A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine...
Gespeichert in:
| Veröffentlicht in: | Environmental science and pollution research international Jg. 29; H. 14; S. 20496 - 20516 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
|
| Schlagworte: | |
| ISSN: | 0944-1344, 1614-7499, 1614-7499 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract |
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044. |
|---|---|
| AbstractList | Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044. Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044. Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044. |
| Author | Yaseen, Zaher Mundher Ewees, Ahmed A. Alavi, Javad Shahid, Shamsuddin Ansari, Sepideh |
| Author_xml | – sequence: 1 givenname: Javad surname: Alavi fullname: Alavi, Javad organization: Department of Environmental Sciences and Engineering, Kheradgarayan Motahar Institute of Higher Education – sequence: 2 givenname: Ahmed A. surname: Ewees fullname: Ewees, Ahmed A. organization: Computer Department, Damietta University – sequence: 3 givenname: Sepideh surname: Ansari fullname: Ansari, Sepideh organization: Department of Environmental Sciences and Engineering, Kheradgarayan Motahar Institute of Higher Education – sequence: 4 givenname: Shamsuddin surname: Shahid fullname: Shahid, Shamsuddin organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM) – sequence: 5 givenname: Zaher Mundher orcidid: 0000-0003-3647-7137 surname: Yaseen fullname: Yaseen, Zaher Mundher email: zaheryaseen88@gmail.com, yaseen@alayen.edu.iq organization: Department of Urban Planning, Engineering Networks and Systems, Institute of Architecture and Construction, South Ural State University, New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, College of Creative Design, Asia University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34741267$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEUhS1URNPCC7BAXrIx-C8z42VV8SdVYgF76459k7jMeFLbQ5q-CK-Lk7QbFmVxZV35O-dK51yQszhFJOSt4B8E5-3HLIRaNoxLwUQrDGfyBVmIRmjWamPOyIIbrZlQWp-Ti5xvOZfcyPYVOVe61UI27YL8uaIRdzTEHNabQldToglhYCWMSHeQC-6gYKJ3Mwyh7Ok2oQ-uhCnSOYe4ppt9n4IPD-jpL0wRB9ZDrgvel4TVY0BI8QCO4DYhYqa7UDYU_G-IrnLTtp4KD3C0hGE9pfo95tfk5QqGjG8e30vy4_Onn9df2c33L9-ur26YUx0vzIvWaw-AoLtGm15y73vnhUbHuVES6yijvew63hnXGd82LTQgVj3nXF2S9yfXbZruZszFjiE7HAaIOM3ZylZ0UnEl9f_RpdHSqKWUFX33iM79iN5uUxgh7e1T6hXoToBLU84JV9aFckygJAiDFdweCrangm0t2B4Ltgdv-Y_0yf1ZkTqJcoXjGpO9neYUa67Pqf4CpL-7QA |
| CitedBy_id | crossref_primary_10_3390_chemosensors12120247 crossref_primary_10_3390_w16071018 crossref_primary_10_3390_w15132454 crossref_primary_10_1051_e3sconf_202454702008 crossref_primary_10_2166_ws_2021_441 crossref_primary_10_1007_s11356_022_21864_w crossref_primary_10_1038_s41598_025_05708_4 crossref_primary_10_1016_j_jwpe_2024_105306 crossref_primary_10_3390_app14135824 crossref_primary_10_1016_j_chemosphere_2024_141472 crossref_primary_10_1080_1573062X_2023_2209558 crossref_primary_10_1016_j_aei_2025_103638 crossref_primary_10_3390_pr11010077 crossref_primary_10_3390_su151813557 crossref_primary_10_1007_s11356_022_20472_y crossref_primary_10_1007_s12145_024_01575_1 crossref_primary_10_1016_j_jwpe_2023_104758 crossref_primary_10_1007_s10661_023_11497_y crossref_primary_10_3390_w15112079 crossref_primary_10_1016_j_jenvman_2024_121430 crossref_primary_10_2166_nh_2025_160 crossref_primary_10_1007_s00477_023_02559_1 crossref_primary_10_1155_2022_3123475 |
| Cites_doi | 10.1016/j.watres.2017.10.053 10.1109/TSMCB.2011.2168604 10.1016/j.watres.2016.04.003 10.1016/j.jhydrol.2020.124974 10.1016/j.advengsoft.2017.07.002 10.1016/j.cej.2016.12.096 10.3390/w11040742 10.1016/j.measurement.2019.02.014 10.1007/s00477-014-0889-0 10.1016/j.chemosphere.2020.129465 10.1109/SDPC.2018.8664791 10.1007/s00521-018-3629-4 10.1007/s13762-013-0266-4 10.1016/j.wasman.2019.03.036 10.1016/j.geoderma.2018.05.030 10.1016/j.jhydrol.2020.125468 10.25130/tjes.26.3.04 10.1016/j.engappai.2012.08.015 10.1109/ACCESS.2018.2884827 10.1016/j.resconrec.2019.01.030 10.1007/s10652-007-9037-4 10.1039/c9ra06609h 10.1109/ACCESS.2020.2965303 10.1186/2052-336X-12-40 10.1016/j.cherd.2015.06.009 10.1016/j.marpolbul.2021.112639 10.1016/j.jenvman.2019.06.001 10.1016/j.neucom.2019.03.086 10.3390/ijerph16030453 10.1039/c9ew00505f 10.1016/j.advengsoft.2013.12.007 10.1016/j.resconrec.2016.07.014 10.25130/tjes.26.4.06 10.1016/j.scs.2019.101670 10.1109/ACCESS.2021.3100490 10.1007/978-3-030-12127-3_12 10.2166/wst.2020.298 10.1016/j.jhydrol.2020.124670 10.1016/B978-0-12-821092-5.00009-7 10.1016/j.ibiod.2019.104719 10.1038/s41598-021-82977-9 10.1016/j.procbio.2020.06.020 10.25130/tjes.26.1.01 10.1201/b13775 10.1016/j.chemosphere.2021.130126 10.1061/(ASCE)PS.1949-1204.0000347 10.1007/978-1-84882-983-1 10.1007/s10668-020-00927-3 10.1016/j.saa.2020.118827 10.1109/ChiCC.2016.7553666 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-021-17190-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 20516 |
| ExternalDocumentID | 34741267 10_1007_s11356_021_17190_2 |
| Genre | Journal Article |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c380t-d17d4daaea48649b20ddbcd14ec00932e932394d288089c89d767a6a1fb0003 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714885400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0944-1344 1614-7499 |
| IngestDate | Sun Nov 09 09:56:34 EST 2025 Sun Nov 09 12:51:10 EST 2025 Thu Apr 03 07:07:45 EDT 2025 Sat Nov 29 03:30:06 EST 2025 Tue Nov 18 21:28:13 EST 2025 Fri Feb 21 02:47:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Real-time water quality prediction Time-series learning Kernel-based extreme learning machine Wastewater Consumer behaviour Intelligent algorithms |
| Language | English |
| License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c380t-d17d4daaea48649b20ddbcd14ec00932e932394d288089c89d767a6a1fb0003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3647-7137 |
| PMID | 34741267 |
| PQID | 2594293522 |
| PQPubID | 23479 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_2718230324 proquest_miscellaneous_2594293522 pubmed_primary_34741267 crossref_citationtrail_10_1007_s11356_021_17190_2 crossref_primary_10_1007_s11356_021_17190_2 springer_journals_10_1007_s11356_021_17190_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20220300 2022-03-00 2022-Mar 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationTitleAlternate | Environ Sci Pollut Res Int |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Wang, Man, Hu (CR43) 2019; 5 CR35 Mirjalili, Mirjalili, Lewis (CR27) 2014 CR32 CR6 Bernardelli, Marsili-Libelli, Manzini (CR10) 2020; 81 Man, Hu, Ren (CR25) 2019; 144 Abba, Hadi, Sammen (CR1) 2020; 587 Srinu Naik, Pydi Setty (CR37) 2014; 11 CR7 CR48 He, Tan, Gao, Fan (CR16) 2019 CR47 CR46 Yu, Bai (CR49) 2019; 2018 Singh, Kansal (CR36) 2018; 128 CR42 Wei, Kusiak (CR45) 2014; 29 CR40 Aras, Toğan, Berkun (CR9) 2007; 7 Abyaneh (CR3) 2014; 12 Alaba, Popoola, Olatomiwa (CR8) 2019; 350 Hai, Sharafati, Mohammed (CR15) 2020; 8 Li, Huang, Chen (CR22) 2019; 9 He, Geng, Zhu (CR17) 2015; 102 CR19 Ibrahim (CR20) 2019; 26 CR14 CR13 CR12 Al-Doury, Alwan (CR4) 2019; 26 Verma, Wei, Kusiak (CR41) 2013; 26 CR50 Abouzari, Pahlavani, Izaditame, Bigdeli (CR2) 2021; 270 Mirjalili, Gandomi, Mirjalili (CR26) 2017; 0 Wei, Wu, Kong (CR44) 2019 Bolyard, Motlagh, Lozinski, Reinhart (CR11) 2019 CR28 Zhang, Tan, Wang, Wang (CR51) 2019; 31 Tiyasha, Tung, Bhagat (CR39) 2021; 170 Sharafati, Asadollah, Neshat (CR34) 2020 CR24 Sanikhani, Deo, Yaseen (CR33) 2018; 330 CR23 Zhu, Kang, Anderson (CR52) 2018; 128 Al-Obaidi, Li, Kara-Zaïtri, Mujtaba (CR5) 2017; 316 Revilla, Galán, Viguri (CR31) 2016 Huang, Zhou, Ding, Zhang (CR18) 2012; 42 Najafzadeh, Zeinolabedini (CR30) 2019; 138 Kim, Kim, Noh, Kim (CR21) 2018; 6 Tchobanoglous, Burton, Stensel (CR38) 2003 Naganna, Deka, Ghorbani (CR29) 2019 E Aras (17190_CR9) 2007; 7 A Verma (17190_CR41) 2013; 26 MMI Al-Doury (17190_CR4) 2019; 26 A Sharafati (17190_CR34) 2020 SI Abba (17190_CR1) 2020; 587 17190_CR24 C Wei (17190_CR44) 2019 A Ibrahim (17190_CR20) 2019; 26 17190_CR23 17190_CR28 S Mirjalili (17190_CR27) 2014 L He (17190_CR16) 2019 K Kim (17190_CR21) 2018; 6 M Abouzari (17190_CR2) 2021; 270 T Hai (17190_CR15) 2020; 8 G-B Huang (17190_CR18) 2012; 42 G Tchobanoglous (17190_CR38) 2003 17190_CR50 17190_CR6 17190_CR7 17190_CR13 YL He (17190_CR17) 2015; 102 17190_CR14 17190_CR12 M Revilla (17190_CR31) 2016 A Bernardelli (17190_CR10) 2020; 81 Z Wang (17190_CR43) 2019; 5 S Naganna (17190_CR29) 2019 17190_CR19 HZ Abyaneh (17190_CR3) 2014; 12 Y Man (17190_CR25) 2019; 144 JJ Zhu (17190_CR52) 2018; 128 17190_CR42 Z Li (17190_CR22) 2019; 9 17190_CR40 17190_CR46 17190_CR47 S Srinu Naik (17190_CR37) 2014; 11 17190_CR48 SC Bolyard (17190_CR11) 2019 H Sanikhani (17190_CR33) 2018; 330 T Tiyasha (17190_CR39) 2021; 170 17190_CR32 17190_CR35 MA Al-Obaidi (17190_CR5) 2017; 316 T Yu (17190_CR49) 2019; 2018 M Najafzadeh (17190_CR30) 2019; 138 X Wei (17190_CR45) 2014; 29 S Zhang (17190_CR51) 2019; 31 P Singh (17190_CR36) 2018; 128 S Mirjalili (17190_CR26) 2017; 0 PA Alaba (17190_CR8) 2019; 350 |
| References_xml | – volume: 128 start-page: 304 year: 2018 end-page: 313 ident: CR52 article-title: Predicting influent biochemical oxygen demand: balancing energy demand and risk management publication-title: Water Res doi: 10.1016/j.watres.2017.10.053 – ident: CR12 – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: CR18 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2011.2168604 – year: 2016 ident: CR31 article-title: An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis publication-title: Water Res doi: 10.1016/j.watres.2016.04.003 – volume: 587 start-page: 124974 year: 2020 ident: CR1 article-title: Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124974 – volume: 0 start-page: 1 year: 2017 end-page: 29 ident: CR26 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – ident: CR35 – volume: 316 start-page: 91 year: 2017 end-page: 100 ident: CR5 article-title: Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms publication-title: Chem Eng J doi: 10.1016/j.cej.2016.12.096 – ident: CR42 – year: 2019 ident: CR29 article-title: Dew point temperature estimation: application of artificial intelligence model integrated with nature-inspired optimization algorithms publication-title: Water doi: 10.3390/w11040742 – ident: CR46 – ident: CR19 – volume: 138 start-page: 690 year: 2019 end-page: 701 ident: CR30 article-title: Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation publication-title: Measurement doi: 10.1016/j.measurement.2019.02.014 – ident: CR50 – volume: 29 start-page: 241 year: 2014 end-page: 249 ident: CR45 article-title: Short-term prediction of influent flow in wastewater treatment plant publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0889-0 – volume: 270 start-page: 129465 year: 2021 ident: CR2 article-title: Estimating the chemical oxygen demand of petrochemical wastewater treatment plants using linear and nonlinear statistical models–a case study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129465 – ident: CR32 – volume: 2018 start-page: 221 year: 2019 end-page: 225 ident: CR49 article-title: Comparative study of optimization intelligent models in wastewater quality prediction publication-title: Proc - 2018 Int Conf Sensing Diagnostics, Progn Control SDPC doi: 10.1109/SDPC.2018.8664791 – volume: 31 start-page: 4629 year: 2019 end-page: 4638 ident: CR51 article-title: A new method of online extreme learning machine based on hybrid kernel function publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3629-4 – volume: 11 start-page: 823 year: 2014 end-page: 830 ident: CR37 article-title: Optimization of parameters using response surface methodology and genetic algorithm for biological denitrification of wastewater publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-013-0266-4 – year: 2019 ident: CR11 article-title: Impact of organic matter from leachate discharged to wastewater treatment plants on effluent quality and UV disinfection publication-title: Waste Manag doi: 10.1016/j.wasman.2019.03.036 – volume: 330 start-page: 52 year: 2018 end-page: 64 ident: CR33 article-title: Non-tuned data intelligent model for soil temperature estimation: a new approach publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.030 – year: 2020 ident: CR34 article-title: A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125468 – volume: 26 start-page: 31 year: 2019 end-page: 36 ident: CR4 article-title: Phenol removal from synthetic wastewater using batch adsorption scheme publication-title: Tikrit J Eng Sci doi: 10.25130/tjes.26.3.04 – volume: 26 start-page: 1366 year: 2013 end-page: 1372 ident: CR41 article-title: Predicting the total suspended solids in wastewater: a data-mining approach publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.08.015 – volume: 6 start-page: 75216 year: 2018 end-page: 75228 ident: CR21 article-title: Stable forecasting of environmental time series via long short term memory recurrent neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884827 – volume: 144 start-page: 56 year: 2019 end-page: 64 ident: CR25 article-title: Forecasting COD load in municipal sewage based on ARMA and VAR algorithms publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2019.01.030 – volume: 7 start-page: 439 year: 2007 end-page: 450 ident: CR9 article-title: River water quality management model using genetic algorithm publication-title: Environ Fluid Mech doi: 10.1007/s10652-007-9037-4 – ident: CR47 – ident: CR14 – ident: CR6 – volume: 81 start-page: 2391 year: 2020 end-page: 2400 ident: CR10 article-title: Real-time model predictive control of a wastewater treatment plant based on machine learning publication-title: Water Sci Technol – volume: 9 start-page: 34196 year: 2019 end-page: 34206 ident: CR22 article-title: A novel method for total chlorine detection using machine learning with electrode arrays publication-title: RSC Adv doi: 10.1039/c9ra06609h – ident: CR40 – ident: CR23 – volume: 8 start-page: 12026 year: 2020 end-page: 12042 ident: CR15 article-title: Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965303 – volume: 12 start-page: 40 year: 2014 ident: CR3 article-title: Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters publication-title: J Environ Heal Sci Eng doi: 10.1186/2052-336X-12-40 – ident: CR48 – volume: 102 start-page: 1 year: 2015 end-page: 11 ident: CR17 article-title: Data driven soft sensor development for complex chemical processes using extreme learning machine publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2015.06.009 – volume: 170 start-page: 112639 year: 2021 ident: CR39 article-title: Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: development of hybrid tree-based artificial intelligence models publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2021.112639 – year: 2019 ident: CR44 article-title: Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.06.001 – volume: 350 start-page: 70 year: 2019 end-page: 90 ident: CR8 article-title: Towards a more efficient and cost-sensitive extreme learning machine: a state-of-the-art review of recent trend publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.086 – ident: CR13 – year: 2019 ident: CR16 article-title: The shock effect of inorganic suspended solids in surface runoff on wastewater treatment plant performance publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph16030453 – volume: 5 start-page: 2210 year: 2019 end-page: 2218 ident: CR43 article-title: A deep learning based dynamic COD prediction model for urban sewage publication-title: Environ Sci Water Res Technol doi: 10.1039/c9ew00505f – year: 2003 ident: CR38 publication-title: Wastewater engineering: treatment and reuse – year: 2014 ident: CR27 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: CR7 – volume: 128 start-page: 499 year: 2018 end-page: 507 ident: CR36 article-title: Energy and GHG accounting for wastewater infrastructure publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2016.07.014 – ident: CR28 – ident: CR24 – volume: 26 start-page: 38 year: 2019 end-page: 42 ident: CR20 article-title: Effect of the horizontal perforated plates on the turbidity removal efficiency in water treatment plant of Tikrit University publication-title: Tikrit J Eng Sci doi: 10.25130/tjes.26.4.06 – ident: 17190_CR13 doi: 10.1016/j.scs.2019.101670 – year: 2014 ident: 17190_CR27 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 6 start-page: 75216 year: 2018 ident: 17190_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884827 – ident: 17190_CR19 – volume: 26 start-page: 1366 year: 2013 ident: 17190_CR41 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.08.015 – volume: 102 start-page: 1 year: 2015 ident: 17190_CR17 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2015.06.009 – volume: 2018 start-page: 221 year: 2019 ident: 17190_CR49 publication-title: Proc - 2018 Int Conf Sensing Diagnostics, Progn Control SDPC doi: 10.1109/SDPC.2018.8664791 – volume: 9 start-page: 34196 year: 2019 ident: 17190_CR22 publication-title: RSC Adv doi: 10.1039/c9ra06609h – volume: 5 start-page: 2210 year: 2019 ident: 17190_CR43 publication-title: Environ Sci Water Res Technol doi: 10.1039/c9ew00505f – volume: 587 start-page: 124974 year: 2020 ident: 17190_CR1 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124974 – volume: 350 start-page: 70 year: 2019 ident: 17190_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.086 – ident: 17190_CR6 doi: 10.1109/ACCESS.2021.3100490 – volume: 8 start-page: 12026 year: 2020 ident: 17190_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965303 – volume-title: Wastewater engineering: treatment and reuse year: 2003 ident: 17190_CR38 – ident: 17190_CR28 doi: 10.1007/978-3-030-12127-3_12 – volume: 330 start-page: 52 year: 2018 