTNIBe9PLTdYpjvrAgJ7-W_dn7LYkpEaTLvecHW2rS_-C3Sq-b5d1NWQ3089fiM7ThmqkeiyG7PjtZDr7gHfvozFRORs2s-s3eRMa0w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQQYIL78LyHCRuYCl2vIl9rFCrIsoKqRXqLXJie7tiN1sl21blj_B3mUmcXaGileCQXOIk1ng878_D2PtSWDn2IXDhdOBKi4pbZ_AmgxWl8iJJQ9dsIp9M9Omp-RZBYe1Q7T6kJDtJvQG7iXRMBbOCi5wA0Ch4bytqs0M--vH3tZuVmL5Rq1GKi1SpCJX5-zf-VEc3bMwb-dFO7Rw8-L8JP2T3o5kJez1fPGK3fP2Y7e5vUG34MG7r9gn7tQdoXcOsbslVB7RjAW3JOafG83BlWwqwIf2hR2Bew3lD6R1aUqC6-SmcXRPwa_bTO_jhm9rPOWlHByj5Kf4IsTfFFBZd7aZvgeK_MBQgwBIF1yIiQsHOp8sGHy_ap-z4YP_k0yGPHRt4lepkxZ3InXLWeqt0pkwpE-fKygnlKwqdSI9XapSTKDW0qbRxeZbbzIrQOWe7bKde1v45A1kG9Nx0ZcfSq9J4U2ZZSIPOlSsTm9oRE8OyFVU8zJx6asyLzTHMRP0CqV901C_kiH1Yv3PeH-WxdfS7gRsK3HGURrG1X160BTqMqMTJcN0yBlU-OndorY7Ys56V1v9MFVpxMstH7OPAN0UUHO2WCb34t-Fv2d3Dk69HxdHnyZeX7J4k1EZXOveK7ayaC_-a3akuV7O2edPtnt90ehao
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQQIgXGB-DwoBD4g2sxY6b2I8TrAKBqokhtLfIie2uok2rpAONf2T_7u7y0YKGKiEekpc4iWWffb873--Osde5sHLoQ-DC6cCVFgW3zuBNBity5UUUh6bYRDoe69NTc_wbi7-Jdu-PJFtOA2VpKlcHSxcONsQ3EQ8peFZwkRIZGjfhmwotGQrq-nLybW1yRaYt2mqU4iJWqqPN_P0bf6qma3jz2llpo4JG9_6_87vsbgc_4bCVl_vshi8fsL2jDdsNH3bLvX7ILg8BUTdMy5pMeEB8C4gxZ5wK0sNPW5PjDecFWmbmBSwrOvahqQaKp5_A2QURwqa_vIPvvir9jJPWdIAagfyS0NWsmMC8ien0NZBfGPrABFjghjbvmKJgZ5NFhY_n9SN2Mjr6-u4D7yo58CLW0Yo7kTrlrPVW6USZXEbO5YUTyhfkUpEer9goJ3E30abQxqVJahMrQmO07bGdclH6JwxkHtCi04UdSq9y402eJCEOOlUuj2xsB0z0U5gVXZJzqrUxyzbpmWn0Mxz9rBn9TA7Ym_U7yzbFx9bWr3rJyHAl0vGKLf3ivM7QkETlToB2SxuEAmj0IYodsMetWK3_GStEdzJJB-xtL0NZt6HUWzr09N-av2S3j9-Pss8fx5-esTuSyBxNRN0-21lV5_45u1X8WE3r6kWzkK4AJqUfjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+insight+for+real-time+wastewater+quality+prediction+using+hybridized+kernel-based+extreme+learning+machines+with+advanced+optimization+algorithms&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Alavi%2C+Javad&rft.au=Ewees%2C+Ahmed+A&rft.au=Ansari%2C+Sepideh&rft.au=Shahid%2C+Shamsuddin&rft.date=2022-03-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=29&rft.issue=14&rft.spage=20496&rft_id=info:doi/10.1007%2Fs11356-021-17190-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon