Quality evaluation of scenario-tree generation methods for solving stochastic programming problems

This paper addresses the generation of scenario trees to solve stochastic programming problems that have a large number of possible values for the random parameters (possibly infinitely many). For the sake of the computational efficiency, the scenario trees must include only a finite (rather small)...

Full description

Saved in:
Bibliographic Details
Published in:Computational management science Vol. 14; no. 3; pp. 333 - 365
Main Authors: Keutchayan, Julien, Gendreau, Michel, Saucier, Antoine
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2017
Springer Nature B.V
Subjects:
ISSN:1619-697X, 1619-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper addresses the generation of scenario trees to solve stochastic programming problems that have a large number of possible values for the random parameters (possibly infinitely many). For the sake of the computational efficiency, the scenario trees must include only a finite (rather small) number of scenarios, therefore, they provide decisions only for some values of the random parameters. To overcome the resulting loss of information, we propose to introduce an extension procedure . It is a systematic approach to interpolate and extrapolate the scenario-tree decisions to obtain a decision policy that can be implemented for any value of the random parameters at little computational cost. To assess the quality of the scenario-tree generation method and the extension procedure (STGM-EP), we introduce three generic quality parameters that focus on the quality of the decisions. We use these quality parameters to develop a framework that will help the decision-maker to select the most suitable STGM-EP for a given stochastic programming problem. We perform numerical experiments on two case studies. The quality parameters are used to compare three scenario-tree generation methods and three extension procedures (hence nine couples STGM-EP). We show that it is possible to single out the best couple in both problems, which provides decisions close to optimality at little computational cost.
AbstractList This paper addresses the generation of scenario trees to solve stochastic programming problems that have a large number of possible values for the random parameters (possibly infinitely many). For the sake of the computational efficiency, the scenario trees must include only a finite (rather small) number of scenarios, therefore, they provide decisions only for some values of the random parameters. To overcome the resulting loss of information, we propose to introduce an extension procedure. It is a systematic approach to interpolate and extrapolate the scenario-tree decisions to obtain a decision policy that can be implemented for any value of the random parameters at little computational cost. To assess the quality of the scenario-tree generation method and the extension procedure (STGM-EP), we introduce three generic quality parameters that focus on the quality of the decisions. We use these quality parameters to develop a framework that will help the decision-maker to select the most suitable STGM-EP for a given stochastic programming problem. We perform numerical experiments on two case studies. The quality parameters are used to compare three scenario-tree generation methods and three extension procedures (hence nine couples STGM-EP). We show that it is possible to single out the best couple in both problems, which provides decisions close to optimality at little computational cost.
This paper addresses the generation of scenario trees to solve stochastic programming problems that have a large number of possible values for the random parameters (possibly infinitely many). For the sake of the computational efficiency, the scenario trees must include only a finite (rather small) number of scenarios, therefore, they provide decisions only for some values of the random parameters. To overcome the resulting loss of information, we propose to introduce an extension procedure . It is a systematic approach to interpolate and extrapolate the scenario-tree decisions to obtain a decision policy that can be implemented for any value of the random parameters at little computational cost. To assess the quality of the scenario-tree generation method and the extension procedure (STGM-EP), we introduce three generic quality parameters that focus on the quality of the decisions. We use these quality parameters to develop a framework that will help the decision-maker to select the most suitable STGM-EP for a given stochastic programming problem. We perform numerical experiments on two case studies. The quality parameters are used to compare three scenario-tree generation methods and three extension procedures (hence nine couples STGM-EP). We show that it is possible to single out the best couple in both problems, which provides decisions close to optimality at little computational cost.
Author Gendreau, Michel
Keutchayan, Julien
Saucier, Antoine
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0000-0002-9987-7456
  surname: Keutchayan
  fullname: Keutchayan, Julien
  email: julien.keutchayan@polymtl.ca
  organization: Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
– sequence: 2
  givenname: Michel
  surname: Gendreau
  fullname: Gendreau, Michel
  organization: Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
– sequence: 3
  givenname: Antoine
  surname: Saucier
  fullname: Saucier, Antoine
  organization: Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal
BookMark eNp9kF1LwzAUhoNMcJv-AO8CXleTNmuSSxl-gSCCgnchX90y2mYm6WD_3syKiKAXIYec8-Q9PDMw6X1vATjH6BIjRK8iRiWjBcL5lJQX5AhMcY15UXPGJt81fTsBsxg3CJEFoWwK1PMgW5f20O5kO8jkfA99A6O2vQzOFylYC1e2t2HsdTatvYmw8QFG3-5cv4Ixeb2WMTkNt8Gvguy6w3OuVWu7eAqOG9lGe_Z1z8Hr7c3L8r54fLp7WF4_FrpiKBXaVqXildGVpKhmyhCONKFcU2MMkljqmhpkakpUY2qkmGKUmIWsGqxUpZpqDi7Gf3Pw-2BjEhs_hD5HCswxoRTxEuUpPE7p4GMMthHb4DoZ9gIjcVApRpUiqxQHlYJkhv5itEufPlKQrv2XLEcy5pR-ZcOPnf6EPgBt7Y1b
CitedBy_id crossref_primary_10_3390_a16100479
crossref_primary_10_1287_moor_2019_1043
crossref_primary_10_1007_s10287_023_00446_2
crossref_primary_10_1080_00207543_2018_1431415
crossref_primary_10_1007_s10287_019_00348_2
crossref_primary_10_1111_itor_13317
Cites_doi 10.1007/PL00011398
10.1023/A:1021853807313
10.1287/ijoc.1120.0516
10.1007/s10107-005-0597-0
10.1137/S0036142901393942
10.1080/02331931003700756
10.1023/A:1018961525394
10.1287/educ.1090.0065
10.1016/0022-247X(74)90157-7
10.1007/s10107-002-0331-0
10.1016/S0377-2217(00)00261-7
10.1007/s10107-015-0958-2
10.1287/mnsc.47.2.295.9834
10.1007/s10107-004-0557-0
10.1007/s10589-015-9758-0
10.1007/s10589-015-9751-7
10.1515/9781400831050
10.1137/110825054
10.1287/moor.1040.0114
10.1007/s10107-015-0898-x
10.1007/s10107-003-0445-z
10.1287/mnsc.46.9.1214.12231
10.1007/BF01580086
10.1007/978-3-642-55753-8_48
10.1007/BF02592156
10.1007/s10107-007-0197-2
10.1016/S0167-6377(98)00054-6
10.1007/978-3-662-03514-6_11
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Computational Management Science is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Computational Management Science is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7TA
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JG9
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s10287-017-0279-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Materials Business File
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1619-6988
EndPage 365
ExternalDocumentID 10_1007_s10287_017_0279_4
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2015-04696; PIN-115965
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
EOH
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P2P
P62
P9M
PADUT
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z81
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TA
7XB
8AL
8FD
8FK
JG9
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c380t-ce32b93dc3a7068bd490c479c7ddd0a1ac67d0d674bfd60b8b874d5a3f1bb3bf3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411377900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1619-697X
IngestDate Wed Nov 26 13:52:24 EST 2025
Tue Nov 18 22:24:31 EST 2025
Sat Nov 29 04:06:19 EST 2025
Fri Feb 21 02:40:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Decision policy
Scenario tree
Out-of-sample evaluation
Stochastic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-ce32b93dc3a7068bd490c479c7ddd0a1ac67d0d674bfd60b8b874d5a3f1bb3bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9987-7456
PQID 1914770920
PQPubID 54341
PageCount 33
ParticipantIDs proquest_journals_1914770920
crossref_primary_10_1007_s10287_017_0279_4
crossref_citationtrail_10_1007_s10287_017_0279_4
springer_journals_10_1007_s10287_017_0279_4
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Computational management science
PublicationTitleAbbrev Comput Manag Sci
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Defourny B, Ernst D, Wehenkel L (2011) Multistage stochastic programming: a scenario tree based approach. In: Sucar LE, Morales EF, Hoey J (eds) Decision theory models for applications in artificial intelligence: concepts and solutions. IGI Global, pp 97–143
KoivuMVariance reduction in sample approximations of stochastic programsMath Program2005103346348510.1007/s10107-004-0557-0
ShapiroARuszczyńskiAShapiroAMonte Carlo sampling methodsHandbooks in operations research and management science: stochastic Programming2003AmsterdamElsevier353425
SchultzRNowakMPNürnbergRRömischWWestphalenMStochastic programming for power production and trading under uncertaintyMathematics key technology for the future2003BerlinSpringer62363610.1007/978-3-642-55753-8_48
BirgeJRLouveauxFIntroduction to stochastic programming1997New YorkSpringer
RuszczyńskiAShapiroARuszczyńskiAShapiroAStochastic programming modelsHandbooks in operations research and management science: stochastic Programming2003AmsterdamElsevier164
HilliPPennanenTNumerical study of discretizations of multistage stochastic programsKybernetika2008442185204
DupačováJGröwe-KuskaNRömischWScenario reduction in stochastic programmingMath Program200395349351110.1007/s10107-002-0331-0
HeitschHRömischWScenario tree modeling for multistage stochastic programsMath Program2009118237140610.1007/s10107-007-0197-2
WallaceSWFletenS-ERuszczyńskiAShapiroAStochastic programming models in energyHandbooks in operations research and management science: stochastic Programming2003AmsterdamElsevier637677
Drew SS, Homem-de Mello T (2006) Quasi-Monte Carlo strategies for stochastic optimization. In: Proceedings of the 38th conference on Winter simulation. Winter Simulation Conference, pp 774–782
HøylandKWallaceSWGenerating scenario trees for multistage decision problemsManag Sci200147229530710.1287/mnsc.47.2.295.9834
MakW-KMortonDPWoodRKMonte carlo bounding techniques for determining solution quality in stochastic programsOper Res Lett1999241475610.1016/S0167-6377(98)00054-6
Chen M, Mehrotra S (2008) Epi-convergent scenario generation method for stochastic problems via sparse grid. Stoch Program E-Print Ser 7
SchultzRStochastic programming with integer variablesMath Program200397128530910.1007/s10107-003-0445-z
Pennanen T, Koivu M (2002) Integration quadratures in discretization of stochastic programs. Stoch Program E-Print Ser 11
PflugGCPichlerAA distance for multistage stochastic optimization modelsSIAM J Optim201222112310.1137/110825054
Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press10.1515/9781400831050
KüchlerCVigerskeSNumerical evaluation of approximation methods in stochastic programmingOptimization201059340141510.1080/02331931003700756
PflugGCScenario tree generation for multiperiod financial optimization by optimal discretizationMath Program200189225127110.1007/PL00011398
EdirisingheNBound-based approximations in multistage stochastic programming: nonanticipativity aggregationAnn Oper Res19998510312710.1023/A:1018961525394
PowellWBTopalogluHRuszczyńskiAShapiroAStochastic programming in transportation and logisticsHandbooks in operations research and management science: stochastic programming2003AmsterdamElsevier555635
Bayraksan G, Morton DP (2009) Assessing solution quality in stochastic programs via sampling. In: Oskoorouchi MR, Gray P, Greenberg HJ (eds) Tutorials in operations research: Decision technologies and applications. Informs, pp 102 –122
Chiralaksanakul A, Morton DP (2004) Assessing policy quality in multi-stage stochastic programming. Stoch Program E-Print Ser (12)
FrauendorferKBarycentric scenario trees in convex multistage stochastic programmingMath Program199675227729310.1007/BF02592156
HanasusantoGAKuhnDWiesemannWA comment on computational complexity of stochastic programming problemsMath Program2016159155756910.1007/s10107-015-0958-2
HøylandKKautMWallaceSWA heuristic for moment-matching scenario generationComput Optim Appl2003242–316918510.1023/A:1021853807313
Yu L-Y, Ji X-D, Wang S-Y (2003) Stochastic programming models in financial optimization: a survey. Adv Model Optim 5(1):1–26
KautMWallaceSWEvaluation of scenario-generation methods for stochastic programmingPac J Optim200732257271
PflugGCPichlerADynamic generation of scenario treesComput Optim Appl201562364166810.1007/s10589-015-9758-0
Proulx S (2014) Génération de scénarios par quantification optimale en dimension élevée. Master’s thesis, École Polytechnique de Montréal
DyerMStougieLComputational complexity of stochastic programming problemsMath Program2006106342343210.1007/s10107-005-0597-0
L’EcuyerPLemieuxCVariance reduction via lattice rulesManag Sci20004691214123510.1287/mnsc.46.9.1214.12231
LeöveyHRömischWQuasi-Monte Carlo methods for linear two-stage stochastic programming problemsMath Program2015151131534510.1007/s10107-015-0898-x
ChenMMehrotraSPappDScenario generation for stochastic optimization problems via the sparse grid methodComput Optim Appl201562366969210.1007/s10589-015-9751-7
Louveaux F (1998) An introduction to stochastic transportation models. In: Labbé M, Laporte G, Tanczos K, Toint P (eds) Operations research and decision aid methodologies in traffic and transportation management. Springer, Berlin, pp 244 –263
ShapiroAHomem-de MelloTA simulation-based approach to two-stage stochastic programming with recourseMath Program199881330132510.1007/BF01580086
KouwenbergRScenario generation and stochastic programming models for asset liability managementEur J Oper Res2001134227929210.1016/S0377-2217(00)00261-7
PennanenTEpi-convergent discretizations of multistage stochastic programsMath Oper Res200530124525610.1287/moor.1040.0114
SloanIHKuoFYJoeSConstructing randomly shifted lattice rules in weighted sobolev spacesSIAM J Numer Anal20024051650166510.1137/S0036142901393942
DefournyBErnstDWehenkelLScenario trees and policy selection for multistage stochastic programming using machine learningINFORMS J Comput201325348850110.1287/ijoc.1120.0516
RockafellarRTWetsRJContinuous versus measurable recourse in n-stage stochastic programmingJ Math Anal Appl197448383685910.1016/0022-247X(74)90157-7
JR Birge (279_CR3) 1997
J Dupačová (279_CR10) 2003; 95
GA Hanasusanto (279_CR14) 2016; 159
R Kouwenberg (279_CR21) 2001; 134
A Ruszczyński (279_CR35) 2003
A Shapiro (279_CR39) 1998; 81
M Dyer (279_CR11) 2006; 106
H Heitsch (279_CR15) 2009; 118
279_CR33
T Pennanen (279_CR27) 2005; 30
279_CR28
A Ben-Tal (279_CR2) 2009
B Defourny (279_CR8) 2013; 25
GC Pflug (279_CR31) 2015; 62
RT Rockafellar (279_CR34) 1974; 48
A Shapiro (279_CR38) 2003
279_CR1
N Edirisinghe (279_CR12) 1999; 85
W-K Mak (279_CR26) 1999; 24
279_CR4
279_CR7
279_CR6
279_CR9
R Schultz (279_CR36) 2003; 97
M Koivu (279_CR20) 2005; 103
GC Pflug (279_CR30) 2012; 22
WB Powell (279_CR32) 2003
C Küchler (279_CR22) 2010; 59
H Leövey (279_CR24) 2015; 151
SW Wallace (279_CR41) 2003
P L’Ecuyer (279_CR23) 2000; 46
IH Sloan (279_CR40) 2002; 40
279_CR42
K Høyland (279_CR17) 2003; 24
K Frauendorfer (279_CR13) 1996; 75
279_CR25
K Høyland (279_CR18) 2001; 47
R Schultz (279_CR37) 2003
M Chen (279_CR5) 2015; 62
M Kaut (279_CR19) 2007; 3
P Hilli (279_CR16) 2008; 44
GC Pflug (279_CR29) 2001; 89
References_xml – reference: SloanIHKuoFYJoeSConstructing randomly shifted lattice rules in weighted sobolev spacesSIAM J Numer Anal20024051650166510.1137/S0036142901393942
– reference: Defourny B, Ernst D, Wehenkel L (2011) Multistage stochastic programming: a scenario tree based approach. In: Sucar LE, Morales EF, Hoey J (eds) Decision theory models for applications in artificial intelligence: concepts and solutions. IGI Global, pp 97–143
– reference: EdirisingheNBound-based approximations in multistage stochastic programming: nonanticipativity aggregationAnn Oper Res19998510312710.1023/A:1018961525394
– reference: ChenMMehrotraSPappDScenario generation for stochastic optimization problems via the sparse grid methodComput Optim Appl201562366969210.1007/s10589-015-9751-7
– reference: LeöveyHRömischWQuasi-Monte Carlo methods for linear two-stage stochastic programming problemsMath Program2015151131534510.1007/s10107-015-0898-x
– reference: Yu L-Y, Ji X-D, Wang S-Y (2003) Stochastic programming models in financial optimization: a survey. Adv Model Optim 5(1):1–26
– reference: HanasusantoGAKuhnDWiesemannWA comment on computational complexity of stochastic programming problemsMath Program2016159155756910.1007/s10107-015-0958-2
– reference: SchultzRStochastic programming with integer variablesMath Program200397128530910.1007/s10107-003-0445-z
– reference: ShapiroAHomem-de MelloTA simulation-based approach to two-stage stochastic programming with recourseMath Program199881330132510.1007/BF01580086
– reference: HøylandKWallaceSWGenerating scenario trees for multistage decision problemsManag Sci200147229530710.1287/mnsc.47.2.295.9834
– reference: Bayraksan G, Morton DP (2009) Assessing solution quality in stochastic programs via sampling. In: Oskoorouchi MR, Gray P, Greenberg HJ (eds) Tutorials in operations research: Decision technologies and applications. Informs, pp 102 –122
– reference: Proulx S (2014) Génération de scénarios par quantification optimale en dimension élevée. Master’s thesis, École Polytechnique de Montréal
– reference: L’EcuyerPLemieuxCVariance reduction via lattice rulesManag Sci20004691214123510.1287/mnsc.46.9.1214.12231
– reference: PflugGCPichlerAA distance for multistage stochastic optimization modelsSIAM J Optim201222112310.1137/110825054
– reference: PowellWBTopalogluHRuszczyńskiAShapiroAStochastic programming in transportation and logisticsHandbooks in operations research and management science: stochastic programming2003AmsterdamElsevier555635
– reference: WallaceSWFletenS-ERuszczyńskiAShapiroAStochastic programming models in energyHandbooks in operations research and management science: stochastic Programming2003AmsterdamElsevier637677
– reference: KautMWallaceSWEvaluation of scenario-generation methods for stochastic programmingPac J Optim200732257271
– reference: Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press10.1515/9781400831050
– reference: RockafellarRTWetsRJContinuous versus measurable recourse in n-stage stochastic programmingJ Math Anal Appl197448383685910.1016/0022-247X(74)90157-7
– reference: PennanenTEpi-convergent discretizations of multistage stochastic programsMath Oper Res200530124525610.1287/moor.1040.0114
– reference: DefournyBErnstDWehenkelLScenario trees and policy selection for multistage stochastic programming using machine learningINFORMS J Comput201325348850110.1287/ijoc.1120.0516
– reference: FrauendorferKBarycentric scenario trees in convex multistage stochastic programmingMath Program199675227729310.1007/BF02592156
– reference: KouwenbergRScenario generation and stochastic programming models for asset liability managementEur J Oper Res2001134227929210.1016/S0377-2217(00)00261-7
– reference: DupačováJGröwe-KuskaNRömischWScenario reduction in stochastic programmingMath Program200395349351110.1007/s10107-002-0331-0
– reference: HøylandKKautMWallaceSWA heuristic for moment-matching scenario generationComput Optim Appl2003242–316918510.1023/A:1021853807313
– reference: SchultzRNowakMPNürnbergRRömischWWestphalenMStochastic programming for power production and trading under uncertaintyMathematics key technology for the future2003BerlinSpringer62363610.1007/978-3-642-55753-8_48
– reference: Chiralaksanakul A, Morton DP (2004) Assessing policy quality in multi-stage stochastic programming. Stoch Program E-Print Ser (12)
– reference: BirgeJRLouveauxFIntroduction to stochastic programming1997New YorkSpringer
– reference: HeitschHRömischWScenario tree modeling for multistage stochastic programsMath Program2009118237140610.1007/s10107-007-0197-2
– reference: PflugGCScenario tree generation for multiperiod financial optimization by optimal discretizationMath Program200189225127110.1007/PL00011398
– reference: KoivuMVariance reduction in sample approximations of stochastic programsMath Program2005103346348510.1007/s10107-004-0557-0
– reference: Drew SS, Homem-de Mello T (2006) Quasi-Monte Carlo strategies for stochastic optimization. In: Proceedings of the 38th conference on Winter simulation. Winter Simulation Conference, pp 774–782
– reference: MakW-KMortonDPWoodRKMonte carlo bounding techniques for determining solution quality in stochastic programsOper Res Lett1999241475610.1016/S0167-6377(98)00054-6
– reference: HilliPPennanenTNumerical study of discretizations of multistage stochastic programsKybernetika2008442185204
– reference: Pennanen T, Koivu M (2002) Integration quadratures in discretization of stochastic programs. Stoch Program E-Print Ser 11
– reference: DyerMStougieLComputational complexity of stochastic programming problemsMath Program2006106342343210.1007/s10107-005-0597-0
– reference: Chen M, Mehrotra S (2008) Epi-convergent scenario generation method for stochastic problems via sparse grid. Stoch Program E-Print Ser 7
– reference: KüchlerCVigerskeSNumerical evaluation of approximation methods in stochastic programmingOptimization201059340141510.1080/02331931003700756
– reference: Louveaux F (1998) An introduction to stochastic transportation models. In: Labbé M, Laporte G, Tanczos K, Toint P (eds) Operations research and decision aid methodologies in traffic and transportation management. Springer, Berlin, pp 244 –263
– reference: ShapiroARuszczyńskiAShapiroAMonte Carlo sampling methodsHandbooks in operations research and management science: stochastic Programming2003AmsterdamElsevier353425
– reference: PflugGCPichlerADynamic generation of scenario treesComput Optim Appl201562364166810.1007/s10589-015-9758-0
– reference: RuszczyńskiAShapiroARuszczyńskiAShapiroAStochastic programming modelsHandbooks in operations research and management science: stochastic Programming2003AmsterdamElsevier164
– volume: 89
  start-page: 251
  issue: 2
  year: 2001
  ident: 279_CR29
  publication-title: Math Program
  doi: 10.1007/PL00011398
– volume: 24
  start-page: 169
  issue: 2–3
  year: 2003
  ident: 279_CR17
  publication-title: Comput Optim Appl
  doi: 10.1023/A:1021853807313
– volume: 25
  start-page: 488
  issue: 3
  year: 2013
  ident: 279_CR8
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1120.0516
– volume: 106
  start-page: 423
  issue: 3
  year: 2006
  ident: 279_CR11
  publication-title: Math Program
  doi: 10.1007/s10107-005-0597-0
– start-page: 555
  volume-title: Handbooks in operations research and management science: stochastic programming
  year: 2003
  ident: 279_CR32
– ident: 279_CR6
– volume: 40
  start-page: 1650
  issue: 5
  year: 2002
  ident: 279_CR40
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S0036142901393942
– volume: 59
  start-page: 401
  issue: 3
  year: 2010
  ident: 279_CR22
  publication-title: Optimization
  doi: 10.1080/02331931003700756
– ident: 279_CR33
– ident: 279_CR4
– volume: 85
  start-page: 103
  year: 1999
  ident: 279_CR12
  publication-title: Ann Oper Res
  doi: 10.1023/A:1018961525394
– ident: 279_CR1
  doi: 10.1287/educ.1090.0065
– volume: 48
  start-page: 836
  issue: 3
  year: 1974
  ident: 279_CR34
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(74)90157-7
– start-page: 1
  volume-title: Handbooks in operations research and management science: stochastic Programming
  year: 2003
  ident: 279_CR35
– volume: 95
  start-page: 493
  issue: 3
  year: 2003
  ident: 279_CR10
  publication-title: Math Program
  doi: 10.1007/s10107-002-0331-0
– volume: 134
  start-page: 279
  issue: 2
  year: 2001
  ident: 279_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(00)00261-7
– volume: 159
  start-page: 557
  issue: 1
  year: 2016
  ident: 279_CR14
  publication-title: Math Program
  doi: 10.1007/s10107-015-0958-2
– volume: 47
  start-page: 295
  issue: 2
  year: 2001
  ident: 279_CR18
  publication-title: Manag Sci
  doi: 10.1287/mnsc.47.2.295.9834
– volume: 103
  start-page: 463
  issue: 3
  year: 2005
  ident: 279_CR20
  publication-title: Math Program
  doi: 10.1007/s10107-004-0557-0
– volume: 62
  start-page: 641
  issue: 3
  year: 2015
  ident: 279_CR31
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-015-9758-0
– start-page: 637
  volume-title: Handbooks in operations research and management science: stochastic Programming
  year: 2003
  ident: 279_CR41
– ident: 279_CR42
– volume: 62
  start-page: 669
  issue: 3
  year: 2015
  ident: 279_CR5
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-015-9751-7
– volume-title: Introduction to stochastic programming
  year: 1997
  ident: 279_CR3
– ident: 279_CR9
– volume-title: Robust optimization
  year: 2009
  ident: 279_CR2
  doi: 10.1515/9781400831050
– volume: 3
  start-page: 257
  issue: 2
  year: 2007
  ident: 279_CR19
  publication-title: Pac J Optim
– volume: 22
  start-page: 1
  issue: 1
  year: 2012
  ident: 279_CR30
  publication-title: SIAM J Optim
  doi: 10.1137/110825054
– ident: 279_CR7
– volume: 30
  start-page: 245
  issue: 1
  year: 2005
  ident: 279_CR27
  publication-title: Math Oper Res
  doi: 10.1287/moor.1040.0114
– volume: 151
  start-page: 315
  issue: 1
  year: 2015
  ident: 279_CR24
  publication-title: Math Program
  doi: 10.1007/s10107-015-0898-x
– volume: 97
  start-page: 285
  issue: 1
  year: 2003
  ident: 279_CR36
  publication-title: Math Program
  doi: 10.1007/s10107-003-0445-z
– volume: 46
  start-page: 1214
  issue: 9
  year: 2000
  ident: 279_CR23
  publication-title: Manag Sci
  doi: 10.1287/mnsc.46.9.1214.12231
– volume: 81
  start-page: 301
  issue: 3
  year: 1998
  ident: 279_CR39
  publication-title: Math Program
  doi: 10.1007/BF01580086
– start-page: 623
  volume-title: Mathematics key technology for the future
  year: 2003
  ident: 279_CR37
  doi: 10.1007/978-3-642-55753-8_48
– volume: 44
  start-page: 185
  issue: 2
  year: 2008
  ident: 279_CR16
  publication-title: Kybernetika
– volume: 75
  start-page: 277
  issue: 2
  year: 1996
  ident: 279_CR13
  publication-title: Math Program
  doi: 10.1007/BF02592156
– volume: 118
  start-page: 371
  issue: 2
  year: 2009
  ident: 279_CR15
  publication-title: Math Program
  doi: 10.1007/s10107-007-0197-2
– volume: 24
  start-page: 47
  issue: 1
  year: 1999
  ident: 279_CR26
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(98)00054-6
– start-page: 353
  volume-title: Handbooks in operations research and management science: stochastic Programming
  year: 2003
  ident: 279_CR38
– ident: 279_CR25
  doi: 10.1007/978-3-662-03514-6_11
– ident: 279_CR28
SSID ssj0045478
Score 2.1288157
Snippet This paper addresses the generation of scenario trees to solve stochastic programming problems that have a large number of possible values for the random...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Business and Management
Computing time
Couples
Decision making
Decisions
Extrapolation
Mathematical programming
Operations Research/Decision Theory
Optimization
Original Paper
Probability theory
Quality
Quality assessment
Stochastic programming
Trees
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-EC--xdVVcvCkBLNNbJKTyOLiQcWDwt5KM0lV0N3VroL_3kybuiq4F69NE0JnMplvZvoNIQdacHAnMpw00IZJr4FZmQATidfSJx0JvmLXv1TX17rfNzcx4FbGssrGJlaG2g0BY-THyEOmFDcJPx29MOwahdnV2EJjlsyjZ4MlfVe821jiiqsKAVcACSw1qt9kNetf5wJWYGijAzALu_x5L02czV_50era6a38d8OrZDk6nPSs1pA1MuMH62SxqXffILZm0figE95vOiwokjwFGD1kmLWm9xU5dTVWt5wuaXB2adBbjEfQ4EDCQ46MzzTWez3j49isptwkd73z2-4Fi40XGAjNxwy8SKwRDkSueKqtk4aDVAaUc47nnRxS5bhLlbSFS7nVVivpTnJRdKwVthBbZG4wHPhtQr0O1lSnqeW5l0WuTWEAQZa1KswH3SK8-ewZRFZybI7xlE34lFFSWZBUhpLKZIscfk0Z1ZQc015uN9LJ4ukss4loWuSoke-34b8W25m-2C5ZSiqFQr1qk7nx65vfIwvwPn4sX_cr1fwEydvrpQ
  priority: 102
  providerName: ProQuest
Title Quality evaluation of scenario-tree generation methods for solving stochastic programming problems
URI https://link.springer.com/article/10.1007/s10287-017-0279-4
https://www.proquest.com/docview/1914770920
Volume 14
WOSCitedRecordID wos000411377900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: 7WY
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: M0C
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: P5Z
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: K7-
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: BENPR
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: M2O
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1619-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045478
  issn: 1619-697X
  databaseCode: RSV
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60FfHFW6xHyYNPSiDdpJvkUYsiqLV4Vl-WzbEqaCvdKvjvTfawVVTQl8BuDpaZyWRmZ_INwJagRJsmcztNC4mZFRorFmhMAyuYDRpM2wxd_5i326LblZ3iHndaZruXIclMU49ddnPWPfZa1blSbt1JqLrTTvh6DWfnV6X6zQCqvJflPAMcSt4tQ5nfLfH5MBpZmF-CotlZczD3r6-ch9nCtES7uSwswITtLcJ0mdm-BCrHy3hDI4Rv1E-Qh3NyDnMf-_g0ustgqLO-vLh0ipxZi5yE-j8PyJmK-j722M6oyOx68q-LsjTpMlwe7F-0DnFRYgFrKsgQa0sDJanRNOYkFMowSTTjUnNjDIkbsQ65ISbkTCUmJEoowZlpxjRpKEVVQleg0uv37CogK5zeFGGoSGxZEguZSO3dKaW4m69FDUhJ60gX-OO-DMZjNEJO9rSLHO0iT7uI1WD7Y8pzDr7x2-CNkoFRsQ_TyKPXcU5kQGqwUzJsrPunxdb-NHodZoKM457xG1AZDl7sJkzp1-FDOqjDJL--qUN1b7_dOXNPRxy79oS0fBucurbTvK1nQvwOTW7niA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH5BMOJFVCCugvagF0hDd1qm7cEYIxDIrhsPmOxtnL52kER3cWfV8E_5N9o3M3XFBG4cvE6nTdp-71df-z2Al0YK9PsqShoay1UwyJ3KkMssGBWyvsLQsOsP9WhkxmP7YQl-pbcwdK0y6cRGUfsp0hn5HvGQaS1sJt5cfONUNYqyq6mERguLQbj8GUO2-vXJQdzfV1l2dHj67ph3VQU4SiPmHIPMnJUeZalFbpxXVqDSFrX3XpT9EnPthc-1cpXPhTPOaOX3S1n1nZOuknHcO7CipNEkVwPNk-ZvuLEowItBCc-tHqcsavtUL8YmnGxCDATjqly1gwvn9p98bGPmjtb-twV6CA86h5q9bSXgESyFyWO4l-7zr4NrWUIu2YLXnE0rRiRW5ex8yikrz84a8u2mrS2pXbPozLMol3TewqKDjJ9LYrRm3X22r_S5K8ZTb8DHW5nhJixPppPwBFgw0VqYPHeiDKoqja0sUhDpnI790fRApG0usGNdp-IfX4oFXzQho4jIKAgZherBzp8uFy3lyE0_byU0FJ32qYsFFHqwm_D0V_N1gz29ebAXsHp8-n5YDE9Gg2dwP2vATJjeguX57HvYhrv4Y35ez543YsHg023D7Dciy0t3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VgqpeyrcaKMUHuICsOmtnbR8QQrRRq1ZRDiBFXJb12AuVaNJmQ6v-tf46PLtrAkjtrQeu67Ul2288M57xG4BXRgr0AxUlDY3lKhjkTmXIZRaMCllfYWjY9Y_0aGQmEztegav0FobSKtOZ2BzUfoZ0R75DPGRaC5uJnapLixjvDt-fnnGqIEWR1lROo4XIYbi8iO5b_e5gN-716ywb7n36uM-7CgMcpRELjkFmzkqPstQiN84rK1Bpi9p7L8p-ibn2wudaucrnwhlntPKDUlZ956SrZBz3DtzV0cekdMLx4EvSAg1PFjl70UHhudWTFFFtn-1FP4WTfohOYVyhv3Xi0tD9JzbbqLzh_f95sR7ARmdosw-tZDyElTB9BGspz_8xuJY95JIt-c7ZrGJEblXOj2ecovXsW0PK3bS1pbZrFo18FuWV7mFYNJzxe0lM16zLczuhz12RnvoJfL6VGT6F1elsGjaBBRO1iMlzJ8qgqtLYyiI5l87p2B9ND0Ta8gI7NnYqCvKjWPJIE0qKiJKCUFKoHrz53eW0pSK56eethIyiO5XqYgmLHrxN2Pqj-brBnt082EtYi-gqjg5Gh89hPWtwTfDegtXF_Gd4AffwfHFcz7cbCWHw9bZR9gv-o1Sb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+evaluation+of+scenario-tree+generation+methods+for+solving+stochastic+programming+problems&rft.jtitle=Computational+management+science&rft.au=Keutchayan%2C+Julien&rft.au=Gendreau%2C+Michel&rft.au=Saucier%2C+Antoine&rft.date=2017-07-01&rft.issn=1619-697X&rft.eissn=1619-6988&rft.volume=14&rft.issue=3&rft.spage=333&rft.epage=365&rft_id=info:doi/10.1007%2Fs10287-017-0279-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10287_017_0279_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-697X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-697X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-697X&client=summon