ident: 17190_CR33 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.030 – volume: 81 start-page: 2391 year: 2020 ident: 17190_CR10 publication-title: Water Sci Technol doi: 10.2166/wst.2020.298 – ident: 17190_CR40 doi: 10.1016/j.jhydrol.2020.124670 – volume: 26 start-page: 31 year: 2019 ident: 17190_CR4 publication-title: Tikrit J Eng Sci doi: 10.25130/tjes.26.3.04 – volume: 11 start-page: 823 year: 2014 ident: 17190_CR37 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-013-0266-4 – ident: 17190_CR42 doi: 10.1016/B978-0-12-821092-5.00009-7 – volume: 128 start-page: 304 year: 2018 ident: 17190_CR52 publication-title: Water Res doi: 10.1016/j.watres.2017.10.053 – volume: 316 start-page: 91 year: 2017 ident: 17190_CR5 publication-title: Chem Eng J doi: 10.1016/j.cej.2016.12.096 – year: 2019 ident: 17190_CR44 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.06.001 – year: 2020 ident: 17190_CR34 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125468 – volume: 7 start-page: 439 year: 2007 ident: 17190_CR9 publication-title: Environ Fluid Mech doi: 10.1007/s10652-007-9037-4 – year: 2016 ident: 17190_CR31 publication-title: Water Res doi: 10.1016/j.watres.2016.04.003 – ident: 17190_CR50 doi: 10.1016/j.ibiod.2019.104719 – volume: 270 start-page: 129465 year: 2021 ident: 17190_CR2 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129465 – ident: 17190_CR48 doi: 10.1038/s41598-021-82977-9 – year: 2019 ident: 17190_CR16 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph16030453 – volume: 12 start-page: 40 year: 2014 ident: 17190_CR3 publication-title: J Environ Heal Sci Eng doi: 10.1186/2052-336X-12-40 – volume: 0 start-page: 1 year: 2017 ident: 17190_CR26 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 31 start-page: 4629 year: 2019 ident: 17190_CR51 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3629-4 – volume: 170 start-page: 112639 year: 2021 ident: 17190_CR39 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2021.112639 – volume: 144 start-page: 56 year: 2019 ident: 17190_CR25 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2019.01.030 – ident: 17190_CR24 doi: 10.1016/j.procbio.2020.06.020 – ident: 17190_CR7 doi: 10.25130/tjes.26.1.01 – ident: 17190_CR14 doi: 10.1201/b13775 – ident: 17190_CR47 doi: 10.1016/j.chemosphere.2021.130126 – volume: 26 start-page: 38 year: 2019 ident: 17190_CR20 publication-title: Tikrit J Eng Sci doi: 10.25130/tjes.26.4.06 – volume: 138 start-page: 690 year: 2019 ident: 17190_CR30 publication-title: Measurement doi: 10.1016/j.measurement.2019.02.014 – ident: 17190_CR35 doi: 10.1061/(ASCE)PS.1949-1204.0000347 – volume: 128 start-page: 499 year: 2018 ident: 17190_CR36 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2016.07.014 – year: 2019 ident: 17190_CR11 publication-title: Waste Manag doi: 10.1016/j.wasman.2019.03.036 – ident: 17190_CR46 doi: 10.1007/978-1-84882-983-1 – ident: 17190_CR32 doi: 10.1007/s10668-020-00927-3 – year: 2019 ident: 17190_CR29 publication-title: Water doi: 10.3390/w11040742 – ident: 17190_CR12 doi: 10.1016/j.saa.2020.118827 – volume: 29 start-page: 241 year: 2014 ident: 17190_CR45 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0889-0 – volume: 42 start-page: 513 year: 2012 ident: 17190_CR18 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2011.2168604 – ident: 17190_CR23 doi: 10.1109/ChiCC.2016.7553666 |
| SSID | ssj0020927 |
| Score | 2.4454043 |
| Snippet |
Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the... Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20496 |
| SubjectTerms | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution chemical oxygen demand Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Machine Learning prediction Research Article swarms time series analysis Waste Water Technology Wastewater wastewater treatment Water Management Water Pollution Control |
| Title | A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms |
| URI | https://link.springer.com/article/10.1007/s11356-021-17190-2 https://www.ncbi.nlm.nih.gov/pubmed/34741267 https://www.proquest.com/docview/2594293522 https://www.proquest.com/docview/2718230324 |
| Volume | 29 |
| WOSCitedRecordID | wos000714885400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7WY dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: M0C dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals - Owned customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZglwMX3gvlUQ0SN7AUO25iH5eqKy5UFYugnCIntktFm66SLmj5I_xdZvJohRZVgkNGiuwk1mQ8D3s-D2OvcmHlyIfAhdOBKy0Kbp1BIoMVufIiikNTbCKdTvV8bmYdKKzus937LclGU-_BbiIeUcKs4CIlADQq3uMRnTZDMfr5p12YFZm2UKtRiotYqQ4q8_d3_GmOrvmY1_ZHG7Nzdvf_BnyP3encTDht5eI-u-HLB-xkske1YWM3reuH7NcpoHcNy7KmUB3QjwX0JVecCs_DD1vTAhvyH1oE5hVcVLS9Q78UKG9-AV-vCPi1_OkdfPNV6VecrKMD1Py0_ghdbYoFrJvcTV8Drf9Cn4AAG1Rc6w4RCna12FTYvK4fsfOzycfxO95VbOBFrKMtdyJ1ylnrrdKJMrmMnMsLJ5QvaOlEerxio5xEraFNoY1Lk9QmVoQmODthR-Wm9E8YyDxg5KYLO5Je5cabPElCHHSqXB7Z2A6Y6H9bVnSHmVNNjVW2P4aZuJ8h97OG-5kcsNe7Zy7aozwO9n7ZS0OGM462UWzpN5d1hgEjGnFyXA_0QZOPwR16qwP2uBWl3TdjhV6cTNIBe9PLTdYpjvrAgJ7-W_dn7LYkpEaTLvecHW2rS_-C3Sq-b5d1NWQ3089fiM7ThmqkeiyG7PjtZDr7gHfvozFRORs2s-s3eRMa0w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQQYIL78LyHCRuYCl2vIl9rFCrIsoKqRXqLXJie7tiN1sl21blj_B3mUmcXaGileCQXOIk1ng878_D2PtSWDn2IXDhdOBKi4pbZ_AmgxWl8iJJQ9dsIp9M9Omp-RZBYe1Q7T6kJDtJvQG7iXRMBbOCi5wA0Ch4bytqs0M--vH3tZuVmL5Rq1GKi1SpCJX5-zf-VEc3bMwb-dFO7Rw8-L8JP2T3o5kJez1fPGK3fP2Y7e5vUG34MG7r9gn7tQdoXcOsbslVB7RjAW3JOafG83BlWwqwIf2hR2Bew3lD6R1aUqC6-SmcXRPwa_bTO_jhm9rPOWlHByj5Kf4IsTfFFBZd7aZvgeK_MBQgwBIF1yIiQsHOp8sGHy_ap-z4YP_k0yGPHRt4lepkxZ3InXLWeqt0pkwpE-fKygnlKwqdSI9XapSTKDW0qbRxeZbbzIrQOWe7bKde1v45A1kG9Nx0ZcfSq9J4U2ZZSIPOlSsTm9oRE8OyFVU8zJx6asyLzTHMRP0CqV901C_kiH1Yv3PeH-WxdfS7gRsK3HGURrG1X160BTqMqMTJcN0yBlU-OndorY7Ys56V1v9MFVpxMstH7OPAN0UUHO2WCb34t-Fv2d3Dk69HxdHnyZeX7J4k1EZXOveK7ayaC_-a3akuV7O2edPtnt90ehao |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQQIgXGB-DwoBD4g2sxY6b2I8TrAKBqokhtLfIie2uok2rpAONf2T_7u7y0YKGKiEekpc4iWWffb873--Osde5sHLoQ-DC6cCVFgW3zuBNBity5UUUh6bYRDoe69NTc_wbi7-Jdu-PJFtOA2VpKlcHSxcONsQ3EQ8peFZwkRIZGjfhmwotGQrq-nLybW1yRaYt2mqU4iJWqqPN_P0bf6qma3jz2llpo4JG9_6_87vsbgc_4bCVl_vshi8fsL2jDdsNH3bLvX7ILg8BUTdMy5pMeEB8C4gxZ5wK0sNPW5PjDecFWmbmBSwrOvahqQaKp5_A2QURwqa_vIPvvir9jJPWdIAagfyS0NWsmMC8ien0NZBfGPrABFjghjbvmKJgZ5NFhY_n9SN2Mjr6-u4D7yo58CLW0Yo7kTrlrPVW6USZXEbO5YUTyhfkUpEer9goJ3E30abQxqVJahMrQmO07bGdclH6JwxkHtCi04UdSq9y402eJCEOOlUuj2xsB0z0U5gVXZJzqrUxyzbpmWn0Mxz9rBn9TA7Ym_U7yzbFx9bWr3rJyHAl0vGKLf3ivM7QkETlToB2SxuEAmj0IYodsMetWK3_GStEdzJJB-xtL0NZt6HUWzr09N-av2S3j9-Pss8fx5-esTuSyBxNRN0-21lV5_45u1X8WE3r6kWzkK4AJqUfjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+insight+for+real-time+wastewater+quality+prediction+using+hybridized+kernel-based+extreme+learning+machines+with+advanced+optimization+algorithms&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Alavi%2C+Javad&rft.au=Ewees%2C+Ahmed+A&rft.au=Ansari%2C+Sepideh&rft.au=Shahid%2C+Shamsuddin&rft.date=2022-03-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=29&rft.issue=14&rft.spage=20496&rft_id=info:doi/10.1007%2Fs11356-021-17190-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |